Norbert Wiener

71 results back to index


pages: 509 words: 132,327

Rise of the Machines: A Cybernetic History by Thomas Rid

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

1960s counterculture, A Declaration of the Independence of Cyberspace, agricultural Revolution, Albert Einstein, Alistair Cooke, Apple II, Apple's 1984 Super Bowl advert, back-to-the-land, Berlin Wall, British Empire, Brownian motion, Buckminster Fuller, business intelligence, Claude Shannon: information theory, conceptual framework, connected car, domain-specific language, Douglas Engelbart, dumpster diving, Extropian, full employment, game design, global village, Haight Ashbury, Howard Rheingold, Jaron Lanier, job automation, John von Neumann, Kevin Kelly, Marshall McLuhan, Menlo Park, Mother of all demos, new economy, New Journalism, Norbert Wiener, offshore financial centre, oil shale / tar sands, pattern recognition, RAND corporation, Silicon Valley, Simon Singh, speech recognition, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, technoutopianism, Telecommunications Act of 1996, telepresence, V2 rocket, Vernor Vinge, Whole Earth Catalog, Whole Earth Review, Y2K, Yom Kippur War, Zimmermann PGP

Kline, The Cybernetics Moment (Baltimore: Johns Hopkins University Press, 2015), 91–93. 4.Hubbard, Dianetics, 23. 5.William Schlecht to Norbert Wiener, June 29, 1950, Norbert Wiener Papers, MC 22, box 8 (“Correspondence 1950”), folder 121, Institute Archives and Special Collections, MIT Libraries, Cambridge, MA. 6.Norbert Wiener to William Schlecht, July 8, 1950, Norbert Wiener Papers, MC 22, box 8 (“Correspondence 1950”), folder 121, Institute Archives and Special Collections, MIT Libraries, Cambridge, MA. 7.Norbert Wiener to Frederick Schuman, August 14, 1950, Norbert Wiener Papers, MC 22, box 8 (“Correspondence 1950”), folder 122, Institute Archives and Special Collections, MIT Libraries, Cambridge, MA. 8.Norbert Wiener to L. Ron Hubbard, July 8, 1950, Norbert Wiener Papers, MC 22, box 8 (“Correspondence 1950”), folder 121, Institute Archives and Special Collections, MIT Libraries, Cambridge, MA. 9.L.

NM-1B (Washington, DC: Historic American Engineering Record, National Park Service, Department of the Interior, 1986), sheet 1-6. 2.Malcolm Macdonald and Viorel Bedesco, The International Handbook of Space Technology (Heidelberg: Springer, 2014), 8. 3.Norbert Wiener, “A Scientist Rebels,” Atlantic 179, no. 1 (January 1947): 46. 4.Norbert Wiener, I Am a Mathematician (Cambridge, MA: MIT Press, 1956), 308. 5.Ibid. 6.Ibid. 7.Wiesner, quoted in David Jerison, I. M. Singer, and Daniel W. Strook, eds., The Legacy of Norbert Wiener: A Centennial Symposium in Honor of the 100th Anniversary of Norbert Wiener’s Birth, October 8–14, 1994, Massachusetts Institute of Technology, Cambridge, Massachusetts (Providence, RI: American Mathematical Society, 1997), 19. 8.Entropy is a fundamental and related concept in physics as well as in information theory. See James Gleick, The Information (New York: Pantheon, 2011), chap. 9. 9.Norbert Wiener, The Human Use of Human Beings (New York: Houghton Mifflin, 1954), 263. 10.Ibid., 33. 11.Ibid., 24. 12.Norbert Wiener, Cybernetics (Cambridge, MA: MIT Press, 1948), 43. 13.Norbert Wiener, God and Golem, Inc.

Conway and Siegelman’s book quotes from several interviews with Bigelow, but it seems to be unreliable on some of the technical details. 44.Masani, Norbert Wiener, 188. 45.Quoted in Conway and Siegelman, Dark Hero, 114. 46.Wiener, cited in Galison, “Ontology of the Enemy,” 236. 47.Masani, Norbert Wiener, 188. 48.Notebook entry from Stibitz, quoted in Galison, “Ontology of the Enemy,” 243. 49.Ibid., 243. 50.Quoted in Mindell, Between Human and Machine, 281. 51.Quoted in Galison, “Ontology of the Enemy,” 242. 52.Quoted in Mindell, Between Human and Machine, 281. 53.Ibid. 54.Quoted in Galison, “Ontology of the Enemy,” 245. The full source is Norbert Wiener to Warren Weaver, January 28, 1943, Norbert Wiener Papers, collection MC-22, box 2, folder 64, Institute Archives and Special Collections, MIT Libraries, Cambridge, MA. 55.Wiener, Cybernetics, 15. 56.From Sperry company history, probably 1942, quoted in Mindell, Between Human and Machine, 69. 57.Ibid. 58.Preston R.

 

pages: 518 words: 107,836

How Not to Network a Nation: The Uneasy History of the Soviet Internet (Information Policy) by Benjamin Peters

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Andrei Shleifer, Benoit Mandelbrot, bitcoin, Brownian motion, Claude Shannon: information theory, cloud computing, cognitive dissonance, computer age, conceptual framework, crony capitalism, crowdsourcing, cuban missile crisis, Daniel Kahneman / Amos Tversky, David Graeber, Dissolution of the Soviet Union, double helix, Drosophila, Francis Fukuyama: the end of history, From Mathematics to the Technologies of Life and Death, hive mind, index card, informal economy, invisible hand, Jacquard loom, Jacquard loom, John von Neumann, Kevin Kelly, knowledge economy, knowledge worker, linear programming, mandelbrot fractal, Marshall McLuhan, means of production, Menlo Park, Mikhail Gorbachev, mutually assured destruction, Network effects, Norbert Wiener, packet switching, pattern recognition, Paul Erdős, Peter Thiel, RAND corporation, rent-seeking, road to serfdom, Ronald Coase, scientific mainstream, Steve Jobs, Stewart Brand, stochastic process, technoutopianism, The Structural Transformation of the Public Sphere, transaction costs, Turing machine

Kay, “Cybernetics, Information, Life: The Emergence of Scriptural Representations of Heredity,” Configurations 5 (1) (1997): 23–91.Books on the cybernetic context before and during the U.S. cold war include Edwards, The Closed World; David Mindell, Between Human and Machine: Feedback, Control, and Computing before Cybernetics (Baltimore: John Hopkins Press, 2002); Jennifer Light, From Warfare to Welfare: Defense Intellectuals and Urban Problems in Cold War America (Baltimore: Johns Hopkins University Press, 2003); and Darren Tofts, Annemarie Jonson, and Alessio Cavallaro, eds., Prefiguring Cyberculture: An Intellectual History (Cambridge: MIT Press, 2002).A few biographical works include Steve J. Heims, The Cybernetics Group (Cambridge: MIT Press, 1991); Steve J. Heims, John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death (Cambridge: MIT Press, 1982); Pesi R. Masani, Norbert Wiener, 1894–1964 (Boston: Birkhäuser Verlag, 1990); Flow Conway and Jim Siegelman, Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics (New York: Basic Books, 2005); and Hunter Crowther-Heyck, Herbert A. Simon: The Bounds of Reason in Modern America (Baltimore: Johns Hopkins University Press, 2005).A few key theorizations and historical treatments include N. Katherine Hayles, How We Became Posthuman: Virtual Bodies in Cybernetics, Literature, and Informatics (Chicago: University of Chicago Press, 1999); Jean-Pierre Dupuy, The Mechanization of the Mind: The Origins of Cognitive Science, trans.

Gerovitch, From Newspeak to Cyberspeak, 208. 120. Ibid., 209–210. 121. Ibid., 210. 122. Pospelov and Fet, Ocherki istorii informatiki v Rossii. 123. Conway and Siegelman, Dark Hero, 316. 124. Norbert Wiener, “Obschestvo i nauka,” Voprosi Filosofiii 7 (1961): 49–52. 125. Dirk Jan Struik, “Norbert Wiener: Colleague and Friend,” American Dialog 3 (1) (1966): 34–37. 126. Bonnie Honig, Democracy and the Foreigner (Princeton: Princeton University Press, 2003). 127. On the one hundred twentieth anniversary of his birth and the fiftieth anniversary of his death, the IEEE held a medium-sized conference in Boston on June 24–26, 2014, titled Norbert Wiener in the Twenty-first Century, including a gathering of biographers, former students of his, and rising scholars interested in his life and work. 128. Conway and Siegelman, Dark Hero, 314–316.

Claude E. Shannon, “The Bandwagon,” IRE Transactions on Information Theory 2 (1) (1956): 3. See also Pierce, “The Early Days of Information Theory”; Norbert Wiener, “What Is Information Theory?,” IRE Transactions on Information Theory 48 (1956): 48; Ronald R. Kline, “What Is Information Theory a Theory Of? Boundary Work among Scientists in the United States and Britain during the Cold War,” in The History and Heritage of Scientific and Technical Information Systems: Proceedings of the 2002 Conference, Chemical Heritage Foundation, ed. W. Boyd Rayward and Mary Ellen Bowden, 15–28 (Medford, NJ: Information Today, 2004). 23. Arturo Rosenblueth, Norbert Wiener, and Julian Bigelow, “Behavior, Purpose, and Teleology,” Philosophy of Science 10 (1943): 18–24. 24. Daniel Kahneman and Amos Tversky, “Prospect Theory: An Analysis of Decisions under Risk,” Econometrica 47 (2) (1979): 263–291.

