# statistical arbitrage

41 results back to index

pages: 257 words: 13,443

Statistical Arbitrage: Algorithmic Trading Insights and Techniques by Andrew Pole

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

The language of mathematical models compounds the unfamiliarity of the notions, generating a sense of disquiet, a fear of lack of understanding. In Statistical Arbitrage, Pole has given his audience a didactic tour of the basic principles of statistical arbitrage, eliminating opacity at the Statistical Arbitrage 101 level. In the 1980s and early 1990s, Stat. Arb. 101 was, for the most part, all there was (exceptions such as D.E. Shaw and Renaissance aside). Today, more than a decade later, there is a much more extensive and complex world of statistical arbitrage. Foreword xxi This is not unlike the natural world, which is now populated by incredibly complex biological organisms after four billion years of evolution. Yet the simplest organisms thrive everywhere and still make up by far the largest part of the planet’s biomass. So is it true in statistical arbitrage, where the basics underpin much of contemporary practice.

Foreword reversion in prices, as in much of human activity, is a M ean powerful and fundamental force, driving systems and markets to homeostatic relationships. Starting in the early 1980s, statistical arbitrage was a formal and successful attempt to model this behavior in the pursuit of profit. Understanding the arithmetic of statistical arbitrage (sometimes abbreviated as stat. arb.) is a cornerstone to understanding the development of what has come to be known as complex financial engineering and risk modeling. The trading strategy referred to as statistical arbitrage is generally regarded as an opaque investment discipline. The view is that it is being driven by two complementary forces, both deriving from the core nature of the discipline: the vagueness of practitioners and the lack of quantitative knowledge on the part of investors. Statistical arbitrage exploits mathematical models to generate returns from systematic movements in securities prices.

Chapters 8 and 9 tell of the midlife crisis of statistical arbitrage. The roiling of United States financial markets for many months, beginning with the Enron debacle in 2000 and running through the terrorist attacks of 2001 and what Pole calls ‘‘an appalling litany’’ of corporate misconduct, is dissected for anticipated impact on statistical arbitrage performance. Adding to that mix have been technical changes in the markets, including decimalization and the decline of independent specialists on the floor of the NYSE. Pole draws a clear picture of why statistical arbitrage performance was disrupted. Very clearly the impression is made that the disruption was not terminal. Chapters 10 and 11 speak to the arriving future of statistical arbitrage. Trading algorithms, at first destroyers of classical stat. arb. are now, Pole argues, progenitors of new, systematically exploitable opportunities.

pages: 354 words: 26,550

High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems by Irene Aldridge

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Gatev, Goetzmann, and Rouwenhorst (2006) document that the out-of-sample back tests conducted on the daily equity data from 1967 to 1997 using their stat-arb strategy delivered Sharpe ratios well in excess of 4. High-frequency stat-arb delivers even higher performance numbers. PRACTICAL APPLICATIONS OF STATISTICAL ARBITRAGE General Considerations Most common statistical arbitrage strategies relying solely on statistical relationships with no economic background produce fair results, but these Statistical Arbitrage in High-Frequency Settings 189 relationships often prove to be random or spurious. A classic example of a spurious relationship is the relationship between time as a continuous variable and the return of a particular stock; all publicly listed firms are expected to grow with time, and while the relationship produces a highly significant statistical dependency, it can hardly be used to make meaningful predictions about future values of equities.

CONCLUSION Event arbitrage strategies utilize high-frequency trading since price equilibrium is reached only after market participants have reacted to the news. Short trading windows and estimation of the impact of historical announcements enable profitable trading decisions surrounding market announcements. CHAPTER 13 Statistical Arbitrage in High-Frequency Settings tatistical arbitrage (stat-arb) exploded on the trading scene in the late 1990s, with PhDs in physics and other “hard” sciences reaping double-digit returns using simple statistical phenomena. Since then, statistical arbitrage has been both hailed and derided. The advanced returns generated before 2007 by many stat-arb shops popularized the technique. Yet some blame stat-arb traders for destabilizing the markets in the 2007 and 2008 crises. Stat-arb can lead to a boon in competent hands and a bust in semi-proficient applications.

pages: 505 words: 142,118

A Man for All Markets by Edward O. Thorp

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

People at Morgan Stanley began leaving the quantitative systems group that was in charge of statistical arbitrage. Among those to depart was David E. Shaw, a former professor of computer science at Columbia University. He had been wooed to Wall Street to use computers to find opportunities in the market. In the spring of 1988, Shaw spent the day in Newport Beach. We discussed his plan to launch an improved statistical arbitrage product. PNP was able to put up the \$10 million he wanted for start-up, and we were impressed by his ideas but decided not to go ahead because we already had a good statistical arbitrage product. He found other backing, creating one of the most successful analytic firms on Wall Street, and later would become a member of the president’s science advisory committee. Using statistical arbitrage as a core profit center, he expanded into related hedging and arbitrage areas (the PNP business plan again), and hired large numbers of smart quantitative types from academia.

For that graph of XYZ’s performance, see Thorp, Edward O., “Statistical Arbitrage, Part VI,” Wilmott, July 2005, pp. 34–36. had ever experienced Reportedly, Simons’s secretive Renaissance Partners had a similar experience in August of 2008, losing 8 percent or so in a few days, then rebounding to make more than 100 percent for the year. employees, only six Since the six people in my office also had other responsibilities, we had only 3.5 “full-time equivalents” on the project. in statistical arbitrage Firms doing statistical arbitrage, such as the hedge fund group Citadel, already had in place most of the technology, talent, and expertise needed later to create and implement high frequency trading (HFT). For an account of HFT, see the book Flash Boys by Michael Lewis; In 2005, three years after we went out of the statistical arbitrage business, Steve and I worked with Jerry Baesel, who was then at Morgan Stanley Asset Management, to see if it was worth restarting.

At \$30 billion in 2014, Bezos was the fifteenth richest American. As PNP began winding down in late 1988, despite the stress we developed yet another approach to statistical arbitrage that was simpler and more powerful. But as PNP phased out, I wanted simplicity. We focused on two areas that could be managed by a small staff, Japanese warrant hedging and investing in other hedge funds. Both went well. I had no immediate plans to use our new statistical arbitrage technique and I expected that continuing innovations by investors using related systems would, as is the way of things, gradually erode its value. Four years passed, and then, my friend and former partner Jerry Baesel came to me with tales of extraordinary returns from statistical arbitrage. Besides D. E. Shaw & Company, the practitioners included former Morgan Stanley quants who were starting their own hedge funds, and some of my past PNP associates.

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

(In fact, one can become quite poor trading complex mortgage-backed securities, as the financial crisis of 2007–08 and the demise of Bear Stearns have shown.) The kind of quantitative trading I focus on is called statistical arbitrage trading. Statistical arbitrage deals with the simplest financial instruments: stocks, futures, and sometimes currencies. One does not need an advanced degree to become a statistical arbitrage trader. If you have taken a few high school–level courses in math, statistics, computer programming, or economics, you are probably as qualified as anyone to tackle some of the basic statistical arbitrage strategies. P1: JYS c01 JWBK321-Chan September 24, 2008 13:44 Printer: Yet to come The Whats, Whos, and Whys of Quantitative Trading 3 Okay, you say, you don’t need an advanced degree, but surely it gives you an edge in statistical arbitrage trading? Not necessarily. I received a PhD from one of the top physics departments of the world (Cornell’s).

This seemingly innocuous change has had a dramatic impact on the market structure, which is particularly negative for the profitability of statistical arbitrage strategies. The reason for this may be worthy of a book unto itself. In a nutshell, decimalization reduces frictions in the price discovery process, while statistical arbitrageurs mostly act as market makers and derive their profits from frictions and inefficiencies in this process. (This is the explanation given by Dr. Andrew Sterge in a Columbia University financial engineering seminar titled “Where Have All the Stat Arb Profits Gone?” in January 2008. Other industry practitioners have made the same point to me in private conversations.) Hence, we can expect backtest performance of statistical arbitrage strategies prior to 2001 to be far superior to their present-day performance. The other regime shift is relevant if your strategy shorts stocks.

There is one usual caveat, however. All this is based on the Gaussian assumption of return distributions. (See discussions in Chapter 6 on this issue.) Since the actual returns distributions have fat tails, one should be quite wary of using too much leverage on normally low-beta stocks. SUMMARY This book has been largely about a particular type of quantitative trading called statistical arbitrage in the investment industry. Despite this fancy name, statistical arbitrage is actually far simpler than trading derivatives (e.g., options) or fixed-income instruments, both conceptually and mathematically. I have described a large part of the statistical arbitrageur’s standard arsenal: mean reversion and momentum, regime switching, stationarity and cointegration, arbitrage pricing theory or factor model, seasonal trading models, and, finally, high-frequency trading.

pages: 272 words: 19,172

Hedge Fund Market Wizards by Jack D. Schwager

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

But Princeton Newport was doing so well on a risk-adjusted basis with the strategies it had already that we put the statistical arbitrage strategy aside. It wasn’t clear that the marginal improvement that could have been obtained by adding statistical arbitrage to the existing strategies warranted diverting the resources that would have been needed for its implementation. When did you turn back to it again? In 1985, we placed an ad in the Wall Street Journal looking for people who had reliable ideas that would produce provable excess returns. One of the calls we received in response to that ad was from Gerry Bamberger, who turned out to be the person who had discovered statistical arbitrage at Morgan Stanley. My recollection is that he developed the strategy around 1982 and was eventually shouldered aside by Nunzio Tartaglia who was his immediate superior.

