smart contracts

14 results back to index


pages: 271 words: 52,814

Blockchain: Blueprint for a New Economy by Melanie Swan

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, Airbnb, altcoin, Amazon Web Services, asset allocation, banking crisis, bioinformatics, bitcoin, blockchain, capital controls, cellular automata, central bank independence, clean water, cloud computing, collaborative editing, Conway's Game of Life, crowdsourcing, cryptocurrency, disintermediation, Edward Snowden, en.wikipedia.org, ethereum blockchain, fault tolerance, fiat currency, financial innovation, Firefox, friendly AI, Hernando de Soto, Internet Archive, Internet of things, Khan Academy, Kickstarter, litecoin, Lyft, M-Pesa, microbiome, Network effects, new economy, peer-to-peer lending, personalized medicine, post scarcity, prediction markets, ride hailing / ride sharing, Satoshi Nakamoto, Search for Extraterrestrial Intelligence, SETI@home, sharing economy, Skype, smart cities, smart contracts, smart grid, software as a service, technological singularity, Turing complete, unbanked and underbanked, underbanked, web application, WikiLeaks

-M2M/IoT Bitcoin Payment Network to Enable the Machine Economy and consensus models, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe extensibility of, Extensibility of Blockchain Technology Concepts for facilitating big data predictive task automation, Blockchain Layer Could Facilitate Big Data’s Predictive Task Automation future applications, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe limitations of (see limitations) organizational capabilities, Blockchain Technology Is a New and Highly Effective Model for Organizing Activity tracking capabilities, Fundamental Economic Principles: Discovery, Value Attribution, and Exchange-Fundamental Economic Principles: Discovery, Value Attribution, and Exchange blockchain-recorded marriage, Decentralized Governance Services BlockCypher, Blockchain Development Platforms and APIs BOINC, DAOs and DACs bond deposit postings, Technical Challenges Brin, David, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel BTCjam, Financial Services business model challenges, Business Model Challenges Buttercoin, Financial Services Byrne, Patrick, Financial Services C Campus Cryptocurrency Network, Campuscoin Campuscoin, Campuscoin-Campuscoin censorship, Internet (see decentralized DNS system) Chain, Blockchain Development Platforms and APIs challenges (see see limitations) charity donations, Charity Donations and the Blockchain—Sean’s Outpost China, Relation to Fiat Currency ChromaWallet, Wallet Development Projects Chronobit, Virtual Notary, Bitnotar, and Chronobit Circle Internet Financial, eWallet Services and Personal Cryptosecurity Codius, Financial Services coin drops, Coin Drops as a Strategy for Public Adoption coin mixing, eWallet Services and Personal Cryptosecurity coin, defining, Terminology and Concepts, Currency, Token, Tokenizing Coinapult, Global Public Health: Bitcoin for Contagious Disease Relief Coinapult LOCKS, Relation to Fiat Currency Coinbase, Merchant Acceptance of Bitcoin, Financial Services CoinBeyond, Merchant Acceptance of Bitcoin Coinffeine, Financial Services Coinify, Merchant Acceptance of Bitcoin Coinprism, Wallet Development Projects Coinspace, Crowdfunding CoinSpark, Wallet Development Projects colored coins, Smart Property, Blockchain 2.0 Protocol Projects community supercomputing, Community Supercomputing Communitycoin, Currency, Token, Tokenizing-Communitycoin: Hayek’s Private Currencies Vie for Attention complementary currency systems, Demurrage Currencies: Potentially Incitory and Redistributable concepts, redefining, Terminology and Concepts-Terminology and Concepts consensus models, Blockchain AI: Consensus as the Mechanism to Foster “Friendly” AI-Blockchain Consensus Increases the Information Resolution of the Universe consensus-derived information, Blockchain Consensus Increases the Information Resolution of the Universe contagious disease relief, Global Public Health: Bitcoin for Contagious Disease Relief contracts, Blockchain 2.0: Contracts-The Blockchain as a Path to Artificial Intelligence (see also smart contracts) crowdfunding, Crowdfunding-Crowdfunding financial services, Financial Services-Financial Services marriage, Decentralized Governance Services prediction markets, Bitcoin Prediction Markets smart property, Smart Property-Smart Property wallet development projects, Wallet Development Projects copyright protection, Monegraph: Online Graphics Protection Counterparty, Blockchain 2.0 Protocol Projects, Counterparty Re-creates Ethereum’s Smart Contract Platform Counterparty currency (XCP), Currency, Token, Tokenizing Counterwallet, Wallet Development Projects crowdfunding, Crowdfunding-Crowdfunding cryptocurrencies benefits of, Currency, Token, Tokenizing cryptosecurity, eWallet Services and Personal Cryptosecurity eWallet services, eWallet Services and Personal Cryptosecurity mechanics of, How a Cryptocurrency Works-Merchant Acceptance of Bitcoin merchant acceptance, Merchant Acceptance of Bitcoin cryptosecurity challenges, eWallet Services and Personal Cryptosecurity cryptowallet, Blockchain Neutrality currency, Technology Stack: Blockchain, Protocol, Currency-Regulatory Status, Currency, Token, Tokenizing-Extensibility of Demurrage Concept and Features Campuscoin, Campuscoin-Campuscoin coin drops, Coin Drops as a Strategy for Public Adoption Communitycoin, Communitycoin: Hayek’s Private Currencies Vie for Attention-Communitycoin: Hayek’s Private Currencies Vie for Attention cryptocurrencies, How a Cryptocurrency Works-Merchant Acceptance of Bitcoin decentralizing, Communitycoin: Hayek’s Private Currencies Vie for Attention defining, Currency, Token, Tokenizing-Currency, Token, Tokenizing, Currency: New Meanings demurrage, Demurrage Currencies: Potentially Incitory and Redistributable-Extensibility of Demurrage Concept and Features double-spend problem, The Double-Spend and Byzantine Generals’ Computing Problems fiat currency, Relation to Fiat Currency-Relation to Fiat Currency monetary and nonmonetary, Currency Multiplicity: Monetary and Nonmonetary Currencies-Currency Multiplicity: Monetary and Nonmonetary Currencies new meanings, Currency: New Meanings technology stack, Technology Stack: Blockchain, Protocol, Currency-Technology Stack: Blockchain, Protocol, Currency currency mulitplicity, Currency Multiplicity: Monetary and Nonmonetary Currencies-Currency Multiplicity: Monetary and Nonmonetary Currencies D DAOs, DAOs and DACs-DAOs and DACs DAOs/DACs, DAOs and DACs-DAOs and DACs, Batched Notary Chains as a Class of Blockchain Infrastructure, Blockchain Government Dapps, Dapps-Dapps, Extensibility of Demurrage Concept and Features Dark Coin, eWallet Services and Personal Cryptosecurity dark pools, Technical Challenges Dark Wallet, eWallet Services and Personal Cryptosecurity DASs, DASs and Self-Bootstrapped Organizations DDP, Crowdfunding decentralization, Smart Contracts, Centralization-Decentralization Tension and Equilibrium decentralized applications (Dapps), Dapps-Dapps decentralized autonomous organization/corporation (DAO) (see DAOs/DACs) decentralized autonomous societies (DASs), DASs and Self-Bootstrapped Organizations decentralized autonomy, eWallet Services and Personal Cryptosecurity decentralized DNS, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity challenges of, Challenges and Other Decentralized DNS Services and digital identity, Decentralized DNS Functionality Beyond Free Speech: Digital Identity-Decentralized DNS Functionality Beyond Free Speech: Digital Identity DotP2P, Challenges and Other Decentralized DNS Services decentralized file storage, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation decentralized secure file serving, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation deeds, Decentralized Governance Services demurrage currencies, Demurrage Currencies: Potentially Incitory and Redistributable-Extensibility of Demurrage Concept and Features action-incitory features, Extensibility of Demurrage Concept and Features limitations of, Demurrage Currencies: Potentially Incitory and Redistributable digital art, Digital Art: Blockchain Attestation Services (Notary, Intellectual Property Protection)-Personal Thinking Blockchains (see also blockchain attestation services) hashing and timestamping, Hashing Plus Timestamping-Limitations online graphics protection, Monegraph: Online Graphics Protection digital cryptography, Ethereum: Turing-Complete Virtual Machine, Public/Private-Key Cryptography 101 digital divide, defining, Digital Divide of Bitcoin digital identity verification, Blockchain 2.0: Contracts, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records dispute resolution, PrecedentCoin: Blockchain Dispute Resolution DIYweathermodeling, Community Supercomputing DNAnexus, Genomecoin, GenomicResearchcoin Dogecoin, Technology Stack: Blockchain, Protocol, Currency, Currency Multiplicity: Monetary and Nonmonetary Currencies, Scandals and Public Perception