 

pages: 339 words: 57,031

From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of Digital Utopianism by Fred Turner

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

1960s counterculture, A Declaration of the Independence of Cyberspace, Apple's 1984 Super Bowl advert, back-to-the-land, bioinformatics, Buckminster Fuller, Claude Shannon: information theory, complexity theory, computer age, conceptual framework, Danny Hillis, dematerialisation, distributed generation, Douglas Engelbart, Dynabook, From Mathematics to the Technologies of Life and Death, future of work, game design, George Gilder, global village, Golden Gate Park, Hacker Ethic, Haight Ashbury, hive mind, Howard Rheingold, informal economy, invisible hand, Jaron Lanier, John von Neumann, Kevin Kelly, knowledge economy, knowledge worker, market bubble, Marshall McLuhan, means of production, Menlo Park, Mother of all demos, new economy, Norbert Wiener, post-industrial society, postindustrial economy, Productivity paradox, QWERTY keyboard, Ralph Waldo Emerson, RAND corporation, Richard Stallman, Robert Shiller, Robert Shiller, Ronald Reagan, Silicon Valley, Silicon Valley ideology, South of Market, San Francisco, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, technoutopianism, Ted Nelson, Telecommunications Act of 1996, theory of mind, urban renewal, Vannevar Bush, Whole Earth Catalog, Whole Earth Review, Yom Kippur War

In 1928, for instance, John Von Neumann published his “Theory of Parlor Games,” thus inventing game theory. Heims, John Von Neumann and Norbert Wiener, 84. In the 1930s in England, Robert Lilienfeld has argued, the invention of radar led to the need for the coordination of machines and thus the invention of the “total point of view” characteristic of systems thinking. Lilienfeld, Rise of Systems Theory, 103. Cybernetics emerged as a self-consciously comprehensive field of thought, however, with the work of Norbert Wiener. For a fuller account of Wiener’s career and the emergence of his cybernetics, see also Galison, “Ontology of the Enemy”; and Hayles, How We Became Posthuman. 29. Wiener, Cybernetics, 8. 30. Ibid., 9. 31. Heims, John Von Neumann and Norbert Wiener, 182 – 88. For a chronicle of Wiener’s shifting relationship to the Rad Lab, see Conway and Siegelman, Dark Hero of the Information Age, 115 –25. 32.

Little in this work suggested that he would become the most popular media theorist of the 1960s. Yet, alongside his teaching and his work on poetry, McLuhan developed a fascination with technology and its role in psychological and cultural change. Most critics trace this interest to his reading of the Canadian economic historian Harold Innis.21 But McLuhan also drew extensively on the work of Norbert Wiener. As McLuhan’s first PhD student, Donald Theall, has pointed out, McLuhan encountered Norbert Wiener’s Cybernetics in the summer of 1950. According to Theall, who was studying with McLuhan at the time, McLuhan rejected the mathematical theory of communication that Wiener laid out in Cybernetics but was deeply S t e w a r t B ran d M e e t s t h e C y b e r n e t i c C o u n t e r c u l t u r e [ 53 ] influenced by the vision of the social role of communication outlined in Wiener’s 1950 volume The Human Use of Human Beings.22 McLuhan began reading the work of other cyberneticians, and in 1951 he took up Jürgen Ruesch and Gregory Bateson’s Communication: The Social Matrix of Psychiatry.

For Stewart Brand, as for the artists he met soon after graduation, and as for the New Communalist readers of the Whole Earth Catalog some years later, these systems theories promised a solution to the conundrums of their adolescence. On the one hand, as Norbert Wiener had argued as early as the late 1940s, cybernetics and related systems theories offered up a vision of the world in which each of its elements could be read as connected to, and to some extent a reflection of, every other. Human beings, the natural world, technological systems, institutions—all were both individual examples of and knit together within what Gregory Bateson would call “the pattern that connects.”8 If the atomic era had conjured up a nightmare vision of humankind broken into factions across invisible “iron curtains” and of all of humanity leveled in a single blast, cybernetics, and systems theory more generally, offered a vision of a world united, inextricably connected, and tending, at least in Norbert Wiener’s view, toward the calm of homeostasis.

 

pages: 413 words: 119,587

Machines of Loving Grace: The Quest for Common Ground Between Humans and Robots by John Markoff

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

A Declaration of the Independence of Cyberspace, AI winter, airport security, Apple II, artificial general intelligence, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, Bill Duvall, bioinformatics, Brewster Kahle, Burning Man, call centre, cellular automata, Chris Urmson, Claude Shannon: information theory, Clayton Christensen, clean water, cloud computing, collective bargaining, computer age, computer vision, crowdsourcing, Danny Hillis, DARPA: Urban Challenge, data acquisition, Dean Kamen, deskilling, don't be evil, Douglas Engelbart, Douglas Hofstadter, Dynabook, Edward Snowden, Elon Musk, Erik Brynjolfsson, factory automation, From Mathematics to the Technologies of Life and Death, future of work, Galaxy Zoo, Google Glasses, Google X / Alphabet X, Grace Hopper, Gödel, Escher, Bach, Hacker Ethic, haute couture, hive mind, hypertext link, indoor plumbing, industrial robot, information retrieval, Internet Archive, Internet of things, invention of the wheel, Jacques de Vaucanson, Jaron Lanier, Jeff Bezos, job automation, John Conway, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, John von Neumann, Kevin Kelly, knowledge worker, Kodak vs Instagram, labor-force participation, loose coupling, Mark Zuckerberg, Marshall McLuhan, medical residency, Menlo Park, Mother of all demos, natural language processing, new economy, Norbert Wiener, PageRank, pattern recognition, pre–internet, RAND corporation, Ray Kurzweil, Richard Stallman, Robert Gordon, Rodney Brooks, Sand Hill Road, Second Machine Age, self-driving car, semantic web, shareholder value, side project, Silicon Valley, Silicon Valley startup, Singularitarianism, skunkworks, Skype, social software, speech recognition, stealth mode startup, Stephen Hawking, Steve Ballmer, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, strong AI, superintelligent machines, technological singularity, Ted Nelson, telemarketer, telepresence, telepresence robot, Tenerife airport disaster, The Coming Technological Singularity, the medium is the message, Thorstein Veblen, Turing test, Vannevar Bush, Vernor Vinge, Watson beat the top human players on Jeopardy!, Whole Earth Catalog, William Shockley: the traitorous eight

“Transportation and Material Moving Occupations,” Occupational Outlook Handbook, Bureau of Labor Statistics, http://www.bls.gov/ooh/transportation-and-material-moving/home.htm. 11.Vannevar Bush, “As We May Think,” Atlantic Monthly, July 1, 1945, http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881. 12.Peter Norvig, keynote address, NASA Innovative Advanced Concepts Conference, Stanford, California, February 5, 2014. 3|A TOUGH YEAR FOR THE HUMAN RACE 1.John Markoff, “Skilled Work, without the Worker,” New York Times, August 18, 2012, http://www.nytimes.com/2012/08/19/business/new-wave-of-adept-robots-is-changing-global-industry.html. 2.Ibid. 3.Norbert Wiener, Collected Works with Commentaries, ed. Pesi Masani (Cambridge, MA: MIT Press, 1985), 272. 4.“Father of Cybernetics Norbert Wiener’s Letter to UAW President Walter Reuther,” August 13, 1949, https://libcom.org/history/father-cybernetics-norbert-wieners-letter-uaw-president-walter-reuther. 5.Flo Conway and Jim Siegelman, Dark Hero of the Information Age: In Search of Norbert Wiener, The Father of Cybernetics, Kindle ed. (New York: Basic Books, 2009), Kindle location 246. 6.Anthony Carew, Walter Reuther (Manchester, UK: Manchester University Press, 1993). 7.Conway, Dark Hero of the Information Age, 246. 8.Stephen Meyer, “‘An Economic “Frankenstein”’: UAW Workers’ Response to Automation at the Ford Brook Park Plant in the 1950s,” Michigan Historical Review 28 (2002): 63–90. 9.

Mathematician Rebuffs Bid to Harvard Symposium of Calculating Machinery,” New York Times, January 9, 1947. 10.Norbert Wiener, “A Scientist Rebels,” Atlantic Monthly, January 1947. 11.John Markoff, “In 1949, He Imagined an Age of Robots,” New York Times, May 20, 2013, http://www.nytimes.com/2013/05/21/science/mit-scholars-1949-essay-on-machine-age-is-found.html?pagewanted=all. 12.Ibid. 13.Ibid. 14.Carew, Walter Reuther, 144. 15.The Ad Hoc Committee on the Triple Revolution, “The Triple Revolution,” Liberation, April 1964, http://www.educationanddemocracy.org/FSCfiles/C_CC2a_TripleRevolution.htm. 16.Mark D. Stahlman, “Wiener’s Genius Project” (invited paper, IEEE 2014 Conference on Norbert Wiener in the 21st Century, 2014). 17.Steve J. Heims, John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death (Cambridge, MA: MIT Press, 1980), 343. 18.Norbert Wiener, God and Golem, Inc.: A Comment on Certain Points where Cybernetics Impinges on Religion (Cambridge, MA: MIT Press, 1964), 29. 19.

Heims, John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death (Cambridge, MA: MIT Press, 1980), 343. 18.Norbert Wiener, God and Golem, Inc.: A Comment on Certain Points where Cybernetics Impinges on Religion (Cambridge, MA: MIT Press, 1964), 29. 19.“Machines Smarter Than Men? Interview with Dr. Norbert Wiener, Noted Scientist,” U.S. News & World Report, February 24, 1964, http://21stcenturywiener.org/wp-content/uploads/2013/11/Machines-Smarter-Than-Man-Interview-with-Norbert-Wiener.pdf. 20.Defense Science Board, “The Role of Autonomy in DoD Systems,” U.S. Department of Defense, July 2012, http://www.acq.osd.mil/dsb/reports/AutonomyReport.pdf. 21.John Maynard Keynes, “Economic Possibilities for Our Grandchildren,” in Essays in Persuasion (New York: W.W. Norton & Co, 1963), 358–373. 22.Jeremy Rifkin, The End of Work: The Decline of the Global Labor Force and the Dawn of the Post-Market Era (New York: Putnam, 1995), xvii. 23.John Markoff, “Armies of Expensive Lawyers, Replaced by Cheaper Software,” New York Times, March 4, 2011, http://www.nytimes.com/2011/03/05/science/05legal.html?