It was running at about 8 percent annualized, which is not too bad in a 2 percent world, but not good enough to make me want to go back and do it. What was your involvement with David Shaw, who was another relatively early practitioner of statistical arbitrage? In 1988, David Shaw had left Solomon and was looking for someone to fund him in a statistical arbitrage startup. I didn’t know exactly what he wanted when he came out here, but we talked for about six hours, and it seemed that his strategy was redundant with ours. So we parted on friendly terms. So it was basically a matter of you both realizing that you were working on the same thing, and there really wasn’t a match. That is exactly right. What did you do after you shut down the statistical arbitrage fund in 2002? I managed my investments in other people’s hedge funds. Do you have any recommendations on investing in hedge funds? I don’t have any recommendations now because I have run low on hedge fund candidates.

pages: 297 words: 91,141

Market Sense and Nonsense by Jack D. Schwager

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

A classic example of this phenomenon was the meltdown of statistical arbitrage funds in August 2007. Statistical arbitrage is a market neutral, mean reversion strategy that uses mathematical models to identify short-term anomalies in stock movements, balancing sales of stocks witnessing upside deviations (as defined by its models) with purchases of stocks witnessing downside deviations. Since the strategy will normally embed multidimensional neutrality (e.g., market, sector, capitalization, region, etc.), significant leverage is typically employed to achieve desired return levels. As a group, statistical arbitrage funds will often have significant overlap in the stocks they are long and short. In August 2007, large liquidations by some statistical arbitrage funds caused other funds in this strategy to suddenly see their portfolios behaving perversely, with longs falling and shorts simultaneously rallying.

If, as occurred in 2008, they need to liquidate at the same time because of a flight-to-safety psychology in the market, the huge imbalance between supply and demand can result in managers being forced to liquidate positions at deeply discounted prices. Statistical arbitrage. The premise underlying statistical arbitrage is that short-term imbalances in buy and sell orders cause temporary price distortions, which provide short-term trading opportunities. Statistical arbitrage is a mean-reversion strategy that seeks to sell excessive strength and buy excessive weakness based on statistical models that define when short-term price moves in individual equities are considered out of line relative to price moves in related equities. The origin of the strategy was a subset of statistical arbitrage called pairs trading. In pairs trading, the price ratios of closely related stocks are tracked (e.g., Ford and General Motors), and when the mathematical model indicates that one stock has gained too much versus the other (either by rising more or by declining less), it is sold and hedged by the purchase of the related equity in the pair.

Pairs trading was successful in its early years, but lost its edge as too many proprietary trading groups and hedge funds employed similar strategies. Today’s statistical arbitrage models are far more complex, simultaneously trading hundreds or thousands of securities based on their relative price movements and correlations, subject to the constraint of maintaining multidimensional market neutrality (e.g., market, sector, etc.). Although mean reversion is typically at the core of this strategy, statistical arbitrage models may also incorporate other types of uncorrelated or even inversely correlated strategies, such as momentum and pattern recognition. Statistical arbitrage involves highly frequent trading activity, with trades lasting between seconds and days. Fixed income arbitrage. This strategy seeks to profit from perceived mispricings between different interest rate instruments.

pages: 389 words: 109,207

Fortune's Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall Street by William Poundstone

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

By 1987 it was down to 15 percent, no longer competitive with Princeton-Newport’s other opportunities. The problem was apparently competition. Tartaglia continued to expand Morgan Stanley’s statistical arbitrage operation. By 1988 Tartaglia’s team was buying and selling \$900 million worth of stock. Bamberger would often be trying to buy the same temporarily bargain-priced stock as Morgan Stanley, driving up the price. This cut into the profit. Bamberger, who had made a good deal of money, decided to retire. BOSS was closed down. Finally, according to stories, Morgan Stanley’s operation suffered a substantial loss. The bank closed down its statistical arbitrage business too. Thorp continued to tinker with statistical arbitrage. He replaced Bamberger’s division by industry groups with a more flexible “factor analysis” system. The system analyzed stocks by how their price moves correlated with factors such as the market indexes, inflation, the price of gold, and so on.

They are less likely to accept an apparent winning strategy that might be a mere statistical fluke.” Each statistical arbitrage operation competes against the others to scoop up the so-called free money created by market inefficiency. All successful operations revise their software constantly to keep pace with changing markets and the changing nature of their competition. The inexplicable aspect of Thorp’s achievement was his continuing ability to discover new market inefficiencies, year after year, as old ones played out. This is a talent, like discovering new theorems or jazz improvisations. Statistical arbitrage is nonetheless a few degrees easier to understand than the intuitive trading of more conventional portfolio managers. It is an algorithm, the trades churned out by lines of computer code. The success of statistical arbitrage operations makes a case that there are persistent classes of market inefficiencies and that Kelly-criterion-guided money management can use them to achieve higher-than-market return without ruinous risk.

It is based on so many factors that it is hard for an investor, or anyone else, to understand what a fund manager is doing. You are unlikely to convince a skeptic that a manager’s return is not just luck when no one else can understand the logic of his stock picks. Indicators Project ONE OF THE BEST CASES for beating the stock market involves a scheme called statistical arbitrage. To make money in the market, you have to buy low and sell high. Why not use a computer to tell you which stocks are low and which are high? In concept, that is statistical arbitrage. Fundamental analysts look at scores of factors, many of them numerical, in deciding which stocks to buy. If there is any validity to this process, then it ought to be possible to automate it. Ed Thorp began pursuing this idea as early as 1979. It emerged as one of the discoveries of what became known as the “Indicators Project” at Princeton-Newport.

pages: 289 words: 113,211

A Demon of Our Own Design: Markets, Hedge Funds, and the Perils of Financial Innovation by Richard Bookstaber

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

And well they 183 ccc_demon_165-206_ch09.qxd 7/13/07 2:44 PM Page 184 A DEMON OF OUR OWN DESIGN should, because someone else is getting saddled with the risk of the position, someone who most likely did not want to take on that position at the existing market price. Thus the demand for liquidity not only is the source of most price movement; it is at the root of most trading strategies. It is this liquidity-oriented, tectonic market shift that has made statistical arbitrage so powerful. Statistical arbitrage originated in the 1980s from the hedging demand of Morgan Stanley’s equity block-trading desk, which at the time was the center of risk taking on the equity trading floor. Like other broker-dealers, Morgan Stanley continually faced the problem of how to execute large block trades efficiently without suffering a price penalty. Often, major institutions discover they can clear a large block trade only at a large discount to the posted price.

O’Connor’s Partnership was making hundreds of millions of dollars by applying the Black-Scholes formula to options in the nascent Chicago Board Options Exchange in the late 1970s and early 1980s, with a cadre of young traders grabbing their pricing sheets at the start of the day and taking their posts along the CBOE trading floor to apply delta hedges to mispriced options. By the mid-1980s, the writing was on the wall for margin contractions in the floor marketmaking business, and O’Connor’s sold itself to Swiss Bank. On the heels of the cash-futures and index arbitrage opportunities came statistical arbitrage, which was the first to emerge in a hedge fund structure. In 1985, the first statistical arbitrage strategy was developed at Morgan Stanley, by Gerry Bamberger, a young information technology (IT) person who had been assigned to work on some hedging issues on the equity trading floor. As we discussed earlier, Bamberger developed a pairs trading strategy that resulted in a burgeoning business for Morgan Stanley and spawned D.E. Shaw and a host of other stat arb firms.

pages: 504 words: 139,137

Efficiently Inefficient: How Smart Money Invests and Market Prices Are Determined by Lasse Heje Pedersen

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

The figure shows the percentage spread between the prices of Unilever NV and Unilever PLC computed as PNV/PPLC – 1, where the adjusted prices are expressed in common currency. In 2008, the liquidity problems spread much more broadly around the economy and, in September 2008 a truly systemic liquidity crisis unfolded around the bankruptcy of Lehman Brothers. Ironically, the value/momentum quant equity strategies performed relatively well during 2008. 9.2. STATISTICAL ARBITRAGE Statistical arbitrage (stat arb) strategies are also quantitative, but they are usually less based on an analysis of economic fundamentals and more based on arbitrage relations and statistical relations. Dual-Listed Shares: Siamese Twin Stocks Some stocks are joined at the hip in the sense that their fundamental values are economically linked. A classic example is when two merging companies in different countries decide to retain separate legal identities but function economically as a single firm through an “equalization agreement.”

Quants build computer systems that generate trading signals based on these relations, carry out portfolio optimization in light of trading costs, and trade using automated execution schemes that route hundreds of orders every few seconds. In other words, trading is done by feeding data into computers that run various programs with human oversight. Some quants focus on high-frequency trading, where they exit a trade within milliseconds or minutes after it was entered. Others focus on statistical arbitrage, that is, trading at a daily frequency based on statistical patterns. Yet others focus on lower frequency trades called fundamental quant (or equity market neutral) investing. Fundamental quant investing considers many of the same factors as discretionary traders, seeking to buy cheap stocks and short sell expensive ones, but the difference is that fundamental quants do so systematically using computer systems.

Another investment style (as seen in Overview Table III) is liquidity provision, meaning buying securities with high liquidity risk or securities being sold by other investors who demand liquidity. This investment style comes in many shapes and forms, from Griffin buying illiquid convertible bonds to earn a liquidity risk premium, to Paulson buying merger targets being dumped by investors who demand liquidity for fear of event risk, to Soros riding a credit cycle, to Asness providing liquidity through statistical arbitrage trades. Carry trading is the investment style of buying securities with high “carry,” that is, securities that will have a high return if market conditions stay the same (e.g., if prices do not change). For instance, global macro investors are known to pursue the currency carry trade where they invest in currencies with high interest rates, bond traders often prefer high-yielding bonds, equity investors like stocks with high dividend yields, and commodity traders like commodity futures with positive “roll return.”

pages: 318 words: 87,570

Broken Markets: How High Frequency Trading and Predatory Practices on Wall Street Are Destroying Investor Confidence and Your Portfolio by Sal Arnuk, Joseph Saluzzi

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

With that kind of uncertainty, the programs exit their positions and “liquidity provision.” Spreads widen. And sometimes, such as the May 6, 2010 Flash Crash, there is a “liquidity vacuum.” Andy Haldane, the Executive Director of Financial Stability at the Bank of England, in a July 8, 2011 speech titled “The Race to Zero,” described this as “adding liquidity in a monsoon and absorbing it in a drought.”6 Statistical Arbitrage Statistical Arbitrage (AKA, “stat arb”) has been in operation for decades. The type of example most often given is when IBM is trading “rich” in London and “cheap” on the NYSE, the stat arb guys will simultaneously short it in London and buy it back on the NYSE. Oh, if it were only that simple today. Today, the stat arb guys are trading “rich” versus “cheap” in more than 50 fragmented destinations.