DotP2P, Challenges and Other Decentralized DNS Services double-spend problem, The Double-Spend and Byzantine Generals’ Computing Problems DriveShare, DAOs and DACs dynamic redistribution of currency (see demurrage currency) E education (see learning and literacy) Electronic Freedom Foundation (EFF), Distributed Censorship-Resistant Organizational Models EMR (electronic medical record) system, EMRs on the Blockchain: Personal Health Record Storage Ethereum, Crowdfunding, Blockchain 2.0 Protocol Projects, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Ethereum: Turing-Complete Virtual Machine-Counterparty Re-creates Ethereum’s Smart Contract Platform eWallet services, eWallet Services and Personal Cryptosecurity ExperimentalResultscoin, Blockchain Academic Publishing: Journalcoin F Fairlay, Bitcoin Prediction Markets fiat currency, Relation to Fiat Currency-Relation to Fiat Currency file serving, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Ethereum: Turing-Complete Virtual Machine file storage, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation financial services, Regulatory Status, Financial Services-Financial Services, Blockchain Technology Is a New and Highly Effective Model for Organizing Activity, Government Regulation Fitbit, Personal Thinking Blockchains, Blockchain Health Research Commons, Extensibility of Demurrage Concept and Features Florincoin, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel Folding@Home, DAOs and DACs, Blockchain Science: Gridcoin, Foldingcoin, Community Supercomputing franculates, Blockchain Government freedom of speech, Namecoin: Decentralized Domain Name System, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel (see also decentralized DNS system) Freicoin, Demurrage Currencies: Potentially Incitory and Redistributable fundraising (see crowdfunding) futarchy, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets G GBIcoin, Demurrage Currencies: Potentially Incitory and Redistributable GBIs (Guaranteed Basic Income initiatives), Demurrage Currencies: Potentially Incitory and Redistributable Gems, Blockchain Development Platforms and APIs, Dapps Genecoin, Blockchain Genomics Genomecoin, Genomecoin, GenomicResearchcoin Genomic Data Commons, Genomecoin, GenomicResearchcoin genomic sequencing, Blockchain Genomics 2.0: Industrialized All-Human-Scale Sequencing Solution-Genomecoin, GenomicResearchcoin GenomicResearchcoin, Genomecoin, GenomicResearchcoin genomics, consumer, Blockchain Genomics-Genomecoin, GenomicResearchcoin Git, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation GitHub, Blockchain Academic Publishing: Journalcoin, Currency Multiplicity: Monetary and Nonmonetary Currencies global public health, Global Public Health: Bitcoin for Contagious Disease Relief GoCoin, Financial Services GoToLunchcoin, Terminology and Concepts governance, Blockchain Government-Societal Maturity Impact of Blockchain Governance decentralized services, Decentralized Governance Services-Decentralized Governance Services dispute resolution, PrecedentCoin: Blockchain Dispute Resolution futarchy, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets Liquid Democracy system, Liquid Democracy and Random-Sample Elections-Liquid Democracy and Random-Sample Elections personalized governance services, Blockchain Government random-sample elections, Random-Sample Elections societal maturity impact of blockchain governance, Societal Maturity Impact of Blockchain Governance government regulation, Regulatory Status, Government Regulation-Government Regulation Gridcoin, Blockchain Science: Gridcoin, Foldingcoin-Blockchain Science: Gridcoin, Foldingcoin H hashing, Hashing Plus Timestamping-Limitations, Batched Notary Chains as a Class of Blockchain Infrastructure, Technical Challenges Hayek, Friedrich, Communitycoin: Hayek’s Private Currencies Vie for Attention, Demurrage Currencies: Potentially Incitory and Redistributable, Conclusion, The Blockchain Is an Information Technology health, Blockchain Health-Virus Bank, Seed Vault Backup as demurrage currency, Extensibility of Demurrage Concept and Features doctor vendor RFP services, Doctor Vendor RFP Services and Assurance Contracts health notary services, Blockchain Health Notary health research commons , Blockchain Health Research Commons health spending, Healthcoin healthcare decision making and advocacy, Liquid Democracy and Random-Sample Elections personal health record storage, EMRs on the Blockchain: Personal Health Record Storage virus bank and seed vault backup, Virus Bank, Seed Vault Backup Healthcoin, Healthcoin, Demurrage Currencies: Potentially Incitory and Redistributable I identity authentication, eWallet Services and Personal Cryptosecurity, Blockchain 2.0: Contracts, Smart Property, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records Indiegogo, Crowdfunding, Dapps industry scandals, Scandals and Public Perception infrastructure needs and issues, Technical Challenges inheritance gifts, Smart Contracts intellectual property, Monegraph: Online Graphics Protection (see also digital art) Internet administration, Distributed Censorship-Resistant Organizational Models Internet Archive, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Personal Thinking Blockchains Internet censorship prevention (see Decentralized DNS system) Intuit Quickbooks, Merchant Acceptance of Bitcoin IP protection, Hashing Plus Timestamping IPFS project, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation J Johnston, David, Blockchain Technology Could Be Used in the Administration of All Quanta Journalcoin, Blockchain Academic Publishing: Journalcoin Judobaby, Crowdfunding justice applications for censorship-resistant organizational models, Distributed Censorship-Resistant Organizational Models-Distributed Censorship-Resistant Organizational Models digital art, Digital Art: Blockchain Attestation Services (Notary, Intellectual Property Protection)-Personal Thinking Blockchains (see also digital art, blockchain attestation services) digital identity verification, Blockchain 2.0: Contracts, Smart Property, Wallet Development Projects, Digital Identity Verification-Digital Divide of Bitcoin, Limitations, Decentralized Governance Services, Liquid Democracy and Random-Sample Elections, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy, Privacy Challenges for Personal Records freedom of speech/anti-censorship, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel governance, Blockchain Government-Societal Maturity Impact of Blockchain Governance (see also governance) Namecoin, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity, Monegraph: Online Graphics Protection (see also decentralized DNS) K Kickstarter, Crowdfunding, Community Supercomputing Kipochi, Blockchain Neutrality, Global Public Health: Bitcoin for Contagious Disease Relief, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy Koinify, Crowdfunding, Dapps Kraken, Financial Services L latency, Blockchain 2.0 Protocol Projects, Technical Challenges, Technical Challenges, Scandals and Public Perception LaZooz, Dapps, Campuscoin, Extensibility of Demurrage Concept and Features Learncoin, Learncoin learning and literacy, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy-Learning Contract Exchanges learning contract exchanges, Learning Contract Exchanges Ledra Capital, Blockchain 2.0: Contracts, Ledra Capital Mega Master Blockchain List legal implications crowdfunding, Crowdfunding smart contracts, Smart Contracts lending, trustless, Smart Property Lighthouse, Crowdfunding limitations, Limitations-Overall: Decentralization Trends Likely to Persist business model challenges, Business Model Challenges government regulation, Government Regulation-Government Regulation personal records privacy challenges, Privacy Challenges for Personal Records scandals and public perception, Scandals and Public Perception-Scandals and Public Perception technical challenges, Technical Challenges-Technical Challenges Liquid Democracy system, Liquid Democracy and Random-Sample Elections-Liquid Democracy and Random-Sample Elections Litecoin, Technology Stack: Blockchain, Protocol, Currency, Technology Stack: Blockchain, Protocol, Currency, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel, Currency Multiplicity: Monetary and Nonmonetary Currencies, Technical Challenges literacy (see learning and literacy) LTBcoin, Wallet Development Projects, Currency, Token, Tokenizing M M2M/IoT infrastructure, M2M/IoT Bitcoin Payment Network to Enable the Machine Economy, Blockchain Development Platforms and APIs, Blockchain Academic Publishing: Journalcoin-The Blockchain Is Not for Every Situation, The Blockchain Is an Information Technology Maidsafe, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Technical Challenges Manna, Crowdfunding marriage, blockchain recorded, Decentralized Governance Services Mastercoin, Blockchain 2.0 Protocol Projects mechanics of cryptocurrencies, How a Cryptocurrency Works Medici, Financial Services mega master blockchain list, Ledra Capital Mega Master Blockchain