 

The Dream Machine: J.C.R. Licklider and the Revolution That Made Computing Personal by M. Mitchell Waldrop

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, air freight, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, anti-communist, Apple II, battle of ideas, Berlin Wall, Bill Duvall, Bill Gates: Altair 8800, Byte Shop, Claude Shannon: information theory, computer age, conceptual framework, cuban missile crisis, double helix, Douglas Engelbart, Dynabook, experimental subject, fault tolerance, Frederick Winslow Taylor, friendly fire, From Mathematics to the Technologies of Life and Death, Haight Ashbury, Howard Rheingold, information retrieval, invisible hand, Isaac Newton, James Watt: steam engine, Jeff Rulifson, John von Neumann, Menlo Park, New Journalism, Norbert Wiener, packet switching, pink-collar, popular electronics, RAND corporation, RFC: Request For Comment, Silicon Valley, Steve Crocker, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, Ted Nelson, Turing machine, Turing test, Vannevar Bush, Von Neumann architecture, Wiener process

Licklider, Psychologist" (unpublished address given before the Acousti- cal Society of America, 1 991). 7. Steve Heims, John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death (Cambridge, Mass.: MIT Press, 1980), 379. 8. Jerome B. Wiesner, "The Communications Sciences-Those Early Days," in R. L. E.: 1946+20 (Cambridge, Mass.: Research Laboratory for Electronics, MIT, 1966), 13. 9. Pesi R. Masanl, Norbert Wiener (Basel: Blfkhauser, 1990), 16. 10. Wiesner, "The CommunICations Sciences-Those Early Days," 13. 11. Norbert Wiener, Cybernetics, or Control and Communicatzon in the Animal and the Machine, 2d ed. (Cambridge, Mass.: MIT Press, 1961),43. CHAPTER 2: THE LAST TRANSITION 1. Norbert Wiener, I Am a MathematiCian: The Later Life of a Prodigy (Cambndge, Mass.: MIT Press, 1956),112. 2. Vannevar Bush, "The Inscrutable 'Thirties" (1933), in From Memex to f(ypertext: Vannevar Bush and the Mind's Machine, ed.

Steve Helms, John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death (Cambridge, Mass.: MIT Press, 1980), 206. 5. Norbert Wiener, Cybernetics, or Control and CommunicatiOn in the Animal and the Machine, 2d ed. (Cambndge, Mass.: MIT Press, 1961),23. 6. Heims, Von Neumann/Wiener, 189. 7. Norbert Wiener, "A Scientist Rebels," Atlantic Monthly, January 1947, and Bulletin of the Atomic Sci- entlSts, January 1947. 8. Helms, Von Neumann/Wiener, 334-35. 9. John von Neumann and Oskar Morgenstern, Theory of Games and Economic BehaviOr (Princeton, N.J.: Pnnceton University Press, 1944). 10. Heims, Von Neumann/Wiener, 359. 11. Richard Rhodes, Dark Sun: The Making of the Hydrogen Bomb (New York: Simon & Schuster, 1995), 389. 12. C. Blalf, "The Passing of a Great Mind," Life, February 25, 1957. 13. Wiener, Cybernetics, 159. 14. Ibid., 27. 15. Norbert Wiener, I Am a MathematiCIan: The Later Life of a Prodigy (Cambridge, Mass.: MIT Press, 1956), 325. 16.

Vannevar Bush, "The Inscrutable 'Thirties" (1933), in From Memex to f(ypertext: Vannevar Bush and the Mind's Machine, ed. James M. Nyce and Paul Kahn (San DIego: AcademIC Press, 1991),74. 3. Vannevar Bush, "As We May Think" (1945), in Nyce and Kahn, eds., From Memex to f(ypertext, 89. 4. Qpoted in James M. Nyce and Paul Kahn, "A Machine for the Mind: Vannevar Bush's Memex," In From Memex to Hypertext, 53-54. 5. Bush, "As We May Think," 101-2. 6. Norbert Wiener, "Memorandum on the MechanICal Solution of Partial Differential Equations" NOTES 477 (1940), in Norbert Wiener: Collected Works, ed. Pesl R. Masani (Cambndge, Mass.: MIT Press, 1985), 4: 134. 7. Wiener, I Am a MathematiCIan, 239. 8. Qyoted In Larry Owens, "Vannevar Bush and the Differential Analyzer: The Text and Context of an Early Computer," In Nyce and Kahn, eds., From Memex to Hypertext, 23-24. 9. Claude Shannon, "A Symbolic AnalysIs of Relay and Switching ClfCUltS" (1938), In Claude Elwood Shannon: Collected Papers, ed.

 

pages: 361 words: 83,886

Inside the Robot Kingdom: Japan, Mechatronics and the Coming Robotopia by Frederik L. Schodt

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

carbon-based life, computer age, computer vision, deindustrialization, Deng Xiaoping, deskilling, factory automation, game design, guest worker program, industrial robot, Jacques de Vaucanson, Norbert Wiener, post-industrial society, robot derives from the Czech word robota Czech, meaning slave, Ronald Reagan, Silicon Valley, telepresence, The Wealth of Nations by Adam Smith, V2 rocket, Whole Earth Review, women in the workforce

Devol's idea was a form of flexible automation, a transfer apparatus or manipulator that could do many things, such as pick cartons off a series of pallets and then put them on a conveyor belt to be transferred into a truck-a simple operation usually performed by hand that was, he wrote, "a waste of manpower that is here corrected."3 The Programmed Article Transfer was made possible by advances in feedback and servomechanism technology during World War II. As MIT mathematician-genius Norbert Wiener articulated it in 1948, in his theory of cybernetics, or control and communication, feedback is used by both animals and automatic machines when "behavior is scanned for its result, and . . . the success or failure of this result modifies future behavior."4 In humans, when an arm is extended, nerve cells in the joints sense and send the brain information on its position. This information is then processed, and the position of the arm corrected.

With robots, AGV, and other computer-controlled machinery, the Casio factory is a true FMS system; over sixteen different models of calculators in a variety of different sizes can be produced in virtually any quantity desired. By simply instructing the system from the plant's computer control room (manned by Casio computers), the appropriate model changes can be made in not months, but one minute. * * * * * * * * * * * * In 1950, before industrial robots existed, Norbert Wiener saw that feedback and servo technology would make possible not only programmable tools, but even an "automatic" factory. "The overall system," he predicted, "will correspond to the complete animal with sense organs, effectors, and proprioceptors, and not, as in the ultra-rapid computing machine, to an isolated brain, dependent for its experiences and for its effectiveness on our intervention."16 Today's unmanned factory increasingly resembles his vision.

To some people a robot is a metal man on the screen, or a transforming toy; to others it is an iron arm or a mobile robot; to some it is a vending machine; to some it is a space craft. Whatever robots are, and whatever they become, they will be hard to define. And it may be best not to try too hard; like children outgrowing their clothes, robots will evolve out of any definitions we give them. PART TWO Before Industrial Robots: A State of Mind The First Japanese Robot * * * Every tool has a genealogy. NORBERT WIENER, 1950 * * * When asked about the origins of their nation's interest in robots, many Japanese refer to a seventeenth-century mechanical doll. Its image—that of a kimono-clad boy servant carrying a cup of tea—is used today in advertisements for factory automation, and a replica of the original is on display at the National Science Museum in Tokyo. Dolls are an important part of Japanese culture and even merit a special holiday, but this one has become a national technological monument.

 

pages: 998 words: 211,235

A Beautiful Mind by Sylvia Nasar

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Al Roth, Albert Einstein, Andrew Wiles, Brownian motion, cognitive dissonance, Columbine, experimental economics, fear of failure, Henri Poincaré, invisible hand, Isaac Newton, John Conway, John Nash: game theory, John von Neumann, Kenneth Rogoff, linear programming, lone genius, market design, medical residency, Nash equilibrium, Norbert Wiener, Paul Erdős, prisoner's dilemma, RAND corporation, Ronald Coase, second-price auction, Silicon Valley, Simon Singh, spectrum auction, The Wealth of Nations by Adam Smith, Thorstein Veblen, upwardly mobile

Hearing before Committee on Un-American Activities (HUAC), House of Representatives, Eighty-third Congress, First Session, Washington, D.C., April 22 and 23, 1953. 21. Samuelson, interview. 22. Martin, interview. 23. Ibid. 24. See, for example, Wiener’s obituary, New York Times, 3.19.64; Paul Samuelson, “Some Memories of Norbert Wiener,” 1964, Xerox provided by Samuelson; and Norbert Wiener, Ex-Prodigy (New York: Simon & Schuster, 1953) and I Am a Mathematician (New York: Simon & Schuster, 1956). 25. Samuelson, “Some Memories of Norbert Wiener,” op. cit. 26. Ibid. 27. Zipporah Levinson, interview, 9.11.95. 28. Samuelson, “Some Memories of Norbert Weiner,” op. cit. 29. Z. Levinson, interview. 30. Ibid. 31. Ibid. 32. Ibid. 33. Note from John Nash to N. Wiener, 11.17.52. 34. Letter from John Nash to Albert W. Tucker, 10.58. 35.