Senator Ted Kaufman Introduction Chapter 1 Broken Markets Why Has Our Stock Market Structure Changed So Drastically? When Did HFT Start? How Did HFT Become So Big? Why Have We Allowed This to Happen? Will There Be Another Market Crash? Where’s the SEC in All This? Endnotes Chapter 2 The Curtain Pulled Back on High Frequency Trading What Is High Frequency Trading, and Who Is Doing It? Market Making Rebate Arbitrage Statistical Arbitrage Market Structure and Latency Arbitrage Momentum Ignition How the World Began to Learn About HFT The SEC’s Round Table on Equity Market Structure—or Sal Goes to Washington 60 Minutes—or Joe Makes It to Primetime Endnotes Chapter 3 Web of Chaos NYSE and the Regionals NASDAQ SOES Instinet Problems for NYSE and NASDAQ Four For-Profit Exchanges Conflicts of Interest Fragmentation The Tale of the Aggregator Endnotes Chapter 4 Regulatory Purgatory Early 1990s Change in Regulations Late 1990s Regulations—Decimalization, Reg NMS, and Demutualization Early 2000s—Reg NMS Endnotes Chapter 5 Regulatory Hangover The Flash Order Controversy The Concept Release on Market Structure...Interrupted The Band-Aid Fixes Endnotes Chapter 6 The Arms Merchants Colocation Private Data Feeds Rebates for Order Flow (The Maker/Taker Model) Not Your Father’s Stock Exchange Endnotes Chapter 7 It’s the Data, Stupid Information for Sale on Hidden Customer Orders Data Theft on Wall Street The Heat Is On Phantom Indexes Machine-Readable News Who Owns the Data?

They get the data from the stock exchanges, too. Then they trade, capitalizing on those patterns. And, in many cases, the exchanges pay them to trade. In our Big Picture Conference presentation, we spoke about a few types of HFT: • “Market making” rebate arbitrage (we use quotations around “market making” because we really don’t see how it even closely resembles real market making) • Statistical arbitrage • Latency arbitrage • Momentum ignition Market Making Rebate Arbitrage This is probably the largest bucket of HFT. It is the style and strategy especially catered to by all the for-profit exchanges. With the exchanges becoming for-profit, and, in many cases, converting to publicly traded companies, such as the NYSE or NASDAQ, they now care very much about how to keep growing revenues.

pages: 192 words: 75,440

Getting a Job in Hedge Funds: An Inside Look at How Funds Hire by Adam Zoia, Aaron Finkel

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

c01.indd 5 1/10/08 11:00:55 AM 6 Getting a Job in Hedge Funds Table 1.3 Instruments and Styles COMMONLY USED INSTRUMENTS HEDGE FUND STYLES Public Equities Long/Short Quantitative Fixed Income Long Bias Event-Driven/Special Situations Currencies Short Only Value Commodities Arbitrage Trading Oriented Derivatives/Futures Market Neutral Global Macro Private Equity Industry Focus Multi-strategy Convertible Bonds Distressed Geographic Focus Arbitrage Strategies There are various types of arbitrage strategies, and all seek to exploit imbalances between different financial markets such as currencies, commodities, and debt. Some of the more popular hedge fund arbitrage strategies are convertible fixed income, risk, and statistical arbitrage. Convertible Arbitrage This strategy is identified by hedge investing in the convertible securities of a company. To do this, a hedge fund manager would buy the convertible bonds of a company while at the same time selling (or shorting) the company’s common stock. Positions are designed to generate profits from the fixed income security as well as the short sale of stock, while protecting principal from market moves.

Risk arbitrageurs invest simultaneously in long and short positions in both companies involved in a merger or acquisition. As such, they are typically long the stock of the company being acquired and short the stock of the acquirer. The principal risk is deal risk, should the deal fail to close. Merger arbitrage may hedge against market risk by purchasing Standard & Poor’s (S&P) 500 put options or put option spreads. Statistical Arbitrage Stat arb funds focus on the statistical mispricing of one or more assets based on the expected value of those assets. This is a very quantitative and systematic trading strategy that uses advanced software programs. Note: These funds typically hire PhDs, mathematicians, and/or programming experts. Emerging Markets This strategy involves equity or fixed income investing in emerging markets around the world.

While most quantitative funds invest in equities, others target fixed-income securities, commodities, currencies, and market indexes. These funds, some of which have billions of dollars in assets, can move the markets in which they invest when an internal buy or sell order is triggered. While quantitative strategies have sometimes produced stellar returns, there have also been some well-known failures of funds using this strategy. Some examples of funds that use quantitative investing strategies are statistical arbitrage, options arbitrage, fixed-income arbitrage, convertible bond arbitrage, mortgagebacked security arbitrage, derivatives arbitrage, equity market neutral, managed futures, and long/short funds. Sector-Specific Funds Some hedge fund managers may use any of the aforementioned strategies, but in doing so would focus investments on a specific sector of the market. Managers of these funds usually have both long and short equity positions.

pages: 374 words: 114,600

The Quants by Scott Patterson

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

The weekend after the presentation, Shaw decided to quit, informing Tartaglia of his decision the following Monday. Tartaglia, possibly perceiving Shaw as a threat, was happy to see him go. It may have been one of the most significant losses of talent in the history of Morgan Stanley. Shaw landed on his feet, starting up his own investment firm with \$28 million in capital and naming his fund D. E. Shaw. It soon became one of the most successful hedge funds in the world. Its core strategy: statistical arbitrage. Tartaglia, meanwhile, hit a rough patch, and in 1988, Morgan’s higher-ups slashed APT’s capital to \$300 million from \$900 million. Tartaglia amped up the leverage, eventually pushing the leverage-to-capital ratio to 8 to 1 (it invested \$8 for each \$1 it actually had in its coffers). By 1989, APT had started to lose money. The worse things got, the more frantic Tartaglia became. Eventually he was forced out.

By then, Citadel had more than \$1 billion under management. The fund was diving into nearly every trading strategy known to man. In the early 1990s, it had thrived on convertible bonds and a boom in Japanese warrants. In 1994, it launched a “merger arbitrage” group that made bets on the shares of companies in merger deals. The same year, encouraged by Ed Thorp’s success at Ridgeline Partners, the statistical arbitrage fund he’d started up after shutting down Princeton/Newport, it launched its own stat arb fund. Citadel started dabbling in mortgage-backed securities in 1999, and plunged into the reinsurance business a few years later. Griffin created an internal market–making operation for stocks that would let it enter trades that flew below Wall Street’s radar, always a bonus to the secrecy-obsessed fund manager.

pages: 584 words: 187,436

More Money Than God: Hedge Funds and the Making of a New Elite by Sebastian Mallaby

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Presented with apparently random data and no further clues, they sift it repeatedly for patterns, exploiting the power of computers to hunt for ghosts that to the human eye would be invisible. Renaissance’s quantitative rivals have reason to avoid ghost hunting. The computer may find fake ghosts—patterns that exist for no reason beyond chance, and that consequently have no predictive value. Eric Wepsic, who runs statistical arbitrage at D. E. Shaw, gives the example of the Super Bowl: It used to be said that if a team from the original National Football League won, the market would head upward. As a matter of statistics, this relationship might hold; but as a matter of common sense, it is a meaningless coincidence. Because of the threat from coincidental correlations masquerading as predictive signals, Wepsic suggests that it is often dangerous to trade on statistical evidence unless it can be intuitively explained.

But once the firm realized that the correlations made intuitive sense—they reflected the technology euphoria that had pushed into all these industries—they seemed more likely to be tradable.27 Moreover, signals based on intuition have a further advantage: If you understand why they work, you probably understand why they might cease to work, so you are less likely to keep trading them beyond their point of usefulness. In short, Wepsic is saying that pure pattern recognition is a small part of what Shaw does, even if the firm does some of it. Again, this presents a contrast with Renaissance. Whereas D. E. Shaw grew out of statistical arbitrage in equities, with strong roots in fundamental intuitions about stocks, Renaissance grew out of technical trading in commodities, a tradition that treats price data as paramount.28 Whereas D. E. Shaw hired quants of all varieties, usually recruiting them in their twenties, the crucial early years at Renaissance were largely shaped by established cryptographers and translation programmers—experts who specialized in distinguishing fake ghosts from real ones.

But by 2005 nobody could argue that hedge funds were exceptional in any way: More than eight thousand had sprouted, and the long track records of the established funds made it hard to dismiss their enviable returns as the products of good fortune. Bit by bit, the old talk of luck and genius faded and the new lingo took its place—at hedge-fund conferences from Phoenix to Monaco, a host of consultants and gurus held forth about the scientific product they called alpha. The great thing about alpha was that it could be explained: Strategies such as Tom Steyer’s merger arbitrage or D. E. Shaw’s statistical arbitrage delivered uncorrelated, market-beating profits in a way that could be understood, replicated, and manufactured by professionals. And so the era of the manufacturer arrived. Innovation and inspiration gave way to a new sort of alpha factory. You could see this transformation all over the hedge-fund industry. By the early 2000s, there was no longer much doubt that long/short equity stock picking, as practiced by Julian Robertson’s Tiger, could deliver market-beating returns.

Stock Market Wizards: Interviews With America's Top Stock Traders by Jack D. Schwager

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

An example of classic arbitrage would be buying gold in New York at \$290 an ounce and simultaneously selling the same quantity in London at \$291. In our age of computerization and near instantaneous communication, classic arbitrage opportunities are virtually nonexistent. Statistical arbitrage expands the classic arbitrage concept of simultaneously buying and selling identical financial instruments for a locked-in profit to encompass buying and selling closely related financial instruments for a probable profit. In statistical arbitrage, each individual trade is no longer a sure thing, but the odds imply an edge. The trader engaged in statistical arbitrage will lose on a significant percentage of trades but will be profitable over the long run, assuming trade probabilities and transaction costs have been accurately estimated. An appropriate analogy would be roulette (viewed from the casino's perspective): The casino's DAVID SHAW: odds of winning on any particular spin of the wheel are only modestly better than fifty-fifty, but its edge and the laws of probability will assure that it wins over the long run.