List-Ledra Capital Mega Master Blockchain List Melotic, Crowdfunding, Wallet Development Projects merchant acceptance, Merchant Acceptance of Bitcoin merchant payment fees, Summary: Blockchain 1.0 in Practical Use messaging, Ethereum: Turing-Complete Virtual Machine, Dapps, Challenges and Other Decentralized DNS Services, Technical Challenges MetaDisk, DAOs and DACs mindfiles, Personal Thinking Blockchains MIT Bitcoin Project, Campuscoin Monegraph, Monegraph: Online Graphics Protection money (see currency) MOOCs (massive open online courses), Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy Moroz, Tatiana, Communitycoin: Hayek’s Private Currencies Vie for Attention multicurrency systems, Demurrage Currencies: Potentially Incitory and Redistributable N Nakamoto, Satoshi, Blockchain 2.0: Contracts, Blockchain 2.0: Contracts Namecoin, Namecoin: Decentralized Domain Name System-Decentralized DNS Functionality Beyond Free Speech: Digital Identity, Monegraph: Online Graphics Protection Nationcoin, Coin Drops as a Strategy for Public Adoption, Demurrage Currencies: Potentially Incitory and Redistributable notary chains, Batched Notary Chains as a Class of Blockchain Infrastructure notary services, Hashing Plus Timestamping, Blockchain Health Notary NSA surveillance, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel NXT, Technology Stack: Blockchain, Protocol, Currency, Blockchain 2.0 Protocol Projects O offline wallets, Technical Challenges OneName, Digital Identity Verification-Digital Identity Verification OneWallet, Wallet Development Projects online graphics protection, Monegraph: Online Graphics Protection-Monegraph: Online Graphics Protection Open Assets, Blockchain 2.0 Protocol Projects Open Transactions, Blockchain 2.0 Protocol Projects OpenBazaar, Dapps, Government Regulation Ostel, Freedom of Speech/Anti-Censorship Applications: Alexandria and Ostel P passports, Decentralized Governance Services PayPal, The Double-Spend and Byzantine Generals’ Computing Problems, Financial Services, Distributed Censorship-Resistant Organizational Models peer-to-peer lending, Financial Services Peercoin, Technology Stack: Blockchain, Protocol, Currency personal cryptosecurity, eWallet Services and Personal Cryptosecurity personal data rights, Blockchain Genomics personal mindfile blockchains, Personal Thinking Blockchains personal thinking chains, Personal Thinking Blockchains-Personal Thinking Blockchains physical asset keys, Blockchain 2.0: Contracts, Smart Property plagiarism detection/avoidance, Blockchain Academic Publishing: Journalcoin Precedent, PrecedentCoin: Blockchain Dispute Resolution, Terminology and Concepts prediction markets, Bitcoin Prediction Markets, DASs and Self-Bootstrapped Organizations, Decentralized Governance Services, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets Predictious, Bitcoin Prediction Markets predictive task automation, Blockchain Layer Could Facilitate Big Data’s Predictive Task Automation privacy challenges, Privacy Challenges for Personal Records private key, eWallet Services and Personal Cryptosecurity Proof of Existence, Proof of Existence-Proof of Existence proof of stake, Blockchain 2.0 Protocol Projects, PrecedentCoin: Blockchain Dispute Resolution, Technical Challenges proof of work, PrecedentCoin: Blockchain Dispute Resolution, Technical Challenges-Technical Challenges property ownership, Smart Property property registration, Decentralized Governance Services public documents registries, Decentralized Governance Services public health, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Global Public Health: Bitcoin for Contagious Disease Relief public perception, Scandals and Public Perception-Scandals and Public Perception public/private key cryptography, Public/Private-Key Cryptography 101-Public/Private-Key Cryptography 101 publishing, academic, Blockchain Academic Publishing: Journalcoin-Blockchain Academic Publishing: Journalcoin pull technology, eWallet Services and Personal Cryptosecurity push technology, eWallet Services and Personal Cryptosecurity R random-sample elections, Random-Sample Elections Realcoin, Relation to Fiat Currency redistribution of currency (see demurrage currency) regulation, Government Regulation-Government Regulation regulatory status, Regulatory Status reputation vouching, Ethereum: Turing-Complete Virtual Machine Researchcoin, Blockchain Academic Publishing: Journalcoin REST APIs, Technical Challenges Ripple, Technology Stack: Blockchain, Protocol, Currency, Relation to Fiat Currency, Blockchain 2.0 Protocol Projects Ripple Labs, Financial Services Roadcoin, Blockchain Government S Saldo.mx, Blockchain Neutrality scandals, Scandals and Public Perception science, Blockchain Science: Gridcoin, Foldingcoin-Charity Donations and the Blockchain—Sean’s Outpost community supercomputing, Community Supercomputing global public health, Global Public Health: Bitcoin for Contagious Disease Relief Sean's Outpost, Charity Donations and the Blockchain—Sean’s Outpost secret messaging, Ethereum: Turing-Complete Virtual Machine security issues, Technical Challenges self-bootstrapped organizations, DASs and Self-Bootstrapped Organizations self-directing assets, Automatic Markets and Tradenets self-enforced code, Smart Property self-sufficiency, Smart Contracts SETI@home, Blockchain Science: Gridcoin, Foldingcoin, Community Supercomputing size and bandwidth, Technical Challenges smart contracts, Smart Contracts-Smart Contracts, Smart Contract Advocates on Behalf of Digital Intelligence automatic markets and tradenets, Automatic Markets and Tradenets Counterparty, Counterparty Re-creates Ethereum’s Smart Contract Platform DAOs/DACs, DAOs and DACs-DAOs and DACs Dapps, Dapps-Dapps DASs, DASs and Self-Bootstrapped Organizations Ethereum, Ethereum: Turing-Complete Virtual Machine increasingly autonomous, Dapps, DAOs, DACs, and DASs: Increasingly Autonomous Smart Contracts-Automatic Markets and Tradenets smart literacy contracts, Blockchain Learning: Bitcoin MOOCs and Smart Contract Literacy-Learning Contract Exchanges smart property, Smart Property-Smart Property, Monegraph: Online Graphics Protection smartwatch, Extensibility of Demurrage Concept and Features Snowden, Edward, Distributed Censorship-Resistant Organizational Models social contracts, Smart Contracts social network currencies, Currency Multiplicity: Monetary and Nonmonetary Currencies Stellar, Blockchain Development Platforms and APIs stock market, Financial Services Storj, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation, Dapps, Technical Challenges Stripe, Blockchain Development Platforms and APIs supercomputing, Community Supercomputing Svalbard Global Seed Vault, Virus Bank, Seed Vault Backup Swancoin, Smart Property swaps exchange, Financial Services Swarm, Crowdfunding, Dapps Swarm (Ethereum), Ethereum: Turing-Complete Virtual Machine Swarmops, Crowdfunding T Tatianacoin, Communitycoin: Hayek’s Private Currencies Vie for Attention technical challenges, Technical Challenges-Technical Challenges Tendermint, Technical Challenges Tera Exchange, Financial Services terminology, Terminology and Concepts-Terminology and Concepts 37Coins, Global Public Health: Bitcoin for Contagious Disease Relief throughput, Technical Challenges timestamping, Hashing Plus Timestamping-Limitations titling, Decentralized Governance Services tradenets, Automatic Markets and Tradenets transaction fees, Summary: Blockchain 1.0 in Practical Use Tribecoin, Coin Drops as a Strategy for Public Adoption trustless lending, Smart Property Truthcoin, Futarchy: Two-Step Democracy with Voting + Prediction Markets Turing completeness, Ethereum: Turing-Complete Virtual Machine Twister, Dapps Twitter, Monegraph: Online Graphics Protection U Uber, Government Regulation unbanked/underbanked markets, Blockchain Neutrality usability issues, Technical Challenges V value chain composition, How a Cryptocurrency Works versioning issues, Technical Challenges Virtual Notary, Virtual Notary, Bitnotar, and Chronobit voting and prediction, Futarchy: Two-Step Democracy with Voting + Prediction Markets-Futarchy: Two-Step Democracy with Voting + Prediction Markets W wallet APIs, Blockchain Development Platforms and APIs wallet companies, Wallet Development Projects wallet software, How a Cryptocurrency Works wasted resources, Technical Challenges Wayback Machine, Blockchain Ecosystem: Decentralized Storage, Communication, and Computation Wedbush Securities, Financial Services Whatevercoin, Terminology and Concepts WikiLeaks, Distributed Censorship-Resistant Organizational Models Wikinomics, Community Supercomputing World Citizen project, Decentralized Governance Services X Xapo, eWallet Services and Personal Cryptosecurity Z Zennet Supercomputer, Community Supercomputing Zooko's Triangle, Decentralized DNS Functionality Beyond Free Speech: Digital Identity About the Author Melanie Swan is the Founder of the Institute for Blockchain Studies and a Contemporary Philosophy MA candidate at Kingston University London and Université Paris VIII.