Donald Newman, a mathematician who knew Nash at MIT in the 1950s, used to say about him that “everyone else would climb a peak by looking for a path somewhere on the mountain. Nash would climb another mountain altogether and from that distant peak would shine a searchlight back onto the first peak.”5 No one was more obsessed with originality, more disdainful of authority, or more jealous of his independence. As a young man he was surrounded by the high priests of twentieth-century science — Albert Einstein, John von Neumann, and Norbert Wiener — but he joined no school, became no one’s disciple, got along largely without guides or followers. In almost everything he did — from game theory to geometry — he thumbed his nose at the received wisdom, current fashions, established methods. He almost always worked alone, in his head, usually walking, often whistling Bach. Nash acquired his knowledge of mathematics not mainly from studying what other mathematicians had discovered, but by rediscovering their truths for himself.

He walked into the common room one winter morning in 1959 carrying The New York Times and remarked, to no one in particular, that the story in the upper left-hand corner of the front page contained an encrypted message from inhabitants of another galaxy that only he could decipher.27 Even months later, after he had stopped teaching, had angrily resigned his professorship, and was incarcerated at a private psychiatric hospital in suburban Boston, one of the nation’s leading forensic psychiatrists, an expert who testified in the case of Sacco and Vanzetti, insisted that Nash was perfectly sane. Only a few of those who witnessed the uncanny metamorphosis, Norbert Wiener among them, grasped its true significance.28 At thirty years of age, Nash suffered the first shattering episode of paranoid schizophrenia, the most catastrophic, protean, and mysterious of mental illnesses. For the next three decades, Nash suffered from severe delusions, hallucinations, disordered thought and feeling, and a broken will. In the grip of this “cancer of the mind,” as the universally dreaded condition is sometimes called, Nash abandoned mathematics, embraced numerology and religious prophecy, and believed himself to be a “messianic figure of great but secret importance.”

 

pages: 855 words: 178,507

The Information: A History, a Theory, a Flood by James Gleick

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, AltaVista, bank run, bioinformatics, Brownian motion, butterfly effect, citation needed, Claude Shannon: information theory, clockwork universe, computer age, conceptual framework, crowdsourcing, death of newspapers, discovery of DNA, double helix, Douglas Hofstadter, en.wikipedia.org, Eratosthenes, Fellow of the Royal Society, Gödel, Escher, Bach, Henri Poincaré, Honoré de Balzac, index card, informal economy, information retrieval, invention of the printing press, invention of writing, Isaac Newton, Jacquard loom, Jacquard loom, Jaron Lanier, jimmy wales, John von Neumann, Joseph-Marie Jacquard, Louis Daguerre, Marshall McLuhan, Menlo Park, microbiome, Milgram experiment, Network effects, New Journalism, Norbert Wiener, On the Economy of Machinery and Manufactures, PageRank, pattern recognition, phenotype, pre–internet, Ralph Waldo Emerson, RAND corporation, reversible computing, Richard Feynman, Richard Feynman, Simon Singh, Socratic dialogue, Stephen Hawking, Steven Pinker, stochastic process, talking drums, the High Line, The Wisdom of Crowds, transcontinental railway, Turing machine, Turing test, women in the workforce

♦ “A LAD WHO HAS BEEN PROUDLY TERMED”: “Boy of 14 College Graduate,” The New York Times, 9 May 1909, 1. ♦ “AN INFANT PRODIGY NAMED WIENER”: Bertrand Russell to Lucy Donnelly, 19 October 1913, quoted in Steve J. Heims, John von Neumann and Norbert Wiener (Cambridge, Mass.: MIT Press, 1980), 18. ♦ “HE IS AN ICEBERG”: Norbert Wiener to Leo Wiener, 15 October 1913, quoted in Flo Conway and Jim Siegelman, Dark Hero of the Information Age: In Search of Norbert Weiner, the Father of Cybernetics (New York: Basic Books, 2005), 30. ♦ “WE ARE SWIMMING UPSTREAM AGAINST A GREAT TORRENT”: Norbert Wiener, I Am a Mathematician: The Later Life of a Prodigy (Cambridge, Mass.: MIT Press, 1964), 324. ♦ “A NEW INTERPRETATION OF MAN”: Ibid., 375. ♦ “ANY CHANGE OF AN ENTITY”: Arturo Rosenblueth et al., “Behavior, Purpose and Teleology,” Philosophy of Science 10 (1943): 18

The word he took from the Greek for steersman: κυβερνιτησ, kubernites, from which comes also (not coincidentally) the word governor.♦ He meant cybernetics to be a field that would synthesize the study of communication and control, also the study of human and machine. Norbert Wiener had first become known to the world as a curiosity: a sport, a prodigy, driven and promoted by his father, a professor at Harvard. “A lad who has been proudly termed by his friends the brightest boy in the world,” The New York Times reported on page 1 when he was fourteen years old, “will graduate next month from Tufts College.… Aside from the fact that Norbert Wiener’s capacity for learning is phenomenal, he is as other boys.… His intense black eyes are his most striking feature.”♦ When he wrote his memoirs, he always used the word prodigy in the titles: Ex-Prodigy: My Childhood and Youth and I Am a Mathematician: The Later Life of a Prodigy.

♦ “I THINK ACTUALLY SZILÁRD”: Shannon interview with Friedrich-Wilhelm Hagemeyer, 1977, quoted in Erico Mariu Guizzo, “The Essential Message: Claude Shannon and the Making of Information Theory” (Master’s thesis, Massachusetts Institute of Technology, 2004). ♦ “I CONSIDER HOW MUCH INFORMATION IS PRODUCED”: Claude Shannon to Norbert Wiener, 13 October 1948, Massachusetts Institute of Technology Archives. ♦ “THAT SOME OF US SHOULD VENTURE TO EMBARK”: Erwin Schrödinger, What Is Life?, reprint ed. (Cambridge: Cambridge University Press, 1967), 1. ♦ “SCHRÖDINGER’S BOOK BECAME A KIND OF UNCLE TOM’S CABIN”: Gunther S. Stent, “That Was the Molecular Biology That Was,” Science 160, no. 3826 (1968): 392. ♦ “WHEN IS A PIECE OF MATTER SAID TO BE ALIVE?”: Erwin Schrödinger, What Is Life?, 69. ♦ “THE STABLE STATE OF AN ENZYME”: Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine, 2nd ed. (Cambridge, Mass.: MIT Press, 1961), 58. ♦ “TO PUT IT LESS PARADOXICALLY”: Erwin Schrödinger, What Is Life?

 

pages: 361 words: 81,068

The Internet Is Not the Answer by Andrew Keen

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, A Declaration of the Independence of Cyberspace, Airbnb, AltaVista, Andrew Keen, augmented reality, Bay Area Rapid Transit, Berlin Wall, bitcoin, Black Swan, Burning Man, Cass Sunstein, citizen journalism, Clayton Christensen, clean water, cloud computing, collective bargaining, Colonization of Mars, computer age, connected car, cuban missile crisis, David Brooks, disintermediation, Downton Abbey, Edward Snowden, Elon Musk, Erik Brynjolfsson, Fall of the Berlin Wall, Filter Bubble, Francis Fukuyama: the end of history, Frank Gehry, Frederick Winslow Taylor, frictionless, full employment, future of work, gig economy, global village, Google bus, Google Glasses, Hacker Ethic, happiness index / gross national happiness, income inequality, index card, informal economy, information trail, Innovator's Dilemma, Internet of things, Isaac Newton, Jaron Lanier, Jeff Bezos, job automation, Joseph Schumpeter, Julian Assange, Kevin Kelly, Kickstarter, Kodak vs Instagram, Lean Startup, libertarian paternalism, Lyft, Mark Zuckerberg, Marshall McLuhan, Martin Wolf, move fast and break things, Nate Silver, Network effects, new economy, Nicholas Carr, nonsequential writing, Norbert Wiener, Occupy movement, packet switching, PageRank, Paul Graham, Peter Thiel, Plutocrats, plutocrats, Potemkin village, precariat, pre–internet, RAND corporation, Ray Kurzweil, ride hailing / ride sharing, Second Machine Age, self-driving car, sharing economy, Silicon Valley, Silicon Valley ideology, Skype, smart cities, Snapchat, social web, South of Market, San Francisco, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, TaskRabbit, Ted Nelson, telemarketer, the medium is the message, Thomas L Friedman, Tyler Cowen: Great Stagnation, Uber for X, urban planning, Vannevar Bush, Whole Earth Catalog, WikiLeaks, winner-take-all economy, working poor, Y Combinator

So how did we get from zero to those billions and billions of connected people and things? Where do the origins of the Internet lie? Forebears They lie with those Luftwaffe bombers flying at up to 250 miles an hour and at altitudes of over 30,000 feet above London at the beginning of World War II. In 1940, an eccentric Massachusetts Institute of Technology (MIT) professor of mathematics named Norbert Wiener, “the original computer geek,” according to the New York Times,8 began working on a system to track the German aircraft that controlled the skies above London. The son of a Jewish immigrant from Białystok in Poland, Wiener had become so obsessed with lending his scientific knowledge to the war against Germany that he’d been forced to seek psychoanalytical help to control his anti-Nazi fixation.9 Technology could do good, he was convinced.

“From the 1920’s onwards, MIT increasingly attracted the brightest and best of America’s scientists and engineers. In the middle decades of this century, the Institute became a seething cauldron of ideas about information, computing, communications and control,” explains the Internet historian John Naughton. “And when we dip into it seeking the origins of the Net, three names always come up. They are Vannevar Bush, Norbert Wiener and J. C. R. Licklider.”10 In the 1930s, Wiener had been part of the team that worked on Vannevar Bush’s “differential analyser,” a 100-ton electromagnetic analog computer cobbled together out of pulleys, shafts, wheels, and gears and which was designed to solve differential equations. And in 1941 Wiener had even pitched a prototype of a digital computer to Bush, more than five years before the world’s first working digital device, the 1,800-square-foot, $500,000 Electronic Numerical Integrator and Computer (ENIAC), funded by the US Army and described by the press as a “giant brain,” was unveiled in 1946.