An appropriate analogy would be roulette (viewed from the casino's perspective): The casino's DAVID SHAW: odds of winning on any particular spin of the wheel are only modestly better than fifty-fifty, but its edge and the laws of probability will assure that it wins over the long run. There are many different types of statistical arbitrage. We will focus on one example: pairs trading. In addition to providing an easy-to grasp illustration, pairs trading has the advantage of reportedly being one of the prime strategies used by the Morgan Stanley trading group, for which Shaw worked before he left to form his own firm. Pairs trading involves a two-step process. First, past data are used to define pairs of stocks that tend to move together. Second, each of these pairs is monitored for performance divergences. Whenever there is a statistically meaningful performance divergence between two stocks in a defined pair, the stronger of the pair is sold and the weaker is bought.

Pairs Trading: Performance of a Relative Value Arbitrage Rule. National Bureau of Economic Research Working Paper No. 7032; March 1999. f HE Q U A N T I T A T I V E E D G E structure of identifying securities that are underpriced relative to other securities. However, that is where the similarity ends. A partial list of the elements of complexity that differentiate Shaw's trading methodology from a simple statistical arbitrage strategy, such as pairs trading, include some, and possibly all, of the following: Trading signals are based on over twenty different predictive techniques, rather than a single method. Each of these methodologies is probably far more sophisticated than pairs trading. Even if performance divergence between correlated securities is the core of one of these strategies, as it is for pairs trading, the mathematical structure would more likely be one that simultaneously analyzes the interrelationship of large numbers of securities, rather than one that analyzes two stocks at a time.

pages: 337 words: 89,075

Understanding Asset Allocation: An Intuitive Approach to Maximizing Your Portfolio by Victor A. Canto

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

In fact, one can make the case that for the few strategies with higher monthly returns than the S&P 500, the differences do not appear to be statistically significant. Table 12.2 Average monthly returns and standard deviation for selected hedge-fund strategies: January 1990 to December 2004. Monthly Returns Standard Deviation Sharpe Ratio 0.69% 1.25% 0.95 HFRI Equity Market Neutral Index: 0.71% Statistical Arbitrage 1.14% 1.14 HFRI Equity Market Neutral Index 0.75% 0.92% 1.61 HFRI Fixed Income: High Yield Index 0.80% 1.84% 0.85 HFRI Fixed Income (Total) 0.86% 1.00% 1.79 HFRI Convertible Arbitrage Index 0.86% 0.98% 1.86 S&P 500 0.96% 4.23% 0.51 S&P 500 Equal Weighted 1.11% 4.53% 0.58 HFRI Event-Driven Index 1.19% 1.91% 1.53 HFRI Distressed Securities Index 1.23% 1.77% 1.71 HFRI Emerging Markets (Total) 1.29% 4.31% 0.76 HFRI Macro Index 1.29% 2.44% 1.35 HFRI Fixed Income : Arbitrage Index continues Chapter 12 Keeping the Wheels on the Hedge-Fund ATV 229 Table 12.2 continued Monthly Returns Standard Deviation Sharpe Ratio HFRI Equity Hedge Index 1.39% 2.58% 1.42 HFRI Market Timing Index 1.03% 1.95% 1.23 HFRI Composite Index 1.15% 2.00% 1.40 Source: Hedge Fund Research, Inc.

Looking at the ratio of the hedge-fund strategies’ cumulative returns to the S&P 500, it is apparent there are runs in the data. As a cycle-minded investor can guess, some simple tests reject the hypothesis that the runs in the data are randomly generated. 230 UNDERSTANDING ASSET ALLOCATION Five of the six hedge-fund strategies reported in Figures 12.1a through 12.1f— market neutral (see Figure 12.1a), fixed-income arbitrage (see Figure 12.1b), fixed-income high-yield (see Figure 12.1c), equity market neutral statistical arbitrage (see Figure 12.1e), and fixed-income (total) (see Figure 12.f)— underperformed the S&P 500 during the 1990–2004 period. The sixth strategy, convertible arbitrage (see Figure 12.1d), barely outperformed the S&P 500. The data also show most of the strategies were keeping up with the S&P 500 prior to 1994, as evidenced by the flat or rising relative performance line in Figures 12.1a, b, d, and e.

Chapter 12 Keeping the Wheels on the Hedge-Fund ATV 231 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1990 1992 1994 1996 1998 2000 2002 2004 Figure 12.1c Ratio of the fixed-income, high-yield hedge-fund index to the S&P 500. 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1990 1992 1994 1996 1998 2000 2002 2004 Figure 12.1d Ratio of the convertible arbitrage hedge-fund index to the S&P 500. 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1990 1992 Figure 12.1e 232 1994 1996 1998 2000 2002 2004 Ratio of the equity market neutral statistical arbitrage hedge-fund index to the S&P 500. UNDERSTANDING ASSET ALLOCATION 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1990 1992 1994 1996 1998 2000 2002 2004 Figure 12.1f Ratio of the fixed-income (total) hedge-fund index to the S&P 500. There’s a clear pattern of relative underperformance and outperformance for the hedge-fund strategies. Another six strategies—macro (see Figure 12.2a), distressed securities (see Figure 12.2b), event driven (see Figure 12.2c), emerging markets (see Figure 12.2d), market timing (see Figure 12.2e), and hedgefund composite (see Figure 12.2f)—outperformed the S&P 500 during the 1990–1994 and 1999–2004 time periods. 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1990 1992 Figure 12.2a 1994 1996 1998 2000 2002 2004 Ratio of the global macro hedge-fund index to the S&P 500.

pages: 444 words: 151,136

Endless Money: The Moral Hazards of Socialism by William Baker, Addison Wiggin

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

A town that has 100 traffic cops and no murder detectives probably won’t find any dead bodies, but its police force will be very busy and profitable. Evidence-Based Investing How else could one get the courage to lever up to five-to-one or even 30-to-1 as was the case in some investment banks and statistical arbitrage proprietary trading funds, without “proof ” that certain assets and liabilities would behave in correlation or within bands of normal distribution? One year before the equity market imploded due to the credit crisis, a class of hedge funds known as “statistical arbitrage” funds collapsed, foretelling the effect leverage was having on stability of the market. The premise of this fund category was that excess returns could be harvested from bets on mean reversion, such as spreads between certain categories of debt, or among equity sectors such banks that lend against real estate and REITs, which own property.

But due to the mathematics, its sensitivity to the change in covariance of its positions is magnified fourfold. Probably half of all statistical arbitrage funds that deployed this strategy have moved on to greener pastures. But the use of value-at-risk statistical models to control exposure in hedge funds or even for large pension funds that allocate between different asset types continues, and it is virtually a mandatory exercise for institutional managers. There is hardly a large pension plan that has not developed a PowerPoint presentation that boasts it realigned its investments to increase excess return (alpha) and also reduced risk (variance). So in this sense, statistical arbitrage exists in some diluted form almost everywhere. Nassim Taleb decries the practice of evidence-based investing and value at risk models as conducted in the mainstream of Wall Street in his tome The Black Swan.

., 294–295 Smith, Adam, 264–265 Smyth, Douglas, 252 “Social credit,” 113 Social Investment Fund Network, 181–182 Socialism, and “I.O.U.S.A.,” 335–338. See also Capitalism; Fiat currency; Moral hazard Soros, George, 180–181, 184–185 Sowell, Thomas, 216 Specie, 36. See also Gold; Hard money INDEX Specie Circular, 49 Spitzer, Elliot, 322, 328 “Stamped money,” 113 Stanford, Allen, 330 Stanford Capital, 26 State Children’s Health Insurance Program (SCHIP), 202 Statistical arbitrage funds, 27–28 Stocks for the Long Run (Siegel), 31 Stolo, Licinius, 246 Strong, Benjamin, 64 Study of Administration (Wilson), 288 “Subprime Fiasco Exposes Manipulation by Mortgage Brokers” (Lubove, Taub), 148 Swaps, 125 Swope, Gerard, 317 Tabulae novae, 247 Taleb, Nassim Nicholas, 15, 16, 28, 280 Tallmadge, Benjamin, 3 Taub, Daniel, 148–149 Taxation: and federal budget deficit, 189–197 flat (or fair) tax, 202–204 history of, 197–202 overview, 188–189 Taylor Rule, 75–76 Taylor, John B., 75–76 Temin, Peter, 107–108, 114 Term Securities Lending Facility, 124–125 Theory of Moral Sentiments (Smith), 264 Tiberius, 249, 258 Tides Foundation, 180, 181 Torricelli Principle, 362 Trienans, Howard, 168 Troubled Asset Relief Program (TARP), 122, 128, 130, 139, 141, 143, 152, 214, 220, 235 Truman, Harry, 289 Index Turk, James, 350 Turner, Ted, 175 Turning Point Inc., 320 UBS, 22, 173 U.S.

pages: 701 words: 199,010

The Crisis of Crowding: Quant Copycats, Ugly Models, and the New Crash Normal by Ludwig B. Chincarini

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

If an investment’s expected return is higher than the borrowing rate, a trader can amplify the return as a percentage of capital by borrowing at the lower rate and investing at the higher rate. Just as leverage amplifies gains, it also amplifies losses. LTCM had identified very high Sharpe ratio trades with very low volatility. To give investors meaningful returns, the fund leveraged its portfolio. Although most of LTCM’s trades were not pure arbitrages, but rather statistical arbitrages or quasi-arbitrages, it is helpful to illustrate this concept with a pure arbitrage. Suppose LTCM had identified a bond that would pay \$100 in one year with certainty. It bought the bond at \$90, giving an unlevered return of 10%. The risk for the one-year holding period was zero. With no leverage, LTCM could just wait, even if the bond’s price fell as low as \$0.01 in the interim. With leverage, this becomes difficult or impossible.