To set up the second condition, a program can be written that scans an online death registry database, prespecified online newspaper obituaries, or some other kind of information “oracle” to certify that the grandparent has died. When the smart contract confirms the death, it can automatically send the funds.58 The Daniel Suarez science-fiction book Daemon implements exactly these kinds of smart contracts that are effected upon a character’s death. Another use case for smart contracts is setting up automatic payments for betting (like limit orders in financial markets). A program or smart contract can be written that releases a payment when a specific value of a certain exchange good is triggered or when something transpires in the real world (e.g., a news event of some sort, or the winner of a sports match). Smart contracts could also be deployed in pledge systems like Kickstarter. Individuals make online pledges that are encoded in a blockchain, and if the entrepreneur’s fundraising goal is reached, only then will the Bitcoin funds be released from the investor wallets.

The transactions could be asset exchange, and also the conduct of various activities within communities, such as voting, tipping, and commenting in forums.55 Smart Contracts A general sense of blockchain-based smart contracts emerges from the smart property discussion. In the blockchain context, contracts or smart contracts mean blockchain transactions that go beyond simple buy/sell currency transactions, and may have more extensive instructions embedded into them. In a more formal definition, a contract is a method of using Bitcoin to form agreements with people via the blockchain. A contract in the traditional sense is an agreement between two or more parties to do or not do something in exchange for something else. Each party must trust the other party to fulfill its side of the obligation. Smart contracts feature the same kind of agreement to act or not act, but they remove the need for one type of trust between parties.


pages: 161 words: 44,488

The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology by William Mougayar

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Airbnb, airport security, Albert Einstein, altcoin, Amazon Web Services, bitcoin, Black Swan, blockchain, business process, centralized clearinghouse, Clayton Christensen, cloud computing, cryptocurrency, disintermediation, distributed ledger, Edward Snowden, en.wikipedia.org, ethereum blockchain, fault tolerance, fiat currency, global value chain, Innovator's Dilemma, Internet of things, Kevin Kelly, Kickstarter, market clearing, Network effects, new economy, peer-to-peer lending, prediction markets, pull request, ride hailing / ride sharing, Satoshi Nakamoto, sharing economy, smart contracts, social web, software as a service, too big to fail, Turing complete, web application

But there are more advanced implementations of smart contracts that use “oracles.” Oracles are data sources that send actionable information to smart contracts. 7. Smart contracts are not for developers only. The next generation of smart contracts will include user-friendly entry points, like a Web browser. That will allow any business user to configure smart contracts via a graphical user interface, or perhaps a text-based language input. 8. Smart contracts are safe. Even in the Ethereum implementation, smart contracts run as quasi-Turing complete programs. This means there is finality in their execution, and they do not risk looping infinitely. 9. Smart contract have a wide range of applications. Like HTML, the applications are limited by whoever writes them. Smart contracts are ideal for interacting with real-world assets, smart property, Internet of Things (IoT), and financial services instruments.

These can be fairly strict implementations, for example, if a car payment is not made on-time, the car gets digitally locked until the payment is received. 2. Smart contracts are not like Ricardian contracts. Ricardian contracts, popularized by Ian Grigg,3 are semantic representations that can track the liability of an actual agreement between parties. These can also be implemented on a blockchain, with or without a smart contract. Typically, multisignatures are part of a Ricardian contract’s execution. 3. Smart contracts are not law. Smart contracts, being computer programs, are just the enabling technology, but the consequence of their actions can be made part of a legal agreement, for example a smart contract could transfer shares ownerships from one party to another. As of 2016, the full legal ramifications around smart contracts were a work in progress. A smart contract outcome could be used as an audit trail to prove if terms of legal agreement were followed or not. 4.

A smart contract outcome could be used as an audit trail to prove if terms of legal agreement were followed or not. 4. Smart contracts do not include Artificial Intelligence. Smart contracts are software code representing business logic that runs a blockchain, and they are triggered by some external data that lets them modify some other data. They are closer to an event-driven construct, more than artificial intelligence. 5. Smart contracts are not the same as blockchain applications. Smart contracts are usually part of a decentralized (blockchain) application. There could be several contracts to a specific application. For example, if certain conditions in a smart contract are met, then the program is allowed to update a database. 6. Smart contracts are fairly easy to program. Writing a simple contract is easy, especially if you are using a specific smart contract language (e.g., Ethereum’s Solidity), which lets you write complex processes in a few lines of code.


pages: 515 words: 126,820

Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World by Don Tapscott, Alex Tapscott

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Airbnb, altcoin, asset-backed security, autonomous vehicles, barriers to entry, bitcoin, blockchain, Bretton Woods, business process, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, clean water, cloud computing, cognitive dissonance, corporate governance, corporate social responsibility, Credit Default Swap, crowdsourcing, cryptocurrency, disintermediation, distributed ledger, Donald Trump, double entry bookkeeping, Edward Snowden, Elon Musk, Erik Brynjolfsson, ethereum blockchain, failed state, fiat currency, financial innovation, Firefox, first square of the chessboard, first square of the chessboard / second half of the chessboard, future of work, Galaxy Zoo, George Gilder, glass ceiling, Google bus, Hernando de Soto, income inequality, informal economy, interest rate swap, Internet of things, Jeff Bezos, jimmy wales, Kickstarter, knowledge worker, Kodak vs Instagram, Lean Startup, litecoin, Lyft, M-Pesa, Mark Zuckerberg, Marshall McLuhan, means of production, microcredit, mobile money, Network effects, new economy, Oculus Rift, pattern recognition, peer-to-peer lending, performance metric, Peter Thiel, planetary scale, Ponzi scheme, prediction markets, price mechanism, Productivity paradox, quantitative easing, ransomware, Ray Kurzweil, renewable energy credits, rent-seeking, ride hailing / ride sharing, Ronald Coase, Ronald Reagan, Satoshi Nakamoto, Second Machine Age, seigniorage, self-driving car, sharing economy, Silicon Valley, Skype, smart contracts, smart grid, social graph, social software, Stephen Hawking, Steve Jobs, Steve Wozniak, Stewart Brand, supply-chain management, TaskRabbit, The Fortune at the Bottom of the Pyramid, The Nature of the Firm, The Wisdom of Crowds, transaction costs, Turing complete, Turing test, Uber and Lyft, unbanked and underbanked, underbanked, unorthodox policies, X Prize, Y2K, Zipcar

And so, for more complex transactions involving bundles of rights and multiple parties, we now have the smart contract, a piece of special purpose code that executes a complex set of instructions on the blockchain. “That intersection of legal descriptions and software is fundamental, and the smart contracts are the first step in that direction,” said Steve Omohundro, president of think tank Self-Aware Systems. “Once the principles of how you codify law digitally become more understood, then I think every country will start doing it. . . . Each jurisdiction would encode its laws, precisely and digitally, and there would be translation programs between them. . . . Getting rid of the friction of all legal stuff is going to be a huge economic gain.”42 A smart contract provides a means for assigning usage rights to another party, as a composer might assign a completed song to a music publisher.