Licklider’s work on the symbiosis between man and computer to the mechanics of the Google search engine and the development of artificial intelligence. There may not have been an electronic communications network yet, but the idea of a self-correcting information system between man and machine, “a thing of almost natural beauty that constantly righted its errors through feedback from its environment,” in the words of the technology writer James Harkin,12 was born with Wiener’s revolutionary flight path predictor machine. While Norbert Wiener’s technical challenge was making sense of scarce information, Vannevar Bush was worried about its overabundance. In September 1945, Bush published an article titled “As We May Think,” in the Atlantic Monthly magazine. The purpose of the essay was to answer the question “What are scientists to do next?” in the postwar age. Rather than making “strange destructive gadgets,” Bush called on American scientists to build thinking machines that would enrich human knowledge.

 

pages: 463 words: 118,936

Darwin Among the Machines by George Dyson

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, anti-communist, British Empire, carbon-based life, cellular automata, Claude Shannon: information theory, combinatorial explosion, computer age, Danny Hillis, fault tolerance, Fellow of the Royal Society, finite state, IFF: identification friend or foe, invention of the telescope, invisible hand, Isaac Newton, Jacquard loom, Jacquard loom, James Watt: steam engine, John Nash: game theory, John von Neumann, Menlo Park, Nash equilibrium, Norbert Wiener, On the Economy of Machinery and Manufactures, packet switching, pattern recognition, phenotype, RAND corporation, Richard Feynman, Richard Feynman, spectrum auction, strong AI, the scientific method, The Wealth of Nations by Adam Smith, Turing machine, Von Neumann architecture

As chief engineer von Neumann selected Julian Bigelow, thirty-three years old and “a quiet, thorough New Englander” in the opinion of Norbert Wiener, with whom Bigelow had collaborated during the war on reed-time computing for anti-aircraft fire control. Wiener recommended Bigelow for the job. “We telephoned from Princeton to New York, and Bigelow agreed to come down in his car. We waited till the appointed hour and no Bigelow was there. He hadn’t come an hour later. Just as we were about to give up hope, we heard the puffing of a very decrepit vehicle. It was on the last possible explosion of a cylinder that he finally turned up with a car that would have died months ago in the hands of anything but so competent an engineer.”28 Bigelow was a theoretician as well as a mechanic, and a founding member of the cybernetics group. With Norbert Wiener and Arturo Rosenblueth he coauthored a 1943 paper, “Behavior, Purpose and Teleology,” suggesting unifying principles underlying intelligent behavior among living beings and machines.

Good, “Some Future Social Repercussions of Computers,” International Journal of Environmental Studies 1 (1970): 69. 24.Burks, interview. 25.Ralph Slutz, interview by Christopher Evans, June 1976, OH 86, Charles Babbage Institute, University of Minnesota, Minneapolis. 26.Ware, interview. 27.Herman H. Goldstine, interview by Nancy Stern, 11 August 1980, OH 18, Charles Babbage Institute, University of Minnesota, Minneapolis. 28.Norbert Wiener, I Am a Mathematician (New York: Doubleday, 1956), 242–243. 29.Julian Bigelow, Arturo Rosenblueth, and Norbert Wiener, “Behavior, Purpose and Teleology,” Philosophy of Science 10, no. 1 (1943): 22. 30.Warren S. McCulloch, “The Imitation of One Form of Life by Another—Biomimesis,” in Eugene E. Bernard and Morley R. Kare, eds., Biological Prototypes and Synthetic Systems, Proceedings of the Second Annual Bionics Symposium sponsored by Cornell University and the General Electric Company, Advanced Electronics Center, held at Cornell University, August 30–September 1, 1961, vol. 1 (New York: Plenum Press, 1962), 393. 31.Ware, interview. 32.Ibid. 33.Julian Bigelow, “Computer Development at the Institute for Advanced Study,” in Nicholas Metropolis, J.

In the second, posthumous volume of Ampère’s Essay, published by his son in 1843, Ampère explains how he came to recognize a field of knowledge “which I name Cybernétique, from the word κυβερνετική, which was applied first, in a restricted sense, to the steering of a vessel, and later acquired, even among the Greeks, a meaning extending to the art of steering in general.”21 Ampère, an early advocate of the electromagnetic telegraph and mathematical pioneer of both game theory and electrodynamics, thereby anticipated the Cybernetics of Norbert Wiener, who, another century later, reinvented both Ampère’s terminology and Hobbes’s philosophy in their current, electronic form. “Although the term cybernetics does not date further back than the summer of 1947,” wrote Wiener in 1948, “we shall find it convenient to use in referring to earlier epochs of the development of the field.”22 Wiener, who was involved in the development of radar-guided anti-aircraft fire control, which marked the beginning of rudimentary perception by electronic machines, was unaware until after the publication of Cybernetics of the coincidence in choosing a name coined by the same Ampère we now honor in measuring the flow of electrons through a circuit.

 

pages: 405 words: 117,219

In Our Own Image: Savior or Destroyer? The History and Future of Artificial Intelligence by George Zarkadakis

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Ada Lovelace, agricultural Revolution, Airbnb, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, anthropic principle, Asperger Syndrome, autonomous vehicles, barriers to entry, battle of ideas, Berlin Wall, bioinformatics, British Empire, business process, carbon-based life, cellular automata, Claude Shannon: information theory, combinatorial explosion, complexity theory, continuous integration, Conway's Game of Life, cosmological principle, dark matter, dematerialisation, double helix, Douglas Hofstadter, Edward Snowden, epigenetics, Flash crash, Google Glasses, Gödel, Escher, Bach, income inequality, index card, industrial robot, Internet of things, invention of agriculture, invention of the steam engine, invisible hand, Isaac Newton, Jacquard loom, Jacquard loom, Jacques de Vaucanson, James Watt: steam engine, job automation, John von Neumann, Joseph-Marie Jacquard, millennium bug, natural language processing, Norbert Wiener, On the Economy of Machinery and Manufactures, packet switching, pattern recognition, Paul Erdős, post-industrial society, prediction markets, Ray Kurzweil, Rodney Brooks, Second Machine Age, self-driving car, Silicon Valley, speech recognition, stem cell, Stephen Hawking, Steven Pinker, strong AI, technological singularity, The Coming Technological Singularity, the scientific method, theory of mind, Turing complete, Turing machine, Turing test, Tyler Cowen: Great Stagnation, Vernor Vinge, Von Neumann architecture, Watson beat the top human players on Jeopardy!, Y2K

Cybernetics as a field grew out of these interdisciplinary meetings, held from 1946 until 1953, which brought together a number of notable post-war intellectuals, including Norbert Wiener, John von Neumann, Warren McCulloch, Claude Shannon, Heinz von Foerster and W. Ross Ashby. From its original focus on machines and animals, cybernetics quickly broadened in scope to encompass the workings of the mind (e.g. in the work of Bateson and Ashby) as well as social systems (e.g. Stafford Beer’s management cybernetics), thus rediscovering Plato’s original focus on the control relations in society. I will return to the very interesting connection of cybernetics, Plato and global governance later in the book. For now, I want to focus on four individuals who took part in the Macy Conferences, and whose work laid the foundations for Artificial Intelligence: Norbert Wiener, Claude Shannon, Warren McCulloch and John von Neumann.

Robby the Robot had me in his grip for days, and held me tightly therein well into my final years at school when I decided to become an engineer and build my own robot one day. And that’s how my journey into Artificial Intelligence began. And quite a journey it was, too, for I literarily had to pack my suitcases and fly to London to study at university. My choice of subject was Control and Systems Engineering, a discipline based on the theory of cybernetics as developed by the American mathematician Norbert Wiener in the 1940s. Wiener is one of the demigods of Artificial Intelligence. Born in Missouri in 1894, he was a child prodigy who earned a degree in mathematics at the age of fourteen and a doctorate at seventeen. A polymath with an insatiable appetite for knowledge, Wiener studied philosophy as well as zoology, then travelled to Europe to learn from the most prominent mathematical celebrities of the early twentieth century: Bertrand Russell at Cambridge and David Hilbert at Göttingen.

Born in Leipzig at the end of the Thirty Years War that devastated the German-speaking countries, Leibniz became one of the foremost intellectuals of all time, making important contributions to just about every branch of science. He was also an engineer and inventor. He is considered to be the first computer scientist and information theorist. He advanced the binary numerical system that computers use today. He built calculating machines. Norbert Wiener, the father of cybernetics, claimed to have found in Leibniz’s writings the first mention of the concept of feedback, the central idea of cybernetics. And, yes, Leibniz had a solution to the body–mind problem, too! Not satisfied with Descartes’ hypothesis concerning the pineal gland, Leibniz proposed the existence of elementary particles that could ‘perceive’ one another. He called them ‘monads’ and postulated that they were eternal and the ultimate elements of the universe.5 Monads were immaterial and more fundamental than atoms.