HighBridge Statistical Opportunities Fund was down 18% for the month; Tykhe Capital LLC, a New York-based quantitative fund, was down 20% for the month; AQR’s flagship fund was down 13% by August 10; by August 14, 2007, Goldman Sachs Global Equity Opportunities Fund had lost more than 30% in one week.10 What Was the Quant Crisis? A quant crisis is one that affects quantitative money managers, vaguely defined as any portfolio managers that use a quantitative system to manage trades, rather than a human-based security-picking system. The quant world includes various types of managers, including those in charge of statistical arbitrage hedge funds, many managed futures funds, and a large class of long-short or market-neutral equity funds. This quant crisis mainly affected funds using quantitative equity strategies. In 2007, the leading quant portfolio companies were Barclays Global Investors (BGI), Goldman Sachs Asset Management (GSAM), State Street, Morgan Stanley’s Process Driven Trading (PDT) group, AQR, First Quadrant, Analytic Investors, AXA Rosenberg, Panagora, Mellon Capital, Acadian, Analytic, and Numeric.

In 2007, the leading quant portfolio companies were Barclays Global Investors (BGI), Goldman Sachs Asset Management (GSAM), State Street, Morgan Stanley’s Process Driven Trading (PDT) group, AQR, First Quadrant, Analytic Investors, AXA Rosenberg, Panagora, Mellon Capital, Acadian, Analytic, and Numeric. The largest of these were BGI, GSAM, and State Street. The leaders and traders in many of these quant funds earned PhDs from leading schools in finance, economics, and mathematics. In this crisis, the large negative returns seemed to disproportionately affect quantitative hedge funds, in particular quantitative equity hedge funds and statistical arbitrage funds.11 The value of common equity factors used to construct quantitative equity portfolios decreased in concert during this period, while their (typically low) correlations increased. Liquidity—especially in typical quant factors—completely dried up, especially during the week of August 6 to 13, 2007. Quantitative funds have a number of common attributes.12 Quantitative equity funds are usually market-neutral or enhanced index hedge funds or mutual funds that use computers to sort stocks by desirable and less desirable factors.

pages: 313 words: 101,403

My Life as a Quant: Reflections on Physics and Finance by Emanuel Derman

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Fixed-income trading requires a better grasp of technology and quantitative methods than equities trading. A trader friend of mine summed it up succinctly when, after I commented to him that the fixed-income traders I knew seemed smarter than the equity traders, he replied that "that's because there's no competitive edge to being smart in the equities business" I don't mean to suggest that all quants work on the Black-Scholes model. Increasingly, some of them work on statistical arbitrage, the attempt to seek order and predictability in the patterns of past stock price movements and then exploit them-that is, to divine the future from the past. Hedge funds, private pools of capital that seek out subtle price discrepancies in odd and unexplored corners of markets, have become major employers of quants during the past five years, and continue to hire them to do "stat-arb" Risk management is also in mode, and for good reason.

Nevertheless, in the twenty-first century, as universities have initiated financial engineering programs and financial institutions have embraced risk management, being a quant has slowly become a more legitimate profession. The overheated tech-stock market of the late 1990s cast a warm, reflected glow on geeks of all types, as did the droves of hedge funds trying to use mathematical models to squeeze dollars out of subtleties. The guts to lose a lot of money carries its own aura. D.E. Shaw & Co., a NewYork trading house that was rumored to be making substantial profits doing "black box" computerized statistical arbitrage before their billion-dollar losses in 1998, and Long Term Capital Management, the quant-driven Connecticut hedge fund that ultimately needed a multibillion-dollar bailout, have both contributed to this more glamorous view of quantization. And indeed, many of the Long Term Capital protagonists are back in business again at new firms. The capacity to wreak destruction with your models provides the ultimate respectability.

'Pairs trading is the search for statistically significant oscillatory patterns in the spread between pairs of similar stocks. If you believe you have detected such a phenomenon, you short the expensive stock and buy the cheap one when the spread is large, and then reverse the trade when/if the spread narrows. Since Tartaglia's renowned but temporary successes at Morgan Stanley, trading houses, hedge funds, and the scientists they employ have regularly and hopefully attempted to build model-driven, so-called "statistical arbitrage" money machines of this type. 'At this time I also began attending various computer science research seminars and conferences, where I was always struck by the difference in quality between computer science research and physics research. In physics, seminar speakers described completed achievements. In computer science, however, the majority of the talks were about plans for systems, sketches of new languages, and unimplemented ideas.The hurdle for declaring accomplishment seemed much lower.

pages: 338 words: 106,936

The Physics of Wall Street: A Brief History of Predicting the Unpredictable by James Owen Weatherall

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

.”: This section in particular is based on an interview with Farmer. The closest thing from Farmer’s and Packard’s days as physicists that was helpful in their early days with the Prediction Company was the work in Farmer and Sidorowich (1987), where they present a method for making short-term predictions based on a particular algorithmic approximation. “One strategy they used was something called statistical arbitrage . . .”: For more on the history of statistical arbitrage, see Bookstaber (2007). Ed Thorp also played a significant role in the early development of the idea; for more on his contribution, see Thorp (2004). “. . . a variety of computer programs known as genetic algorithms”: For more on genetic algorithms, see, for instance, Mitchell (1998). For Packard’s early contributions, see Packard (1988, 1990). “. . . over the firm’s first fifteen years . . .”: More specifically, this person told me that the company had a Sharpe ratio of 3. 7.

What the Predictors were doing, rather, was trying to extract small amounts of information from a great deal of noise. It was a search for regularities of the same sort that lots of investors look for: how markets react to economic news like interest rates or employment numbers, how changes in one market manifest themselves in others, how the performances of different industries are intertwined. One strategy they used was something called statistical arbitrage, which works by betting that certain statistical properties of stocks will tend to return even if they disappear briefly. The classic example is pairs trading. Pairs trading works by observing that some companies’ stock prices are usually closely correlated. Consider Pepsi and Coca-Cola. Virtually any news that isn’t company-specific is likely to affect Pepsi’s products in just the same way as Coca-Cola’s, which means that the two stock prices usually track one another.

The Handbook of Personal Wealth Management by Reuvid, Jonathan.

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

For more information about our Wealth Management Service contact 020 7189 9901, email Julian.Hall@bestinvest.co.uk julian.hall@bestinvest.co.uk bestinvest.co.uk ________________________________________________ HEDGE FUND STRATEGIES 27 ឣ Market neutral This is an extension to long/short equity where an attempt is made to eliminate market or idiosyncratic risk. Some funds negate exposure to market capitalization and sector exposures and may invest an equal number of stocks on both the long and short sides. Market neutral funds are further broken down into fundamental stock pickers, quantitative based (where the portfolios can be re-balanced by an optimizer ranging in frequency from once a week to quarterly) and statistical arbitrage where more frequent intra-day optimization is achieved. The goal is to derive returns (if all idiosyncratic risks are removed) through stock-picking and efficient execution. Global macro Macro funds may invest in any market, and frequently use leverage and derivatives, futures and swaps to make directional trades in equities, interest rates, currencies and commodities. Macro funds also tend to be very concentrated in their bets.

The outlook for strategic M&A deals remains positive but the potential for leveraged buy-outs has reduced significantly. Fixed income arbitrage This strategy requires leverage, which is now scarce, in order to generate positive returns when credit spreads are narrowing. During 2008 credit spreads widened and leverage was removed. There were large redemptions from this strategy throughout the year and many hedge funds operating this strategy have been forced to close. Statistical arbitrage This market-neutral strategy profits from high-frequency trading with stock holding periods ranging from seconds to months. The volatile trading environment of 2008 has meant that some of the shorter-term positions were able to produce positive ឣ 34 PORTFOLIO INVESTMENT _________________________________________________ returns. Many funds’ computer models were re-calibrated following the restrictions on shorting financials. 2009 outlook Those hedge funds that have preserved capital through 2008 will have the financial fire power to take advantage of the opportunities now arising.

pages: 280 words: 73,420

Crapshoot Investing: How Tech-Savvy Traders and Clueless Regulators Turned the Stock Market Into a Casino by Jim McTague

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

If on a given day a stock rose in value by X dollars, for instance, the traders might judge the move to be extreme, based on 20 years’ worth of pricing, volume, and related data, and short the stock, expecting it to correct back down. If the underlying company was a big food producer, the stock’s fall might affect the prices of agricultural futures on the commodities exchange. The super-fast computers would exploit such correlations. Statistical arbitrage was a variation on the age-old theme of buy low and sell high, but with some twists. For instance, a trader did not always buy and sell exactly the same stock. The trader could buy a high-tech stock such as Microsoft when it was trending lower and immediately sell an index or exchange-traded fund (ETF) of high-tech stocks such as the QQQ, which has Microsoft as a component and would adjust downward to reflect Microsoft’s lower market value.

pages: 224 words: 13,238

Electronic and Algorithmic Trading Technology: The Complete Guide by Kendall Kim

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

A pure alpha-seeking strategy is very underdeveloped in algorithmic trading because it is very difficult to accomplish. In this regard, human traders making the final execution decisions still have a decided advantage over pure algorithmic or program trading. The FIX Protocol has allowed different proprietary systems to plug into a common standard and communicate with one another. Some trading programs are designed to decide which shares to buy and sell. These are used for statistical arbitrage, the practice of monitoring and comparing share prices to identify patterns that can be exploited to make a profit. Some exchanges now regulate the use of electronic and algorithmic trading, preventing their systems from being overloaded or to avoid repeating the crash of 1987. On July 7, 2005, the London Stock Exchange asked for algorithmic trading to be suspended after the London bombings.