For example, if the composer’s account received less than a quarter of a bitcoin in a consecutive thirty-day period, then all rights would automatically revert to the composer, and the publisher would no longer have access to the composer’s work registered on the blockchain. To set this smart contract in motion, both the composer and the publisher—and perhaps representatives of the publisher’s finance and legal teams—would sign using their private keys. A smart contract also provides a means for owners of assets to pool their resources and create a corporation on the blockchain, where the articles of incorporation are coded into the contract, clearly spelling out and enforcing the rights of those owners. Associated agency-employment contracts could define the decision rights of managers by coding what they could and couldn’t do with corporate resources without ownership permission. Smart contracts are unprecedented methods of ensuring contractual compliance, including social contracts.

In any case, it’s nothing more than people and contracts all the way down.”18 That’s why the blockchain, by reducing contracting costs, enables firms to open up and develop new relationships outside their boundaries. ConsenSys, for example, can architect complex relationships with a diverse set of members, some inside its boundaries, some outside, and some straddling walls, because smart contracts govern these relationships rather than traditional managers. Members self-assign to projects, define agreed-upon deliverables, and get paid when they deliver—all on the blockchain. Smart Contracts The rate of change is increasingly setting the stage for smart contracts. More people are developing not only computer literacy, but also fluency. As far as evidencing transactions goes, this new digital medium has significantly different properties from its paper predecessors. As cryptographer Nick Szabo highlighted, not only can they capture a greater array of information (such as nonlinguistic sensory data) but they are dynamic: they can transmit information and execute certain kinds of decisions.


pages: 375 words: 88,306

The Sharing Economy: The End of Employment and the Rise of Crowd-Based Capitalism by Arun Sundararajan

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Airbnb, Amazon Mechanical Turk, autonomous vehicles, barriers to entry, bitcoin, blockchain, Burning Man, call centre, collaborative consumption, collaborative economy, collective bargaining, corporate social responsibility, cryptocurrency, David Graeber, distributed ledger, employer provided health coverage, Erik Brynjolfsson, ethereum blockchain, Frank Levy and Richard Murnane: The New Division of Labor, future of work, George Akerlof, gig economy, housing crisis, Howard Rheingold, Internet of things, inventory management, invisible hand, job automation, job-hopping, Kickstarter, knowledge worker, Kula ring, Lyft, megacity, minimum wage unemployment, moral hazard, Network effects, new economy, Oculus Rift, pattern recognition, peer-to-peer lending, profit motive, purchasing power parity, race to the bottom, recommendation engine, regulatory arbitrage, rent control, Richard Florida, ride hailing / ride sharing, Robert Gordon, Ronald Coase, Second Machine Age, self-driving car, sharing economy, Silicon Valley, smart contracts, Snapchat, social software, supply-chain management, TaskRabbit, The Nature of the Firm, total factor productivity, transaction costs, transportation-network company, two-sided market, Uber and Lyft, Uber for X, universal basic income, Zipcar

(A precursor to a smart contract is the method implemented in the digital rights management system of a media store and player like iTunes, where a movie you rent is automatically deactivated after 24 hours.) How does a “smart contract” manage to accomplish this? As Primavera De Fillipi explained in her influential 2014 talk at Harvard University’s Berkman Center, the risks associated with peer-to-peer contracting can be reduced by the introduction of three new provisions: autonomy, self-sufficiency, and decentralization.12 Smart contracts are autonomous if after they are finalized, the initiating agents theoretically never need to have contact again. Smart contracts are also self-sufficient to the extent that they are able to marshal their own resources. Finally, smart contracts are decentralized; they are distributed across network nodes rather than residing in a centralized location, and are self-executing. This means that smart contracts will be applicable across jurisdictions or, in a sense, will be borderless.

It’s a little different from what’s used in a centralized marketplace, and is not completely immune to manipulation.10 There is a more sophisticated class of contracts (called smart contracts) emerging for blockchain-based transactions. In Blockchain: Blueprint for a New Economy, Melanie Swan explains that while a traditional contract is an agreement between two or more parties to do something, in the case of a smart contract, the same terms exist, but with one exception—trust that comes from having a third-party is less important.11 This is because the smart contract protocol can specify, as computer code, terms under which certain obligations are fulfilled, and can execute actions like sending a payment or deactivating a file once there is evidence of the contract’s terms being fulfilled. (A precursor to a smart contract is the method implemented in the digital rights management system of a media store and player like iTunes, where a movie you rent is automatically deactivated after 24 hours.)

The startup R3CEV has assembled a consortium of 25 of the world’s largest banks that are creating a framework for using blockchain technology in world financial markets.17 The startup Provenance provides a blockchain-based authentication service, where, for example, you can credibly establish the provenance of a high-value item by keeping track of and being able to access every trade associated with its ownership. At the 2015 Consumer Electronic Show, IBM and Samsung demonstrated a blockchain- and smart-contract-based system that allowed an autonomous washing machine to order detergent when it ran low, and make a smart-contract-based payment when it sensed that the detergent had been replaced. A simple task, no doubt, but something that points to the promise of blockchain-based marketplaces for an Internet of (Autonomous) Things. However, many challenges remain before we can reliably conclude that the blockchain and other distributed peer-to-peer technologies can take on significant fractions of the world’s economic activity.


pages: 233 words: 66,446

Bitcoin: The Future of Money? by Dominic Frisby

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, altcoin, bank run, banking crisis, banks create money, barriers to entry, bitcoin, blockchain, capital controls, Chelsea Manning, cloud computing, computer age, cryptocurrency, disintermediation, ethereum blockchain, fiat currency, friendly fire, game design, Isaac Newton, Julian Assange, litecoin, M-Pesa, mobile money, money: store of value / unit of account / medium of exchange, Occupy movement, Peter Thiel, Ponzi scheme, prediction markets, price stability, quantitative easing, railway mania, Ronald Reagan, Satoshi Nakamoto, Silicon Valley, Skype, slashdot, smart contracts, Snapchat, Stephen Hawking, Steve Jobs, Ted Nelson, too big to fail, transaction costs, Turing complete, War on Poverty, web application, WikiLeaks

The array of papers and essays he has written on his blog, Unenumerated, and on his website (szabo.best.vwh.net) is breathtaking. Here are just some of the subjects he covered: ecommerce, commodity speculation, internet security, mining the ocean beds, the hourglass, micropayments, insurance, smart contracts, law, distributed systems, financial engineering, software architecture, technology product management, algorithmic information theory, intrapolynomial cryptography, gold, politics, even the United States Constitution. But the subjects that he returns to most are money, money systems and smart contracts. In this area, his knowledge is deeper than almost anyone’s. His 2002 paper, Shelling Out: The Origins of Money,141 is, as he himself says, ‘almost essential reading’ if you want to understand Bitcoin. Central to Szabo’s theory on money is that it emerged from collectibles (valuable jewellery and so on), which have a cost of production to them.

Money is a subject that has found more interest in the last few years with the emergence of Bitcoin, the bull market in gold, the financial crisis and the growth of libertarianism, but, even so, it does not have broad appeal. In 2007–8, books and academic papers on the subject were few and far between. How many of those who cared actually had the ability to design a system like this? It is one thing declaring what needs to be done; it is another putting it into practice. Satoshi must have had expertise in computer coding, mathematics, databases, accounting, peer-to-peer systems, digital ownership, law, smart contracts, cryptography and monetary history. He had to have had experience in academia. The act of submitting a white paper, its presentation, the impeccable referencing – it all denotes academia, even government. It’s also easy to infer from the way Bitcoin was launched that Satoshi had experience in open-source tech start-ups. The resilience of the code suggests he had computer hacking experience.