 

Bootstrapping: Douglas Engelbart, Coevolution, and the Origins of Personal Computing (Writing Science) by Thierry Bardini

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Apple II, augmented reality, Bill Duvall, conceptual framework, Douglas Engelbart, Dynabook, experimental subject, Grace Hopper, hiring and firing, hypertext link, index card, information retrieval, invention of hypertext, Jaron Lanier, Jeff Rulifson, John von Neumann, knowledge worker, Menlo Park, Mother of all demos, new economy, Norbert Wiener, packet switching, QWERTY keyboard, Ralph Waldo Emerson, RAND corporation, RFC: Request For Comment, Silicon Valley, Steve Crocker, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, stochastic process, Ted Nelson, the medium is the message, theory of mind, Turing test, unbiased observer, Vannevar Bush, Whole Earth Catalog

Cybernetics, the science of communication and control, was one of the most original and synthetic schools of thought to emerge in the cultural con- text of America at midcentury. (Heims 1991, 1-13). In the eight years between 1946, the year of the first in the series of conferences supported by the Josiah Macy Jr. Foundation, multidisciplinary meetings of the group of psycholo- gists, mathematicians, engineers, and social scientists who created cybernetics, and 1954, when the second edition of Norbert Wiener's The Human Use of Human BeIngs: CybernetIcs and SocIety was published, cybernetic concepts, methods, and metaphors gained a huge popularity. 10 As we will see in greater depth later, the writings of Ashby, Wiener, and others on cybernetics deeply influenced Engelbart, then in his maturing years, just as they influenced many computer scientists in the 1950'S and 1960'S.11 To understand Engelbart's con- nection with cybernetics also helps us make sense of the solution to the prob- lem of complexity and urgency that Engelbart proposed, and, more impor- tantly, helps to situate that solution in the environment of post-World War II American culture.

(quoted in Gibson 19 80 , 57) SRI provided Engelbart with an environment that he saw was perhaps suited to the implementation of his crusade and that at the same time was connected to the industrial and business world, relatively free of academic commitments and burdens, but still in something resembling an academic setting. For an out- sider on a crusade, it was about the best he could do. Scouting the Frontier Most of the individuals who directly influenced Engelbart, as we will see, also were outsiders, other "free intellectuals" such as Norbert Wiener,12 Alfred 16 ln oduchon Korzybski, and Benjamin Lee Whorf, and all of whom directly suffered from the pervasive anti-intellectualism of American culture before and after World War II. Engelbart, however, was a radar technician turned computer engineer, and therefore certainly was well positioned to be absorbed into some large organization as a "technical expert." But as an engineer, his interest in the social and the human aspects of contemporary problems definitely set him at odds with the purely technical roles he would be asked to play in such organi- zations.

But I'm also a hu- man, with an extremely sensitIve interest in where the development of human cul- ture is going to go. I happen to thInk that none among our "big thInkers" can stretch his mind to the dimensions needed for anticipating the extent of the com- puter's future role in our society. This covers both breadth and depth - How many kind of ways are computers going to be applied, and how sIgnificantly? Engelbart here was not just deploying the rhetoric of the American frontier, but also following Norbert Wiener, who "had redefined the function of a 18 IntroductIon scientist or engineer from mere expertise to competence and sophistication in the difficult, exacting task of anticipating the social effects of his work" (Heims 1980,337). In a paper entitled "Some Moral and Technical Consequences of Automation" that appeared in Science a few months before Engelbart's writ- ing, Wiener had claimed that "for the individual scientist, even the partial ap- praisal of the liaison between the man and the [historical] process requires an imaginative forward glance at history which is difficult, exacting and only lim- itedlyachievable" (quoted in Heims 1980, 337).

 

pages: 308 words: 84,713

The Glass Cage: Automation and Us by Nicholas Carr

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Airbnb, Andy Kessler, Atul Gawande, autonomous vehicles, business process, call centre, Captain Sullenberger Hudson, Checklist Manifesto, cloud computing, David Brooks, deliberate practice, deskilling, Elon Musk, Erik Brynjolfsson, Flash crash, Frank Gehry, Frank Levy and Richard Murnane: The New Division of Labor, Frederick Winslow Taylor, future of work, global supply chain, Google Glasses, Google Hangouts, High speed trading, indoor plumbing, industrial robot, Internet of things, Jacquard loom, Jacquard loom, James Watt: steam engine, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Kevin Kelly, knowledge worker, Lyft, Mark Zuckerberg, means of production, natural language processing, new economy, Nicholas Carr, Norbert Wiener, Oculus Rift, pattern recognition, Peter Thiel, place-making, Plutocrats, plutocrats, profit motive, Ralph Waldo Emerson, RAND corporation, randomized controlled trial, Ray Kurzweil, recommendation engine, robot derives from the Czech word robota Czech, meaning slave, Second Machine Age, self-driving car, Silicon Valley, Silicon Valley ideology, software is eating the world, Stephen Hawking, Steve Jobs, TaskRabbit, technoutopianism, The Wealth of Nations by Adam Smith, Watson beat the top human players on Jeopardy!

Mindell, Between Human and Machine: Feedback, Control, and Computing before Cybernetics (Baltimore: Johns Hopkins University Press, 2002), 247. 41.Stuart Bennett, A History of Control Engineering, 1800–1930 (London: Peter Peregrinus, 1979), 99–100. 42.Norbert Wiener, The Human Use of Human Beings: Cybernetics and Society (New York: Da Capo, 1954), 153. 43.Eric W. Leaver and J. J. Brown, “Machines without Men,” Fortune, November 1946. See also David F. Noble, Forces of Production: A Social History of Industrial Automation (New York: Alfred A. Knopf, 1984), 67–71. 44.Noble, Forces of Production, 234. 45.Ibid., 21–40. 46.Wiener, Human Use of Human Beings, 148–162. 47.Quoted in Flo Conway and Jim Siegelman, Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics (New York: Basic Books, 2005), 251. 48.Marc Andreessen, “Why Software Is Eating the World,” Wall Street Journal, August 20, 2011.

Macfarlane Gray patented a steamship steering mechanism that was able to register the movement of a boat’s helm and, through a gear-operated feedback system, adjust the angle of the rudder to maintain a set course.41 But the development of fast computers, along with other sensitive electronic controls, opened a new chapter in the history of machines. It vastly expanded the possibilities of automation. As the mathematician Norbert Wiener, who helped write the prediction algorithms for the Allies’ automated antiaircraft gun, explained in his 1950 book The Human Use of Human Beings, the advances of the 1940s enabled inventors and engineers to go beyond “the sporadic design of individual automatic mechanisms.” The new technologies, while designed with weaponry in mind, gave rise to “a general policy for the construction of automatic mechanisms of the most varied type.”

People who made their living by manipulating signs and symbols on screens became the stars of the new economy, even as the factory jobs that had long buttressed the middle class were being transferred overseas or handed off to robots. The dot-com bubble of the late 1990s, when for a few euphoric years riches flooded out of computer networks and into personal brokerage accounts, seemed to herald the start of a golden age of unlimited economic opportunity—what technology boosters dubbed a “long boom.” But the good times proved fleeting. Now we’re seeing that, as Norbert Wiener predicted, automation doesn’t play favorites. Computers are as good at analyzing symbols and otherwise parsing and managing information as they are at directing the moves of industrial robots. Even the people who operate complex computer systems are losing their jobs to software, as data centers, like factories, become increasingly automated. The vast server farms operated by companies like Google, Amazon, and Apple essentially run themselves.

 

pages: 287 words: 86,919

Protocol: how control exists after decentralization by Alexander R. Galloway

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, airport security, Berlin Wall, bioinformatics, Bretton Woods, computer age, Craig Reynolds: boids flock, discovery of DNA, double helix, Douglas Engelbart, easy for humans, difficult for computers, Fall of the Berlin Wall, Grace Hopper, Hacker Ethic, informal economy, John Conway, Kevin Kelly, late capitalism, linear programming, Marshall McLuhan, means of production, Menlo Park, mutually assured destruction, Norbert Wiener, packet switching, phenotype, post-industrial society, profit motive, QWERTY keyboard, RAND corporation, Ray Kurzweil, RFC: Request For Comment, Richard Stallman, semantic web, SETI@home, stem cell, Steve Crocker, Steven Levy, Stewart Brand, Ted Nelson, telerobotics, the market place, theory of mind, urban planning, Vannevar Bush, Whole Earth Review, working poor

I hope to build on texts such as Friedrich Kittler’s groundbreaking Discourse Networks, 1800/1900, which describes the paradigm shift from a discourse driven by meaning and sense, to our present milieu of pattern and code. Kittler’s two ages, symbolized by the two years 1800 and 1900, correspond structurally (but less so chronologically) to the social periodization supplied by Foucault and Deleuze. The passage from the modern disciplinary societies to those of the control societies, as I have already suggested, is the single most important historical transformation in this book. Norbert Wiener is also an important character. His books laid important groundwork for how control works within physical bodies. The provocative but tantalizingly thin Pandemonium: The Rise of Predatory Locales in the Postwar World from architect Branden Hookway, looks at how cybernetic bodies permeate twentieth-century life. Other important theorists from the field of computer and media studies who have influenced me include Vannevar Bush, Hans Magnus Enzensberger, Marshall McLuhan, Lewis Mumford, and Alan Turing.

Jean Baudrillard’s “Requiem for the Media” was inspired by Enzensberger, but he rewrites Enzensberger’s battle cry “there is no Marxist theory of the media” as simply “there is no theory of the media,” Marxist or otherwise.12 This suggests that Baudrillard wants to push media theory out of the realm of pure Marxism (Enzensberger’s position) and into the realm of signification and communication. He says as much: “One retains the general form of Marxist analysis . . . , but admits that the classical definition of productive forces is too restricted, so one expands the analysis in terms of productive forces to the whole murky field of signification and communication.”13 While ostensibly non-Marxist, it is worth noting here the work of Norbert Wiener and Vannevar Bush, two of the most important thinkers in the history of computers and electronic media. 9. Enzensberger, “Constituents,” p. 105. 10. Enzensberger, “Constituents,” p. 105. 11. Enzensberger, “Constituents,” p. 121. 12. Jean Baudrillard, “Requiem for the Media,” in Video Culture, ed. John Hanhardt (Layton, UT: Peregrine Smith Books, 1986), p. 124. 13. Baudrillard, “Requiem for the Media,” pp. 124–125.