It has a flexible data model to handle multiple instrument data feeds in a consistent manner and rapidly support any new products that can be integrated into existing legacy systems and traditional relational databases using TimeScape XDK. This product can also be fully compatible with XML Web services based on SOAP and .NET. Xenomorph begins its second decade of growth. Xenomorph’s TimeScape is the current product enhanced and refined over the last 10 years. They currently have 30 clients globally, with investment banks accounting for 50% of their client base, and hedge funds specializing in convertible bond and statistical arbitrage along with asset management firms comprising the remainder. Apama Apama is an independent financial technology firm, founded in 2000, which provides outsourced trading strategies. Apama is designed to reduce the time taken to deploy and maintain an algorithmic trading solution. Apama currently has clients on both the buy and the sell side, with major clients including JP Morgan, ABN Amro, and Deutsche Bank.

pages: 483 words: 141,836

Red-Blooded Risk: The Secret History of Wall Street by Aaron Brown, Eric Kim

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

But if interest rates went up, few people would refinance, and the security holders would get back less than the expected cash flows, at a time when they wanted to take advantage of the higher rates. Prepayment risk was much too small to justify the yield difference. It was possible to trade GNMAs actively, along with bond futures and options, to lock in highly predictable profits. At the time we called this a statistical arbitrage. An arbitrage is a trade with no risk and positive profit. A statistical arbitrage is a trade with controllable risk that is much smaller than the expected positive profit. A good example is a roulette wheel from the standpoint of a casino. Today, however, the term stat arb has been taken over by a group of strategies descended from pairs trading. One of the things I was doing at the time was running such an active GNMA portfolio.

See Securities and Exchange Commission (SEC) Secret history of Wall Street: 1654–1982 period 1983–1987 period 1988–1992 period 1993–2007 period Securities and Exchange Commission (SEC) Securitization Seven principles of risk management: I: risk duality II: valuable boundary III: risk ignition IV: money V: evolution VI: superposition VII: game theory Sharpe ratio Shiller, Robert Smile and skew option Soros, George Sports betting/bettors Spread trade Squam Lake Report, The (French, et. al.) Statistical arbitrage Statistical Decision Functions (Wald) Statistical games Statistical reasoning, basic principles Statistics, history of Stigler, Steven Still Life with a Bridle (Herbert) Stock market crash: Monday, October 19, 1987 Stoller, Martin Stoller, Phil Stone Age Economics (Sahlins) Story of money: 1776, continental dollars Andrew Dexter generally government and paper paleonomics paper vs. metal property, exchange and risk transition what money does Strange Days Indeed (Wheen) Stress tests Sull, Donald Superposition Tail risk—extreme events Tale of High-Flying Speculation and America’s First Banking Collapse, A (Kamensky) Taleb, Nassim Tett, Gillian Thaler, Richard 13 Bankers ( Johnson) Thirty Years War Theory of Blackjack, The (Griffin) Thorp, Edward To Engineer Is Human (Petroski) “Tolling” swap Trading from Your Gut (Faith) Trading risk Transaction taxes Treasury bills/bonds Trust in Numbers (Porter) Tukey, John Tulips/tulipomania Unspeakable truths: good stuff beyond VaR limit parametric risk managers create risk risk managers should make sure firms fail Upside of Turbulence, The (Sull) Useless Arithmetic (Pilkey) Utility theory: change of numeraire and decision maker identity and declining marginal utility and extensions utility maximization Valuable boundary Value at risk (VaR).

How I Became a Quant: Insights From 25 of Wall Street's Elite by Richard R. Lindsey, Barry Schachter

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Second, it will bring an increasing number of extremely quantitative people into traditional areas of portfolio management. Their approach will most likely be more analytical and closer to “quantitative” than traditional managers, thus blurring the lines between quant and nonquant. Finally, I think that quantitative asset management’s range is going to increase dramatically over the next 10 years. Today when people think about quantitative asset management they usually think about statistical arbitrage or global tactical asset allocation. Over time, I see quantitative methods being applied to an increasing range of products. Driving this will be increased liquidity in new markets, the availability of data to analyze and the availability of electronic access to those markets. JWPR007-Lindsey May 7, 2007 16:55 136 JWPR007-Lindsey April 30, 2007 19:47 Chapter 8 Peter Carr Head of Quantitative Financial Research, Bloomberg I ’m thrilled to be asked to describe how I became a quant.

Being blind to the heterogeneous process of option decay makes you believe option implied volatilities are more volatile than they really are. Active Portfolio Strategies Cooper Neff had two incarnations: first as an options market maker on exchanges around the world, next as a technology-driven, quantitative modeling firm trading equities at unheard-of high frequencies. The inflection point was in 1995, the year Cooper Neff was acquired by French bank BNP. Active Portfolio Strategies, or APS, was our version of equity statistical arbitrage, but no one ever used those terms at the firm. To us, equity stat arb meant pairs trading or exploiting the residuals of an equity factor model, and nothing we were doing had anything in common with these strategies. So we made up our own name. The genesis of APS came, oddly enough, while I was working at CoreStates in 1987. I came upon a barnburner of a book called The Microstructure of Securities Markets.7 This out-of-print work is a thin but dense and abstruse book that to me was a veritable gold mine.

I’d like to thank Brad Asness, Kent Clark, David Kabiller, Robert Krail, and John Liew for helpful comments on this draft. 3. At AQR our IT department gets a kick out of this as I often yell for help because I’ve lost the ability to display “Helvetica font.” 4. One of these “other things” in my dissertation was a simulation study I never published that I still think is neat and an early study of what is now known as statistical arbitrage, where I concluded that it’s interesting, but doesn’t cover transactions costs, and then ignored several easy improvements, thereby not participating in one of the great hedge fund strategies of the late twentieth century. 5. It didn’t hurt that I’d be working with my best friend Jonathan Beinner (Jon is now a Goldman partner co-running the fixed income group). It also didn’t hurt that Fischer Black was then at GSAM.

pages: 1,088 words: 228,743

Expected Returns: An Investor's Guide to Harvesting Market Rewards by Antti Ilmanen

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

The consistency of the results is impressive: all strategies have positive Sharpe ratios, ranging between 0.1 and 0.9. Value strategies worked especially well for stock selection in Japan and for equity country allocation. Other studies document the success of value strategies among emerging equity markets and among corporate bonds. Many fixed income arbitrage strategies employed in hedge funds and bank proprietary trading desks are based on mean-reverting spreads or related value anchors. Statistical arbitrage in equity markets—pairs trading and more complex variants—is also based on relative value (i.e., mean reversion in the pricing relationship between two assets). The profitability of such “arbitrage” (really: relative value trading) strategies waned significantly in the past decade as the technologies to exploit them became widely available. Low-hanging fruit were eliminated years ago. In country allocation, weighting countries by GDP rather than by market cap in a global index is one way to infuse a value bias.

Another strand of literature analyzes gains of short-term liquidity providers over time. Instead of holding illiquid or high-liquidity-beta assets, these liquidity providers supply liquidity to the marketplace by trading a short-term reversal strategy. My intuition is that recent laggard stocks may have underperformed because of selling pressure, while recent winners may have benefited from buying pressure. Thus a classic “stat arb” (statistical arbitrage) strategy of buying recent laggards and selling recent outperformers attenuates the temporary supply–demand imbalance and should be rewarded. Technological progress has changed market structures and liquidity sources. For example, the New York Stock Exchange has lost market share in U.S. equity turnover to various electronic platforms and dark pools. Market-makers used to be the only explicit liquidity providers but they have increasingly been superseded by hedge funds and other stat arb traders.

Treasuries were often the only asset class to benefit in flight-to-quality episodes, and this safe haven feature partly justifies Treasuries’ low required returns. Interestingly, Figure 19.6 suggests that this feature was not strong for Treasuries over the 20-year window (Treasuries became negatively correlated with VIX changes only around 1998), whereas both momentum and value strategies served such a safe haven role (although value worked as a safe haven mainly in the early 2000s, but not in the late 2000s). Statistical arbitrage strategies (pairs trading or exploiting short-term return reversals) may work even better in high-volatility regimes. Figure 19.6. Average monthly returns when the volatility factor is above or below its median, 1990–2009. Sources: Bloomberg, LPX, MSCI Barra, FTSE, Bank of America Merrill Lynch, Hedge Fund Research, Barclays Capital, S&P GSCI, Ken French’s website, Brevan Howard, own calculations.

pages: 364 words: 101,286

The Misbehavior of Markets by Benoit Mandelbrot

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Jean-Philippe Bouchaud and some colleagues at Capital Fund Management were running two hedge funds with combined capital of \$725 million as of the end of 2003. The funds engage in statistical arbitrage: They use mathematical models and computer horse-power to find what they think is incorrect pricing in the market, or other unstable patterns on which they can bet. The individual bets are small; but it is, for them, a game of large numbers. Many small profits can mount. In 2002, their biggest fund, Ventus, reported a stock-market gain of 28.1 percent, this, in a year when the market overall had fallen by a third. But it is also a game of chance: In 2003, they were less lucky with gains of just 3.32 percent. Their other fund, Discus, in the futures market, reported a 14.1 percent profit that year. “With statistical arbitrage, there are ups and downs,” Bouchaud says with a shrug. Their strategy is part multifractal, part many other things.

pages: 369 words: 94,588

The Enigma of Capital: And the Crises of Capitalism by David Harvey

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

The ‘shadow banking system’ emerges 1980 Currency swaps 1981 Portfolio insurance introduced; interest rate swaps; futures markets in Eurodollars, in Certificates of Deposit and in Treasury instruments 1983 Options markets on currency, equity values and Treasury instruments; collateralised mortgage obligation introduced 1985 Deepening and widening of options and futures markets; computerised trading and modelling of markets begins in earnest; statistical arbitrage strategies introduced 1986 Big Bang unification of global stock, options and currency trading markets 1987–8 Collateralised Debt Obligations (CDOs) introduced along with Collateralised Bond Obligations (CBOs) and Collateralised Mortgage Obligations (CMOs) 1989 Futures on interest rate swaps 1990 Credit default swaps introduced along with equity index swaps 1991 ‘Off balance sheet’ vehicles known as special purpose entities or special investment vehicles sanctioned 1992–2009 Rapid evolution in volume of trading across all of these instruments.

pages: 345 words: 86,394

Frequently Asked Questions in Quantitative Finance by Paul Wilmott

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

However, when deriving the famous option-pricing models we rely on a dynamic strategy, called delta hedging, in which a portfolio consisting of an option and stock is constantly adjusted by purchase or sale of stock in a very specific manner. Now we can see that there are several types of arbitrage that we can think of. Here is a list and description of the most important.• A static arbitrage is an arbitrage that does not require rebalancing of positions • A dynamic arbitrage is an arbitrage that requires trading instruments in the future, generally contingent on market states • A statistical arbitrage is not an arbitrage but simply a likely profit in excess of the risk-free return (perhaps even suitably adjusted for risk taken) as predicted by past statistics • Model-independent arbitrage is an arbitrage which does not depend on any mathematical model of financial instruments to work. For example, an exploitable violation of put-call parity or a violation of the relationship between spot and forward prices, or between bonds and swaps • Model-dependent arbitrage does require a model.