This takes us back to 2007, when Szabo had just completed his law degree. There was room in his life for another big project. Indeed, in spring 2008, Szabo was actively looking for work. He wrote on his blog, ‘I am now publicly offering my consulting services. Besides topics I regularly blog about, my expertise includes technology product management (especially for e-commerce and wireless products and services), smart contracts, financial engineering, software architecture and engineering, and computer/network security. I can travel just about anywhere.’154 All of these, incidentally, are areas of expertise Bitcoin’s inventor would have needed. The circumstantial evidence continues. In April 2008, Szabo wrote on his blog about bit gold, ‘I suspect this is all obscure enough that (a) it may require most people to sit down and work it out for themselves carefully before it can be well understood, and (b) it would greatly benefit from a demonstration, an experimental market (with e.g. a trusted third party substituted for the complex security that would be needed for a real system)’.


pages: 457 words: 128,838

The Age of Cryptocurrency: How Bitcoin and Digital Money Are Challenging the Global Economic Order by Paul Vigna, Michael J. Casey

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Airbnb, altcoin, bank run, banking crisis, bitcoin, blockchain, Bretton Woods, California gold rush, capital controls, carbon footprint, clean water, collaborative economy, collapse of Lehman Brothers, Columbine, Credit Default Swap, cryptocurrency, David Graeber, disintermediation, Edward Snowden, Elon Musk, ethereum blockchain, fiat currency, financial innovation, Firefox, Flash crash, Fractional reserve banking, hacker house, Hernando de Soto, high net worth, informal economy, Internet of things, inventory management, Julian Assange, Kickstarter, Kuwabatake Sanjuro: assassination market, litecoin, Long Term Capital Management, Lyft, M-Pesa, Mark Zuckerberg, McMansion, means of production, Menlo Park, mobile money, money: store of value / unit of account / medium of exchange, Network effects, new economy, new new economy, Nixon shock, offshore financial centre, payday loans, peer-to-peer lending, pets.com, Ponzi scheme, prediction markets, price stability, profit motive, RAND corporation, regulatory arbitrage, rent-seeking, reserve currency, Robert Shiller, Robert Shiller, Satoshi Nakamoto, seigniorage, shareholder value, sharing economy, short selling, Silicon Valley, Silicon Valley startup, Skype, smart contracts, special drawing rights, Spread Networks laid a new fibre optics cable between New York and Chicago, Steve Jobs, supply-chain management, Ted Nelson, The Great Moderation, the market place, the payments system, The Wealth of Nations by Adam Smith, too big to fail, transaction costs, tulip mania, Turing complete, Tyler Cowen: Great Stagnation, Uber and Lyft, underbanked, WikiLeaks, Y Combinator, Y2K, Zimmermann PGP

We know that bankruptcy, for instance, a time-honored institution for encouraging renewal and for offering second chances, has helped the U.S. economy recover more successfully from crises than places that are less kind to debtors. People might balk at giving up these options; they might feel uncomfortable with the finality of an automated smart contract. Yet the efficiencies of blockchain-based solutions promise to dramatically cut prices if they can become entrenched. So, perhaps there’s a need for hybrid models, with a judicial avenue attached to a blockchain smart contract, or some other means of off-line arbitration. * * * Hybrids, compromises, pragmatic solutions. There must be room for this kind of thinking if Blockchain 2.0 ideas are to break out of the hypothetical realm and into the real world. Some of the rigid ideological positions will have to be tempered.

Whereas judicial corruption means that low-income people in a developing country can’t rely on watertight contracts to shore up their businesses and unlock de Soto’s mystery of capital, subjecting such agreements to the infallibility of the blockchain could end all that. Jonathan Mohan, who works at Ethereum, the new Bitcoin 2.0 platform that’s seeking to disrupt all sorts of legal and contractual arrangements, offers a compelling explanation for how these “smart contracts,” each designed to be executed on the blockchain via an automated piece of software, would benefit the informal economy. “As long as you render collateral for a contract and the blockchain recognizes the contract, then you know there’s no fraud and you know there’s no need to have to trust a third party,” he said at an Inside Bitcoins conference in New York. “So the contract is simple and all these other things sort themselves out.

If many of these Blockchain 2.0 ideas come to fruition, they’re not the only people who will worry about obsolescence—lawyers, investment bankers, stockbrokers, and a host of other “trust-based” services could be in lesser demand in a blockchain-run world. Later, in chapter 11, we’ll explore how society may have to handle the painful process this entails. But for now we’ll just delve into the mechanics of the technology itself and explore the many disruptive ways in which its inventors see it changing our economy. * * * Assurance contracts are just one form of one of the most prevalent Blockchain 2.0 ideas: “smart contracts,” an idea first floated by Nick Szabo, who some researchers believe to be Satoshi Nakamoto. At its crux, this idea contends that the blockchain can replace the legal system, the ultimate trusted third party. Instead of having a law firm draft a written agreement to be enforced by a judge, if one party fails to meet its obligations—with all the costs and uncertainty that go along with those institutions’ involvement—the execution of those obligations is automated by software, with the criteria for doing so verified by the decentralized blockchain.


pages: 296 words: 86,610

The Bitcoin Guidebook: How to Obtain, Invest, and Spend the World's First Decentralized Cryptocurrency by Ian Demartino

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, AltaVista, altcoin, bitcoin, blockchain, buy low sell high, capital controls, cloud computing, corporate governance, crowdsourcing, cryptocurrency, distributed ledger, Edward Snowden, Elon Musk, ethereum blockchain, fiat currency, Firefox, forensic accounting, global village, GnuPG, Google Earth, Haight Ashbury, Jacob Appelbaum, Kevin Kelly, Kickstarter, litecoin, M-Pesa, Marshall McLuhan, Oculus Rift, peer-to-peer lending, Ponzi scheme, prediction markets, ransomware, Satoshi Nakamoto, self-driving car, Skype, smart contracts, Steven Levy, the medium is the message, underbanked, WikiLeaks, Zimmermann PGP

While BTCJam is a middleman, cutting out the credit card and money-transferring middlemen enable it to operate while only taking a one to five percent fee from the borrowers. This removal of friction enables more investments and more payments. Another service cryptocurrencies can theoretically provide is the role of arbitrator in any transaction. BitHalo, the Bitcoin half of BlackHalo, was the first instance of workable smart contracts, which are regulated by computer code rather than legal force. Smart contracts enable the sale of physical goods without either party needing to trust the other. BlackHalo was designed for Blackcoin, an alternative cryptocurrency that I will discuss in Chapter 21. BitHalo has the same functionality but works with Bitcoin. It enables quick transfers between the two currencies. More importantly, BitHalo allows for a decentralized marketplace without the need for a third-party arbitrator like eBay or PayPal.

You won’t have to worry about currency conversion fees or bank fees or if their country allows commerce with your country. Despite these gains, there are some issues with working for Bitcoin that are still being ironed out. Issues with Working for Bitcoin Smart contracts—computer protocols that ensure a contract is followed—have been developed for Bitcoin and other cryptocurrencies and are getting more powerful all the time. Escrow is very useful because it gives the worker a third party to depend on to fulfill a contract if the employer decides not to do so. This situation isn’t always ideal, and the balance of power between customer and client can swing wildly depending on a variety of factors. The ultimate goal behind smart contracts is to eliminate the need for trust. They aren’t quite there yet. And although escrow can be programmed, it still ultimately relies on the parties in the contract to act honestly.