Be it the monster in Shelley’s Frankenstein, the commodity in Marx’s Capital, or the murdering robot in Čapek’s R.U.R., the emergence of autonomous vital forms appears as a distinct trend in the last two hundred years of contemplative thought. Much work has been done on this subject in the field of epistemology and cognitive science. During a 1959 meeting organized by the New York University Institute of Philosophy entitled “The Dimensions of Mind,” Norbert Wiener and others pondered the epistemological condition of mind in the context of the machine. Later, writers such as Marvin Minsky and Daniel Dennett have considered the theoretical possibilities and limits of computerized thought. Several theories of life are at play in this intellectual milieu. In what might be dubbed the “computers can never do what our brains can do” ideology, Hubert Dreyfus argues that there are theoretical limits to any type of artifi- Chapter 3 102 cial intelligence.72 In a similar vein, Leopoldseder recounts that “[i]n a personal interview, the biophysician and cybernetics researcher Heinz von Foerster—one of the fathers of constructivism—answered the question of whether there is a relation between the human brain and the computer with a ‘yes and no.’

 

pages: 242 words: 68,019

Why Information Grows: The Evolution of Order, From Atoms to Economies by Cesar Hidalgo

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, Albert Einstein, Arthur Eddington, Claude Shannon: information theory, David Ricardo: comparative advantage, Douglas Hofstadter, frictionless, frictionless market, George Akerlof, Gödel, Escher, Bach, income inequality, income per capita, invention of the telegraph, invisible hand, Isaac Newton, James Watt: steam engine, Jane Jacobs, job satisfaction, John von Neumann, New Economic Geography, Norbert Wiener, p-value, phenotype, price mechanism, Richard Florida, Ronald Coase, Silicon Valley, Simon Kuznets, Skype, statistical model, Steve Jobs, Steve Wozniak, Steven Pinker, The Market for Lemons, The Nature of the Firm, The Wealth of Nations by Adam Smith, total factor productivity, transaction costs, working-age population

So the knowledge amplification powers of the economy are essential to liberate the creative capacities that allow our species to create new products—which continue to augment us—and endow us with new forms of artistic expression. Our capacity to create products that augment us also helps define the overall complexity of our society. To illustrate this seemingly far-fetched connection, I will move our gaze away from humans and consider instead ant colonies, an example suggested by Norbert Wiener in his 1950 book The Human Use of Human Beings.3 Norbert Wiener, the father of cybernetics, understood that the ability to embody information outside our bodies is not unique to our species. In fact, our ability to print information in our environment makes us similar to other eusocial species, such as ants. Single ants are not very clever, but their ability to deposit information in the form of pheromones can make ant colonies extremely savvy.

Encoding and decoding messages was a mathematical problem that was too interesting to be abandoned as the war dwindled. Mathematicians continued to formalize the idea of information, but they framed their efforts in the context of communication technologies, transcending the efforts to decipher intercepted messages. The mathematicians who triumphed became known as the world’s first information theorists or cyberneticists. These pioneers included Claude Shannon, Warren Weaver, Alan Turing, and Norbert Wiener. In the 1950s and 1960s the idea of information took science by storm. Information was welcomed in all academic fields as a powerful concept that cut across scientific boundaries. Information was neither microscopic nor macroscopic.3 It could be inscribed sparsely on clay tablets or packed densely in a strand of DNA. For many practical purposes, the scale at which information was embodied was not crucial.

Video interview with Jane Jacobs on the nature of economies, https://www.youtube.com/watch?v=UPNPpdBCqzU. 2. George Johnson, The Ten Most Beautiful Experiments (New York: Knopf, 2008), 76–86. 3. I have taken the liberty of expanding this example substantially, since in Wiener’s book it is not mentioned in a very straightforward way and furthermore is woven into a weird Cold War political argument. Norbert Wiener, The Human Use of Human Beings: Cybernetics and Society (Boston: Houghton Mifflin, 1950). CHAPTER 6: THIS TIME, IT’S PERSONAL 1. The question of which industries locate where and why has given rise to at least four theoretical streams of literature: the literature on industrial clusters, the “new economic geography” (which is the neoclassical stream of this literature), the economic geography literature focusing on institutions and culture, and the evolutionary economic geography literature.

 

pages: 484 words: 104,873

Rise of the Robots: Technology and the Threat of a Jobless Future by Martin Ford

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Affordable Care Act / Obamacare, AI winter, algorithmic trading, Amazon Mechanical Turk, artificial general intelligence, autonomous vehicles, banking crisis, Baxter: Rethink Robotics, Bernie Madoff, Bill Joy: nanobots, call centre, Capital in the Twenty-First Century by Thomas Piketty, Chris Urmson, Clayton Christensen, clean water, cloud computing, collateralized debt obligation, computer age, debt deflation, deskilling, diversified portfolio, Erik Brynjolfsson, factory automation, financial innovation, Flash crash, Fractional reserve banking, Freestyle chess, full employment, Goldman Sachs: Vampire Squid, High speed trading, income inequality, indoor plumbing, industrial robot, informal economy, iterative process, Jaron Lanier, job automation, John Maynard Keynes: technological unemployment, John von Neumann, Khan Academy, knowledge worker, labor-force participation, labour mobility, liquidity trap, low skilled workers, low-wage service sector, Lyft, manufacturing employment, McJob, moral hazard, Narrative Science, Network effects, new economy, Nicholas Carr, Norbert Wiener, obamacare, optical character recognition, passive income, performance metric, Peter Thiel, Plutocrats, plutocrats, post scarcity, precision agriculture, price mechanism, Ray Kurzweil, rent control, rent-seeking, reshoring, RFID, Richard Feynman, Richard Feynman, Rodney Brooks, secular stagnation, self-driving car, Silicon Valley, Silicon Valley startup, single-payer health, software is eating the world, sovereign wealth fund, speech recognition, Spread Networks laid a new fibre optics cable between New York and Chicago, stealth mode startup, stem cell, Stephen Hawking, Steve Jobs, Steven Levy, Steven Pinker, strong AI, Stuxnet, technological singularity, telepresence, telepresence robot, The Bell Curve by Richard Herrnstein and Charles Murray, The Coming Technological Singularity, Thomas L Friedman, too big to fail, Tyler Cowen: Great Stagnation, union organizing, Vernor Vinge, very high income, Watson beat the top human players on Jeopardy!, women in the workforce

A front-page story with extensive quotations from the report appeared in the next day’s New York Times, and numerous other newspapers and magazines ran stories and editorials (most of which were critical), in some cases even printing the entire text of the report.4 The Triple Revolution marked what was perhaps the crest of a wave of worry about the impact of automation that had arisen following World War II. The specter of mass joblessness as machines displaced workers had incited fear many times in the past—going all the way back to Britain’s Luddite uprising in 1812—but in the 1950s and ’60s, the concern was especially acute and was articulated by some of the United States’ most prominent and intellectually capable individuals. In 1949, at the request of the New York Times, Norbert Wiener, an internationally renowned mathematician at the Massachusetts Institute of Technology, wrote an article describing his vision for the future of computers and automation.5 Wiener had been a child prodigy who entered college at age eleven and completed his PhD when he was just seventeen; he went on to establish the field of cybernetics and made substantial contributions in applied mathematics and to the foundations of computer science, robotics, and computer-controlled automation.

Among professional economists in particular, the idea became virtually untouchable. Those who did dare to entertain such thoughts risked being labeled a “neo-Luddite.” Given that the dire circumstances predicted by the Triple Revolution report did not come to pass, we can ask an obvious question: Were the authors of the report definitively wrong? Or did they—like many others before them—simply sound the alarm far too soon? Norbert Wiener, as one of the early pioneers of information technology, perceived the digital computer as being fundamentally different from the mechanical technologies that preceded it. It was a game changer: a new kind of machine with the potential to usher in a new age—and, ultimately, perhaps rend the very fabric of society. Yet, Wiener’s views were expressed at a time when computers were room-sized monstrosities whose calculations were powered by tens of thousands of searingly hot radio vacuum tubes, some number of which could be expected to fail on a near daily basis.10 It would be decades before the exponential arc of progress would drive digital technology to a level where such views might reasonably be justified.

Chapter 3 INFORMATION TECHNOLOGY: AN UNPRECEDENTED FORCE FOR DISRUPTION Imagine depositing a penny in a bank account. Now, double the account balance every day. On day three you would go from 2 cents to 4 cents. The fifth day would take your balance from 8 to 16 cents. After less than a month, you would have more than a million dollars. If we had deposited that initial penny in 1949, just as Norbert Wiener was writing his essay about the future of computing, and then let Moore’s Law run its course—doubling the amount roughly every two years—by 2015, our technological account would contain nearly $86 million. And as things move forward from this point, that balance will continue to double. Future innovations will be able to leverage that enormous accumulated balance, and as a result the rate of progress in the coming years and decades is likely to far exceed what we have become accustomed to in the past.

 

pages: 253 words: 80,074

The Man Who Invented the Computer by Jane Smiley

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

1919 Motor Transport Corps convoy, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, anti-communist, Arthur Eddington, British Empire, c2.com, computer age, Fellow of the Royal Society, Henri Poincaré, IBM and the Holocaust, Isaac Newton, John von Neumann, Karl Jansky, Norbert Wiener, RAND corporation, Turing machine, V2 rocket, Vannevar Bush, Von Neumann architecture

By mid-1950, Atanasoff felt that his career with the military had reached a dead end, and he was disheartened, too, by the idea that all of his enterprise and inventiveness had gone into making weapons. In the summer of 1949, Turing was interviewed by a newspaper in relation to a dispute between two other men about machine intelligence and the possibility of a machine having a sensibility. The two men were Norbert Wiener, who had just published Cybernetics, and a neurosurgeon, Geoffrey Jefferson, who gave a speech that attempted to debunk any ideas that a machine could have emotions or self-consciousness and could, therefore, be said to think in a human way (Jefferson was a pioneer of the frontal lobotomy). When Turing was interviewed by the Times (London), he declared that “the university [of Manchester] was really interested in the investigation of the possibilities of machines for their own sake.”