Cointegration is a useful technique for studying relationships in multivariate time series, and provides a sound methodology for modelling both long-run and short-run dynamics in a financial system. Example Suppose you have two stocks S1 and S2 and you find that S1 − 3 S2 is stationary, so that this combination never strays too far from its mean. If one day this ‘spread’ is particularly large then you would have sound statistical reasons for thinking the spread might shortly reduce, giving you a possible source of statistical arbitrage profit. This can be the basis for pairs trading. Long Answer The correlations between financial quantities are notoriously unstable. Nevertheless correlations are regularly used in almost all multivariate financial problems. An alternative statistical measure to correlation is cointegration. This is probably a more robust measure of the linkage between two financial quantities but as yet there is little derivatives theory based on the concept.

Adaptive Markets: Financial Evolution at the Speed of Thought by Andrew W. Lo

They began their conversations in almost exactly the same way: “Have you heard of anything unusual going on with other hedge funds . . . ?” After the third call, I realized that something significant was occurring on Wall Street, something that was off the radar of academic theory or hedge fund practice. 284 • Chapter 8 I knew all three alumni were working at hedge funds engaged in the same broad category of strategies known as “statistical arbitrage,” or “statarb” for short—highly sophisticated quantitative algorithms and computerized trading platforms involving long and short positions in hundreds of stocks. These were the same kinds of strategies used by Morgan Stanley and D. E. Shaw in the 1980s (see chapter 7). This seemed like too much of a coincidence. And the fact that these three were calling up their former finance professor to ask about what’s going on in the industry suggested that they must have been really desperate for information!

Also, weight these positions in proportion to the amount the stocks deviate from that index, that 286 • Chapter 8 is, the bigger the deviation, the more weight you give them in your portfolio. This is a more sophisticated version of chapter 7’s hedge fund example of buying Apricot Computers and simultaneously selling BlueBerry Devices, which is known as a “pairs strategy” (apologies for the pun). Since having been introduced at Morgan Stanley in the early 1980s, pairs strategies have radiated into hundreds of different varieties of statistical arbitrage, the strategies growing more elaborate and refined with each iteration, like the radiation of new species that populate unoccupied ecological niches. The motivation for these strategies is often mean reversion—the idea that what goes up must eventually come down, and vice versa. If stock prices revert to the mean, then past “losers” should appreciate and past “winners” should depreciate.

., 100 Sobel, Russell, 206 social Darwinism, 215 social exclusion, 85–86 social media, 55, 270, 405 Société Générale, 60–61 Society of Mind, The (Minsky), 132–133 sociobiology, 170–174, 216–217 Sociobiology (Wilson), 170–171 Solow, Herbert, 395 Soros, George, 6, 219, 222–223, 224, 227, 234, 244, 277 sovereign wealth funds, 230, 299, 409–410 Soviet Union, 411 Space Shut tle Challenger, 12–16, 24, 38 specialization, 217 speech synthesis, 132 Sperry, Roger, 113–114 “spoofi ng,” 360 Springer, James, 159 SR-52 programmable calculator, 357 stagflation, 37 Standard Portfolio Analysis of Risk (SPAN), 369–370 Stanton, Angela, 338 starfish, 192, 242 Star Trek, 395–397, 411, 414 stationarity, 253–255, 279, 282 statistical arbitrage (“statarb”), 284, 286, 288–291, 292–293, 362 statistical tests, 47 Steenbarger, Brett, 94 Stein, Carolyn, 69 sterilization, 171, 174 Stiglitz, Joseph, 224, 278, 310 Stocks for the Long Run (Siegel), 253 stock splits, 24, 47 Stone, Oliver, 346 Stone Age, 150, 163, 165 stone tools, 150–151, 153 stop-loss orders, 359 Strasberg, Lee, 105 stress, 3, 75, 93, 101, 122, 160–161, 346, 413–415 strong connectedness, 374 Strong Story Hypothesis, 133 Strumpf, Koleman, 39 “stub quotes,” 360 subjective value, 100 sublenticular extended amygdala, 89 subprime mortgages, 290, 292, 293, 297, 321, 327, 376, 377, 410 482 • Index Sugihara, George, 366 suicide, 160 Sullenberger, Chesley, 381 Summers, Lawrence (Larry), 50, 315–316, 319–320, 379 sunlight, 108 SuperDot (trading system), 236 supply and demand curves, 29, 30, 31–33, 34 Surowiecki, James, 5, 16 survey research, 40 Sussman, Donald, 237–238 swaps, 243, 298, 300 Swedish Twin Registry, 161 systematic bias, 56 systematic risk, 194, 199–203, 204, 205, 250–251, 348, 389 systemic risk, 319; Bank of England’s measurement of, 366–367; government as source of, 361; in hedge fund industry, 291, 317; of large vs. small shocks, 315; managing, 370–371, 376–378, 387; transparency of, 384–385; trust linked to, 344 Takahashi, Hidehiko, 86 Tanner, Carmen, 353 Tanzania, 150 Tartaglia, Nunzio, 236 Tattersall, Ian, 150, 154 Tech Bubble, 40 telegraphy, 356 Tennyson, Alfred, Baron, 144 testosterone, 108, 337–338 Texas hold ’em, 59–60 Texas Instruments, 357, 384 Thackray, John, 234 Thales, 16 Théorie de la Spéculation (Bachelier), 19 theory of mind, 109–111 thermal homeostasis, 367–368, 370 This Time Is Different (Reinhart and Rogoff ), 310 Thompson, Robert, 1, 81–82, 83, 103–104 three-body problem, 214 ticker tape machine, 356 tight coupling, 321, 322, 361, 372Tiger Fund, 234 Tinker, Grant, 395 Tobin tax, 245 Tokugawa era, 17 Tooby, John, 173, 174 tool use, 150–151, 153, 162, 165 “toxic assets,” 299 trade execution, 257, 356 trade secrets, 284–285, 384 trading volume, 257, 359 transactions tax, 245 Treynor, Jack, 263 trial and error, 133, 141, 142, 182, 183, 188, 198, 265 Triangle Shirtwaist Fire, 378–379 tribbles, 190–205, 216 Trivers, Robert, 172 trolley dilemma, 339 Trusty, Jessica, 120 Tversky, Amos, 55, 58, 66–67, 68–69, 70–71, 90, 106, 113, 388 TWA Flight 800, 84–85 twins, 159, 161, 348 “two-legged goat effect,” 155 UBS, 61 Ultimatum Game, 336–338 uncertainty, 212, 218; risk vs., 53–55, 415 unemployment, 36–37 unintended consequences, 7, 248, 269, 330, 358, 375 United Kingdom, 222–223, 242, 377 University of Chicago, 22 uptick rule, 233 Urbach-Wiethe disease, 82–83 U.S.

pages: 431 words: 132,416

No One Would Listen: A True Financial Thriller by Harry Markopolos

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Then I began putting things in, taking things out, testing and retesting and back-testing to see how each package would perform in various market environments. I did this knowing full well that Bernie hadn’t bothered to do any of this. He just sat down and made it up. It’s considerably easier that way—and you always get the results you want! Eventually I developed a product we named the Rampart Options Statistical Arbitrage. It was a product that would do extremely well in a market environment with low to moderately high volatility. As long as the market didn’t move more than 8 to 10 percent over a 10- to 15-day trading period, it would perform very well. Of course, if there was extremely high volatility or if the market did make a substantial move in either direction over that period, it was possible to lose about 50 percent of its value.

I’m president of the four-thousand-member Boston Security Analysts Society, and I have evidence here of the largest fraud in history,” and handed the envelope to him, he might have taken it seriously. But I did what seemed safest at that time. Slightly more than three years had passed since we had discovered Madoff. We had compiled a strong case against him. Our original reason for trying to bring him down—that he was competition we couldn’t compete against—had ended with the failure of the Rampart Options Statistical Arbitrage strategy. But we were so deeply into this thing that it became impossible to put it down. We had actually developed into a pretty good team. We had two investigators in the field, Frank and Mike, and two quants in Neil and me able to find the defects in the materials they collected. And they did continue to add to our growing pile of evidence. Frank’s new job at Benchmark Plus caused him to spend most of his time with hedge fund and risk managers, and at some point in each conversation he never failed to ask them, “What do you know about Bernie?”

pages: 320 words: 33,385

Market Risk Analysis, Quantitative Methods in Finance by Carol Alexander

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

In Section II.5.4.6 we describe how to track an index using only a relatively small subset of assets. The index tracking regression model has the index return as the dependent variable, and the explanatory variables are the returns on the assets used to track the index. This can be extended to a regression model for enhanced indexation by replacing the dependent variable by the index return plus a fixed outperformance. A further extension is to statistical arbitrage Introduction to Linear Regression 183 strategies which take a long position on an enhanced indexation portfolio and a short position on the index futures. A case study on index tracking of the Dow Jones Industrial Average index is presented in Section II.5.4.7 where we use that fact that the tracking portfolio must be cointegrated with the index if the tracking error is to be stationary.