The God Protocol was a proposal to replace a third-party central server with an automated virtual third party. It used early concepts of cloud computing and, had it been implemented, would have likely become a proto-version of today’s autonomous corporation—a digital corporation that can function with little or no human input—which many people imagine is next in Bitcoin. The God Protocol was intended as a solution for smart contracts—another concept later revived by Bitcoin. Szabo writes in his blog: [Network security theorists] have developed protocols that create virtual machines between two or more parties. Multi-party secure computation allows any number of parties to share a computation, each learning only what can be inferred from their own input and the output of the computation. These virtual machines have the exciting property that each party’s input is held in strict confidence from the other parties.


pages: 387 words: 112,868

Digital Gold: Bitcoin and the Inside Story of the Misfits and Millionaires Trying to Reinvent Money by Nathaniel Popper

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

4chan, Airbnb, Apple's 1984 Super Bowl advert, banking crisis, bitcoin, blockchain, Burning Man, capital controls, Colonization of Mars, crowdsourcing, cryptocurrency, David Graeber, Edward Snowden, Elon Musk, Extropian, fiat currency, Fractional reserve banking, Jeff Bezos, Julian Assange, Kickstarter, life extension, litecoin, lone genius, M-Pesa, Mark Zuckerberg, Occupy movement, peer-to-peer lending, Peter Thiel, Ponzi scheme, price stability, Satoshi Nakamoto, Silicon Valley, Simon Singh, Skype, slashdot, smart contracts, Startup school, stealth mode startup, the payments system, transaction costs, tulip mania, WikiLeaks

But none of this distracted the programmers from their vision of what the Bitcoin software could do in the future. Some programmers were focused on the idea of micropayments, tiny online payments that are not possible with credit cards because of the minimum fees necessary for a credit card transaction. Others were interested in the idea of immigrants sending money across international borders without using Western Union. Some imagined the sorts of smart contracts that Satoshi had described, which would allow people to sell a house without using expensive mortgage title companies and escrow services. Yet others had a more abstract idea of a future universal currency, as science fiction had promised. IN ADDITION TO the coders, Bitcoin had kept its hold on many of the believers who were more interested in the ideals behind the virtual currency than the price.

Just a few months before Bitcoin was released, in April 2008, Nick had posted on his blog an item in which he talked about creating a trial model of bit gold and asked if anyone wanted to help him “code one up.” In August of that year, at the same time that Satoshi was privately e-mailing Adam Back about Bitcoin for the first time, Nick offered on his blog to sell some old collectible private banknotes, to help deal with “personal cash flow needs.” At about the same time, he wrote a burst of blog posts about the history of money, smart contracts, and bit gold, and said that if he could make bit gold work it would be the “first online currency based on highly distributed trust and unforgeable costliness rather than trust in a single entity and traditional accounting controls.” When Satoshi’s white paper came out publicly three months later, it cited two other obvious forerunners of Bitcoin—b-money and hashcash—but did not cite Nick’s work.

Nick showed up at Morehead’s private gathering because a few months earlier he had quietly joined a cryptocurrency startup that was operating in stealth mode. The startup, Vaurum, was based a few blocks from Wences’s office in Palo Alto and focused on the task of matching up big holders of Bitcoin wanting to buy and sell. Nick, though, had joined Vaurum to do more sophisticated work on so-called smart contracts, which would allow people to record their ownership of a house or car into the blockchain, and transfer that ownership with the use of a private key, something Nick had been thinking about for over a decade. This was the kind of thing that Satoshi was writing about at the beginning, but Satoshi had believed that these more advanced uses of the blockchain would take off only after Bitcoin caught on as a currency.


pages: 481 words: 125,946

What to Think About Machines That Think: Today's Leading Thinkers on the Age of Machine Intelligence by John Brockman

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, agricultural Revolution, AI winter, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, algorithmic trading, artificial general intelligence, augmented reality, autonomous vehicles, bitcoin, blockchain, clean water, cognitive dissonance, Colonization of Mars, complexity theory, computer age, computer vision, constrained optimization, corporate personhood, cosmological principle, cryptocurrency, cuban missile crisis, Danny Hillis, dark matter, discrete time, Elon Musk, Emanuel Derman, endowment effect, epigenetics, Ernest Rutherford, experimental economics, Flash crash, friendly AI, Google Glasses, hive mind, income inequality, information trail, Internet of things, invention of writing, iterative process, Jaron Lanier, job automation, John von Neumann, Kevin Kelly, knowledge worker, loose coupling, microbiome, Moneyball by Michael Lewis explains big data, natural language processing, Network effects, Norbert Wiener, pattern recognition, Peter Singer: altruism, phenotype, planetary scale, Ray Kurzweil, recommendation engine, Republic of Letters, RFID, Richard Thaler, Rory Sutherland, Search for Extraterrestrial Intelligence, self-driving car, sharing economy, Silicon Valley, Skype, smart contracts, speech recognition, statistical model, stem cell, Stephen Hawking, Steve Jobs, Steven Pinker, Stewart Brand, strong AI, Stuxnet, superintelligent machines, supervolcano, the scientific method, The Wisdom of Crowds, theory of mind, Thorstein Veblen, too big to fail, Turing machine, Turing test, Von Neumann architecture, Watson beat the top human players on Jeopardy!, Y2K

This is not true. These systems must obey the laws of physics and of mathematics. Seth Lloyd’s analysis of the computational power of the universe shows that even the entire universe, acting as a giant quantum computer, could not discover a 500-bit hard cryptographic key in the time since the Big Bang.1 The new technologies of postquantum cryptography, indistinguishability obfuscation, and blockchain smart contracts are promising components for creating an infrastructure secure against even the most powerful AIs. But recent hacks and cyberattacks show that our current computational infrastructure is woefully inadequate to the task. We need to develop a software infrastructure that’s mathematically provably correct and secure. There have been at least twenty-seven different species of hominids, of which we’re the only survivors.

These examples show that machine culture, values, operation, and modes of existence are already different, and this emphasizes the need for ways to interact that facilitate and extend the existence of both parties. The potential future world of intelligence multiplicity means accommodating plurality and building trust. Blockchain technology—a decentralized, distributed, global, permanent, code-based ledger of interaction transactions and smart contracts—is one example of a trust-building system. The system can be used between human parties or interspecies parties, exactly because it’s not necessary to know, trust, or understand the other entity, just the code (the language of machines). Over time, trust can grow through reputation. Blockchain technology could be used to enforce friendly AI and mutually beneficial interspecies interaction.

While perhaps not a full answer to the problem of enforcing friendly AI, decentralized smart networks like blockchains are a system of checks and balances helping to provide a more robust solution to situations of future uncertainty. Trust-building models for interspecies digital intelligence interaction could include both game-theoretic checks-and-balances systems like blockchains and also, at the higher level, frameworks that put entities on the same plane of shared objectives. This is of higher order than smart contracts and treaties that attempt to enforce morality; a mind-set shift is required. The problem frame of machine and human intelligence should not be one that characterizes relations as friendly or unfriendly but, rather, one that treats all entities equally, putting them on the same ground and value system for the most important shared parameters, like growth. What’s most important about thinking for humans and machines is that thinking leads to ideation, progress, and growth.


pages: 421 words: 110,406

Platform Revolution: How Networked Markets Are Transforming the Economy--And How to Make Them Work for You by Sangeet Paul Choudary, Marshall W. van Alstyne, Geoffrey G. Parker

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Affordable Care Act / Obamacare, Airbnb, Amazon Mechanical Turk, Amazon Web Services, Andrei Shleifer, Apple's 1984 Super Bowl advert, autonomous vehicles, barriers to entry, big data - Walmart - Pop Tarts, bitcoin, blockchain, business process, buy low sell high, chief data officer, clean water, cloud computing, connected car, corporate governance, crowdsourcing, data acquisition, data is the new oil, discounted cash flows, disintermediation, Edward Glaeser, Elon Musk, en.wikipedia.org, Erik Brynjolfsson, financial innovation, Haber-Bosch Process, High speed trading, Internet of things, inventory management, invisible hand, Jean Tirole, Jeff Bezos, jimmy wales, Khan Academy, Kickstarter, Lean Startup, Lyft, market design, multi-sided market, Network effects, new economy, payday loans, peer-to-peer lending, Peter Thiel, pets.com, pre–internet, price mechanism, recommendation engine, RFID, Richard Stallman, ride hailing / ride sharing, Ronald Coase, Satoshi Nakamoto, self-driving car, shareholder value, sharing economy, side project, Silicon Valley, Skype, smart contracts, smart grid, Snapchat, software is eating the world, Steve Jobs, TaskRabbit, The Chicago School, the payments system, Tim Cook: Apple, transaction costs, two-sided market, Uber and Lyft, Uber for X, winner-take-all economy, Zipcar

Normally, when you sign a contract, you must either trust the other party to honor the terms or rely on a central authority such as the state, or on an escrow service like eBay, to enforce the deal. Public blockchain ownership empowers us to write self-enforcing smart contracts that automatically reassign ownership once contract terms are triggered. Neither party can back out because the code, running in a decentralized public fashion, is not under anyone’s control. It simply executes. These smart, autonomous contracts can even pay people for the output of their work—in effect, machines hiring people, not the other way around. For example, imagine a smart contract between a wedding photographer and a couple planning their nuptials. The blockchain-stored contract could specify that payment of the final installment of the photographer’s fee will be made promptly when the edited photo files are delivered electronically to the newlyweds.


pages: 200 words: 47,378

The Internet of Money by Andreas M. Antonopoulos

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

AltaVista, altcoin, bitcoin, blockchain, clean water, cognitive dissonance, cryptocurrency, ethereum blockchain, global reserve currency, litecoin, London Interbank Offered Rate, Oculus Rift, packet switching, peer-to-peer lending, Ponzi scheme, ransomware, reserve currency, Satoshi Nakamoto, self-driving car, Skype, smart contracts, the medium is the message, trade route, underbanked, WikiLeaks

The dumb network will transport their data because it doesn’t know the difference and it doesn’t care. 5.1.3. Bitcoin’s Dumb Network Bitcoin is a dumb network supporting really smart devices, and that is an incredibly powerful concept because bitcoin pushes all of the intelligence to the edge. It doesn’t care if the bitcoin address is the address of a multimillionaire, the address of a central bank, the address of a smart contract, the address of a device, or the address of a human. It doesn’t know. It doesn’t care if the transaction is carrying lots of money or not much money at all. It doesn’t care if the address is in Kuala Lumpur or downtown New York. It doesn’t know, it doesn’t care. It moves money from one address to another based on a simple locking script. And that means that if you want to build a new application on top of bitcoin, you can upgrade the devices and you can build an application.


pages: 179 words: 43,441

The Fourth Industrial Revolution by Klaus Schwab

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, barriers to entry, Baxter: Rethink Robotics, bitcoin, blockchain, Buckminster Fuller, call centre, clean water, collaborative consumption, conceptual framework, continuous integration, crowdsourcing, disintermediation, distributed ledger, Edward Snowden, Elon Musk, epigenetics, Erik Brynjolfsson, future of work, global value chain, Google Glasses, income inequality, Internet Archive, Internet of things, invention of the steam engine, job automation, job satisfaction, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, life extension, Lyft, megacity, meta analysis, meta-analysis, more computing power than Apollo, mutually assured destruction, Narrative Science, Network effects, Nicholas Carr, personalized medicine, precariat, precision agriculture, Productivity paradox, race to the bottom, randomized controlled trial, reshoring, RFID, rising living standards, Second Machine Age, secular stagnation, self-driving car, sharing economy, Silicon Valley, smart cities, smart contracts, software as a service, Stephen Hawking, Steve Jobs, Steven Levy, Stuxnet, The Spirit Level, total factor productivity, transaction costs, Uber and Lyft, Watson beat the top human players on Jeopardy!, WikiLeaks, winner-take-all economy, women in the workforce, working-age population, Y Combinator, Zipcar

Positive impacts – Increased financial inclusion in emerging markets, as financial services on the blockchain gain critical mass – Disintermediation of financial institutions, as new services and value exchanges are created directly on the blockchain – An explosion in tradable assets, as all kinds of value exchange can be hosted on the blockchain – Better property records in emerging markets, and the ability to make everything a tradable asset – Contacts and legal services increasingly tied to code linked to the blockchain, to be used as unbreakable escrow or programmatically designed smart contracts – Increased transparency, as the blockchain is essentially a global ledger storing all transactions The shift in action Smartcontracts.com provides programmable contracts that do payouts between two parties once certain criteria have been met, without involving a middleman. These contracts are secured in the blockchain as “self-executing contractual states”, which eliminate the risk of relying on others to follow through on their commitments.


pages: 292 words: 85,151

Exponential Organizations: Why New Organizations Are Ten Times Better, Faster, and Cheaper Than Yours (And What to Do About It) by Salim Ismail, Yuri van Geest

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, 3D printing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, bioinformatics, bitcoin, Black Swan, blockchain, Burning Man, business intelligence, business process, call centre, chief data officer, Clayton Christensen, clean water, cloud computing, cognitive bias, collaborative consumption, collaborative economy, corporate social responsibility, cross-subsidies, crowdsourcing, cryptocurrency, dark matter, Dean Kamen, dematerialisation, discounted cash flows, distributed ledger, Edward Snowden, Elon Musk, en.wikipedia.org, ethereum blockchain, Galaxy Zoo, game design, Google Glasses, Google Hangouts, Google X / Alphabet X, gravity well, hiring and firing, Hyperloop, industrial robot, Innovator's Dilemma, Internet of things, Iridium satellite, Isaac Newton, Jeff Bezos, Kevin Kelly, Kickstarter, knowledge worker, Kodak vs Instagram, Law of Accelerating Returns, Lean Startup, life extension, loose coupling, loss aversion, Lyft, Mark Zuckerberg, market design, means of production, minimum viable product, natural language processing, Netflix Prize, Network effects, new economy, Oculus Rift, offshore financial centre, p-value, PageRank, pattern recognition, Paul Graham, Peter H. Diamandis: Planetary Resources, Peter Thiel, prediction markets, profit motive, publish or perish, Ray Kurzweil, recommendation engine, RFID, ride hailing / ride sharing, risk tolerance, Ronald Coase, Second Machine Age, self-driving car, sharing economy, Silicon Valley, skunkworks, Skype, smart contracts, Snapchat, social software, software is eating the world, speech recognition, stealth mode startup, Stephen Hawking, Steve Jobs, subscription business, supply-chain management, TaskRabbit, telepresence, telepresence robot, Tony Hsieh, transaction costs, Tyler Cowen: Great Stagnation, urban planning, WikiLeaks, winner-take-all economy, X Prize, Y Combinator

Open sourcing patents Just like Tesla did with its electric car patents, open sourcing IP will enable the creation of a much larger innovation ecosystem in which, by default, your organization will be the center. It pre-empts competition and insources innovation. Reduced IP relevance In an accelerating world, by the time you file a patent, it’s out of date. Rise of IP insurance Formalized structures to protect against IP infringement. Smart contracts Legal clauses embedded as code; instant activation of consequences and outcomes; personalized legal systems. Fluid legal contracts Flexible and real-time legal contracts, constantly adapting to new data, stats and insights (e.g., current SCRUM contracts but more advanced). Dangerous regulatory structures As technology outpaces our ability to regulate, regulatory agencies become irrelevant; even worse, they become neo-Luddites.


pages: 589 words: 147,053

The Age of Em: Work, Love and Life When Robots Rule the Earth by Robin Hanson

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

8-hour work day, artificial general intelligence, augmented reality, Berlin Wall, bitcoin, blockchain, brain emulation, business process, Clayton Christensen, cloud computing, correlation does not imply causation, demographic transition, Erik Brynjolfsson, ethereum blockchain, experimental subject, fault tolerance, financial intermediation, Flynn Effect, hindsight bias, job automation, job satisfaction, Just-in-time delivery, lone genius, Machinery of Freedom by David Friedman, market design, meta analysis, meta-analysis, Nash equilibrium, new economy, prediction markets, rent control, rent-seeking, reversible computing, risk tolerance, Silicon Valley, smart contracts, statistical model, stem cell, Thomas Malthus, trade route, Turing test, Vernor Vinge

“Not Working at Work: Loafing, Unemployment and Labor Productivity.” NBER Working Paper No. 21923, January. Bureau of Labor Statistics. 2013. “Time Spent in Primary Activities and Percent of the Civilian Population Engaging in Each Activity, Averages per Day by Sex, 2012 Annual Averages.” Bureau of Labor Statistics Economic News Release. June 20. http://www.bls.gov/news.release/atus.t01.htm. Buterin, Vitalik. 2014. “White Paper: A Next-Generation Smart Contract and Decentralized Application Platform.” April. https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf. Caplan, Bryan. 2008. “The Totalitarian Threat.” In Global Catastrophic Risks, edited by Nick Bostrom and Milan Ćirković, 504–519. Oxford University Press, July 17. Caplan, Bryan, and Stephen Miller. 2010. “Intelligence Makes People Think Like Economists: Evidence from the General Social Survey.”