Investment: A History by Norton Reamer, Jesse Downing

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Indeed, it is no surprise that managing a macro-oriented portfolio and having consistent success is More New Investment Forms 267 no easy task: the identiﬁcation of a string of exceptional shifts is what separates the one-hit wonders from the macro titans. Relative value funds can encapsulate several different strategies. Some are engaged in what has been termed pairs trading, or the purchase of one security that has been deemed “cheap” on a relative basis and the sale of another that seems correspondingly “expensive.” Relative value funds proﬁt when the prices of the pair of securities readjust. Some funds use statistical arbitrage, often examining the behavior of the time series and making judgments as to relative value based on historical valuations. Others are more fundamentally oriented, believing that one well-positioned ﬁrm will outperform a competitor. The other common strategy employed by relative value funds is seeking value across the capital structure of a publicly traded ﬁrm. By way of example, a relative value fund may believe a publicly traded company will experience severe distress in the next six months.

See Standard & Poor’s 500 speculation: art, stamps, coins, and wine, 283; in derivatives, 221; excesses, 197; impacts of, 232; value and, 4–5 spinning jenny, 71 split-strike conversion, 151–52 sponsor, 286–87 Stabilizing an Unstable Economy (Minsky), 214 Stagecoach Corporate Stock Fund, 284–85 Standard & Poor’s 500 (S&P 500), 187, 228, 285, 305–6, 309 Stanford, Allen, 153–56 Stanford, Leland, 155 Stanford Financial Group, 154 Starbucks, 277 State Street Corporation, 299 State Street Global Advisors, 299 State Street Investment Trust, 141 statistical arbitrage, 267 steam engine, 71 steamships, 90 Stefanadis, Chris, 94 sterling, 65 stock company, 134 stock exchanges: national or international, 94; new, 96; regional, 94–95 stock market: dislocations, 205; in England, 86–87; in Paris, 85 stock ownership: age and, 93–94; direct and indirect, 91, 93; gender and, 93–94; regulations prohibiting too much, 123; study of, 96; in United States, 90–94, 97 stock ticker, 89–90; network, 95 stones (horoi), 27, 60 Strong, Benjamin, 200–203, 206, 226 strong-form efficiency, 249 Studebaker-Packard Corporation, 111 sub hasta (public auction), 50 subprime, 39 subprime-mortgage lending, 223 Suetonius, 59 sugar consumption, in England, 75, 77 Sumerian city-states, 15–16 supply curve, 229 Supreme Court, 108 survivorship bias, 252 swap spread, 266 Swensen, David, 296, 328 SWFs.

pages: 244 words: 79,044

Money Mavericks: Confessions of a Hedge Fund Manager by Lars Kroijer

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

The general feedback from the guys (there were virtually no women in the crowd) was similar: their jobs were not very structured, there was little hierarchy, skill was enthusiastically acknowledged by superiors and lack of it punished mercilessly. The job was entrepreneurial, in that you were encouraged to pursue what you thought were interesting angles, and if you were good the money was great. It was also clear that the type of work varied quite a bit from fund to fund. While the fixed-income or statistical arbitrage funds could be very mathematical in nature, the work at some of the long or short funds largely resembled that of more traditional stock-picking. Joining the clan I eventually joined a value fund in New York called SC Fundamental. During the interview process, the firm’s founder, Peter Collery, had thoroughly impressed me and I still consider him one of the smartest people I have ever met.

pages: 342 words: 99,390

The greatest trade ever: the behind-the-scenes story of how John Paulson defied Wall Street and made financial history by Gregory Zuckerman

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Pellegrini moved out of their Gracie Square home to an apartment in Westchester, receiving \$300,000 from DeWoody in a divorce settlement, a pretax payout that he figured might have to last him through retirement. Being financially successful was at the top of Pellegrini’'s life goals, right up there with having a happy family life. He had failed miserably at both. “"I was forty-five and had zero net worth,”" Pellegrini recalls. “"And from my perspective, I had no prospects.”" Pellegrini’'s bright ideas kept coming, though. He developed a new method to use “"statistical arbitrage”" to trade stocks, though he couldn’'t make much money with it. A stint at Tricadia Capital, a hedge fund founded by Michaelcheck’'s Mariner Investment Group, Inc., gave Pellegrini an education in the world of securitized debt and credit-default swaps (CDS), which the firm was heavily involved in. But Pellegrini didn’'t make many friends at Tricadia when he suggested that the firm find ways to short collateralized-debt obligations, even as others at the firm were buying and creating versions of these debts.

pages: 327 words: 91,351

Traders at Work: How the World's Most Successful Traders Make Their Living in the Markets by Tim Bourquin, Nicholas Mango

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

When I found pairs trading in equities, however, that was an eye-opening event for me. It gave me the opportunity to be a little more patient with my trades, because I was focused on relative value, not on whether KLA-Tencor [KLAC] stock was going to go up today or Novellus Systems stock was going to go down. Instead, I could trade the relative value in between the KLAC–Novellus pair. Those early days of equity statistical arbitrage pairs trading has really defined my career up to this point. Bourquin: What made agricultural pairs trading more attractive to you than just straight equity pairs trading? Hemminger: I enjoy the research process and looking through data, which are skills that I have continued to build upon as my career in the financial markets has developed and I have gained more confidence. I would say that process really started in 2006.

pages: 339 words: 109,331

The Clash of the Cultures by John C. Bogle

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

The high demand for the services of HFTs comes not only from “punters”—sheer gamblers who thrive (or hope to thrive) by betting against the bookmakers—but from other diverse sources, as well. These traders may range from longer-term investors who value the liquidity and efficiency of HFTs to hedge fund managers who act with great speed based on perceived stock mispricing that may last only momentarily. This aspect of “price discovery,” namely statistical arbitrage that often relies on complex algorithms, clearly enhances market efficiency, which is definitely a goal of short-term trading, but also benefits investors with a long-term focus. Yes, HFTs add to the efficiency of stock market prices, and have slashed unit trading costs to almost unimaginably low levels. But these gains often come at the expense of deliberate investors, and expose the market to the risks of inside manipulation by traders with knowledge of future order flows.

pages: 402 words: 110,972

Nerds on Wall Street: Math, Machines and Wired Markets by David J. Leinweber

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Shaw & Company in 1988 with \$28 million (it now has current assets exceeding \$30 billion).7 What is likely Shaw’s last publication on trading dealt with the mechanics of interfacing Unix systems with the Gr eatest Hits of Computation in Finance 41 current generation of electronic trading systems. He apparently realized that, despite his instincts as a former academic, some things are more valuable unpublished. Subsequent in-house developments made D.E. Shaw a leader (reportedly) in electronic market making, statistical arbitrage, and other fast electronic trading strategies. David Whitcomb, a market microstructure economist at Rutgers University and coauthor of a 1988 book on electronic trading strategies,8 faced the same sort of skepticism selling his ideas to Wall Street. Finding no institutional backing, he joined forces with a computer scientist colleague to found Automated Trading Desk (ATD) in the proverbial garage in Charleston, South Carolina.

pages: 320 words: 87,853

The Black Box Society: The Secret Algorithms That Control Money and Information by Frank Pasquale

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

This story opens Michael Lewis, Flash Boys (New York: W.W. Norton, 2014), 15. Economic sociologists have also studied Spread Networks. Donald Mackenzie et al., “Drilling Through the Allegheny Mountains: Liquidity, Materiality and High-Frequency Trading” ( Jan., 2012), at http://www.sps.ed .ac.uk /__data /assets/pdf_file/0003/78186/LiquidityResub8.pdf. 131. Ibid. A. D. Wissner- Gross and C. E. Freer, “Relativistic Statistical Arbitrage,” Physical Review E 056104-1 82 (2010): 1– 7. Available at http://www .alexwg.org/publications/PhysRevE _82-056104.pdf. 132. Keller, “Robocops,” 1468. NOTES TO PAGES 131–132 277 133. Ibid. 134. Ibid. 135. See Matt Prewitt, “High-Frequency Trading: Should Regulators Do More?,” Michigan Telecommunications and Technology Law Review 19 (2012): 148 (discussing “spoofi ng” and other deceptive HFT tactics). 136.

pages: 380 words: 118,675

The Everything Store: Jeff Bezos and the Age of Amazon by Brad Stone

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Shaw tentatively accepted the job and then changed his mind, telling Hillis he wanted to do something more lucrative and could always return to the supercomputer field after he got wealthy. Hillis argued that even if Shaw did get rich—which seemed unlikely—he’d never return to computer science. (Shaw did, after he became a billionaire and passed on the day-to-day management of D. E. Shaw to others.) “I was spectacularly wrong on both counts,” Hillis says. Morgan Stanley finally pried Shaw loose from academia in 1986, adding him to a famed group working on statistical arbitrage software for the new wave of automated trading. But Shaw had an urge to set off on his own. He left Morgan Stanley in 1988, and with a \$28 million seed investment from investor Donald Sussman, he set up shop over a Communist bookstore in Manhattan’s West Village. By design, D. E. Shaw would be a different kind of Wall Street firm. Shaw recruited not financiers but scientists and mathematicians—big brains with unusual backgrounds, lofty academic credentials, and more than a touch of social cluelessness.

pages: 537 words: 144,318

The Invisible Hands: Top Hedge Fund Traders on Bubbles, Crashes, and Real Money by Steven Drobny

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

pages: 903 words: 235,753

The Stack: On Software and Sovereignty by Benjamin H. Bratton

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Hugh Tomlinson and Graham Burchell (New York: Columbia University Press, 1994), 214. 14.  Chris C. Demchak and Peter J. Dombrowski, “Rise of a Cybered Westphalian Age: The Coming Age,” Strategic Studies Quarterly 5, no. 1 (2011): 31–62. 15.  Stuart Elden, “Secure the Volume: Vertical Geopolitics and the Depth of Power,” Political Geography 34 (2013): 35–51. 16.  A. Wissner-Gross and C. Freer, “Relativistic Statistical Arbitrage,” Physical Review E 82, no. 5 (2010). On this topic in relation to geodesign, see also Geoff Manaugh, “Islands and the Speed of Light,” March 2011. http://bldgblog.blogspot.com/2011/03/islands-at-speed-of-light.html. 17.  Here I am departing from Catherine Malabou's use of the term plasticity, and toward the mutable future I refer more directly to the chemical qualities of what we commonly call “plastic.”