At this point, von Neumann had been organizing his computer project for at least seven years. Back in the summer of 1946, when Atanasoff was told that the navy computer project was off, he was not told why, but part of the reason was that in late 1945, the very well connected John von Neumann had entertained letters of interest from the University of Chicago and MIT, with further feelers from Harvard and Columbia. Von Neumann was drawn to Princeton even though, as the letter from Norbert Wiener of MIT (soon to get in trouble with Dr. Jefferson) predicted, the problem that would plague the development of the IAS computer was that at “the Princestitute [the Institute for Advanced Studies] … you are going to run into a situation where you will need a lab at your fingertips, and labs don’t grow in ivory towers.” Von Neumann got something that he considered more important from the Institute for Advance Study—$100,000 for development (equivalent to $1 million today), with another $200,000 readily available.

And von Neumann wanted his computer to do more than solve math problems—he also wanted it to be able to use language (like Colossus, which could decipher a code more easily than it could perform a large multiplication problem—and we will never know whether von Neumann’s friends on the Colossus project ever chatted with him about what they had done). Unable to get Eckert, von Neumann hired an engineer named Julian Bigelow to put together the IAS computer, thinking that the project would take ten people about three years. But von Neumann could not work with Bigelow, who, he felt, tended to go down blind alleys, trying things without a good sense ahead of time of how those ideas would work. And Norbert Wiener turned out to be correct about the lack of receptivity at the IAS toward the computer project. It was housed in a boiler room and then an outbuilding, and even then there were complaints about it from the other scholars. Work that was farmed out went to corporations that didn’t know what was really wanted. Von Neumann himself was an ideas man, not a technology man (though when his wife declared that he could not handle a screwdriver, she added that he was good at fixing zippers).

 

From Satori to Silicon Valley: San Francisco and the American Counterculture by Theodore Roszak

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Buckminster Fuller, germ theory of disease, global village, Haight Ashbury, Internet Archive, Marshall McLuhan, megastructure, Menlo Park, Norbert Wiener, Silicon Valley, Steven Levy, Stewart Brand, upwardly mobile, Whole Earth Catalog

Similarly, if Catalog, we can we turn back to the same hybrid find the and side the rustic skills tools, we Whole Earth taste. Along- discover high and instruments: stereo systems, industrial techniques cameras, cinematography, and, of course, computers. On one page the "Manifesto of the Mad Farmer Liberation Front" (Wendell Berry's plea for family-scaled organic agriculture); on the next, Norbert Wiener's cybernetics. when tried I to first I recall noticed restrain my how it. this But then doubts. juxtaposition jarred I thought again and There was, after all, something charming about the blithe eclecticism of this worldview. Granted that a catalog is by its very nature a melange. But this catalog clearly meant to project a consistent vision. It 17 seemed to be saying that ingenuity deserved to be celebrated - from the stone axe and American Indian medicine to all human modern Clearly, electronics.

 

pages: 347 words: 97,721

Only Humans Need Apply: Winners and Losers in the Age of Smart Machines by Thomas H. Davenport, Julia Kirby

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

AI winter, Andy Kessler, artificial general intelligence, asset allocation, Automated Insights, autonomous vehicles, Baxter: Rethink Robotics, business intelligence, business process, call centre, carbon-based life, Clayton Christensen, clockwork universe, conceptual framework, dark matter, David Brooks, deliberate practice, deskilling, Edward Lloyd's coffeehouse, Elon Musk, Erik Brynjolfsson, estate planning, follow your passion, Frank Levy and Richard Murnane: The New Division of Labor, Freestyle chess, game design, general-purpose programming language, Google Glasses, Hans Lippershey, haute cuisine, income inequality, index fund, industrial robot, information retrieval, intermodal, Internet of things, inventory management, Isaac Newton, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Khan Academy, knowledge worker, labor-force participation, loss aversion, Mark Zuckerberg, Narrative Science, natural language processing, Norbert Wiener, nuclear winter, pattern recognition, performance metric, Peter Thiel, precariat, quantitative trading / quantitative finance, Ray Kurzweil, Richard Feynman, Richard Feynman, risk tolerance, Robert Shiller, Robert Shiller, Rodney Brooks, Second Machine Age, self-driving car, Silicon Valley, six sigma, Skype, speech recognition, spinning jenny, statistical model, Stephen Hawking, Steve Jobs, Steve Wozniak, strong AI, superintelligent machines, supply-chain management, transaction costs, Tyler Cowen: Great Stagnation, Watson beat the top human players on Jeopardy!, Works Progress Administration, Zipcar

To find your way of remaining valuable, you should understand what humans do better at than machines, and expect that not all of this will be obvious. Also accept that some advantages are temporary; as machines keep getting better at certain tasks, today’s safe ground might be eroding very quickly under your feet. The question of what humans are good for is one that has been taken up by various thinkers since machines first showed glimmers of “intelligence.” The legendary Norbert Wiener, who published The Human Use of Human Beings in 1950, established a starting point for the discussion. While his objective was mainly to show how advancing automation could and must enable humans to embrace their humanity more, and he wasn’t as concerned with defining those human attributes too tightly, he did point to creativity and spirituality as parts of the human condition that machines do not share.

In 1962 he published a widely circulated paper: “Augmenting Human Intellect: A Conceptual Framework.”4 He even founded an Augmentation Research Center, which in 1969, by the way, constituted one end of the first Internet link ever made. (The University of California, Los Angeles, was the other end.) Jobs borrowed not only Engelbart’s interface ideas, but also his desire to create “wheels for the mind.” Going back further, Norbert Wiener, the MIT colleague of Vannevar Bush whom we mentioned earlier as the author of The Human Use of Human Beings, was expressing his hope already in 1950 that machines would free people from the drudgery of repetitive industrial work so that they could focus on more creative pursuits. Computers (or as he styled them, “computing machines”—the word “computer” referred then, even in an MIT professor’s writing, to the humans hired to perform calculations) had only recently proved their value by performing mathematical functions quickly and accurately, but it was easy to speculate that they would in time exceed humans’ intellect in other ways.

Wilson, in Scientific American 228, no. 3 (1973). 4. Douglas C. Engelbart, “Augmenting Human Intellect: A Conceptual Framework,” SRI Summary Report AFOSR-3223, prepared for Director of Information Sciences, Air Force, Office of Scientific Research, Washington 25, DC, Contract AF 49(638)-1024, SRI Project No. 3578 (AUGMENT,3906), October 1962, http://insitu.lri.fr/~mbl/ENS/FONDIHM/2012/papers/Englebart-Augmenting62.pdf. 5. Norbert Wiener, The Human Use of Human Beings: Cybernetics and Society (New York: Da Capo Press, 1988), 159. 6. Maddy Myers, “Google Glass: Inspired by Terminator,” Slice of MIT, May 30, 2013, https://slice.mit.edu/2013/05/30/google-glass-inspired-by-terminator/. 7. David Scott, remarks at the opening of the Computer Museum, June 10, 1982, transcript accessed October 29, 2015, http://klabs.org/history/history_docs/ech/agc_scott.pdf. 8.

 

pages: 193 words: 19,478

Memory Machines: The Evolution of Hypertext by Belinda Barnet

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

augmented reality, Benoit Mandelbrot, Bill Duvall, British Empire, Buckminster Fuller, Claude Shannon: information theory, collateralized debt obligation, computer age, conceptual framework, Douglas Engelbart, game design, hiring and firing, Howard Rheingold, HyperCard, hypertext link, information retrieval, Internet Archive, linked data, mandelbrot fractal, Marshall McLuhan, Menlo Park, nonsequential writing, Norbert Wiener, publish or perish, semantic web, Steve Jobs, Stewart Brand, technoutopianism, Ted Nelson, the scientific method, Vannevar Bush, wikimedia commons

Like Bush before him, Engelbart modelled the human psyche as a technical system, and proposed a fundamentally technical solution to the problem of human knowledge. As Bardini points out, his tool and human systems ‘communicate’ via a process of ‘feedback’ (Bardini 2000, 34), a fundamentally systemic process. Humans and technical machines are also articulated together as different kinds of systems – one of the hallmarks of cybernetics (Hayles 1999). This is not surprising; cybernetics influenced most engineers working in the 1950s (Bardini 2000). Like Norbert Wiener, Engelbart also has a systemic explanation for social structures and for life itself, a theory for the co-evolution of humans and technics. But for Engelbart, this is an unbalanced evolution; until now, it has been the tool system that has been driving human beings. The tool system moves faster than the human system, and it takes a lot of time (sometimes generations) before we can develop the appropriate human infrastructure to deal with changes.

The philosophy is also a return to liberal humanism, and sits in contrast to the rest of Engelbart’s thinking on technical evolution; he believes that humans can and should learn to direct the tool system, to control the direction technology takes. At the moment it is an unbalanced evolution, but it doesn’t have to be this way. Changing the relationship in favour of human beings is possible. More deeply, this implies that Doug’s revolution requires a reversal of the current relationship between humans and technology; we need to be back in the driver’s seat.3 Hayles (1999) locates a similar contradiction in Norbert Wiener’s work. AUGMENTING THE INTELLECT: NLS 41 In particular, Engelbart feels we need to create tool systems that help us deal with knowledge work in a more effective way. This objective is something he claims he inherited from Bush’s 1945 paper, ‘As We May Think’ (Engelbart 1962), and it formed the basis of the ‘Conceptual Framework for Augmenting Man’s Intellect’ he would later erect to explain and support the development of the oN-Line System (NLS), a prototype hypertext system.

 

The Singularity Is Near: When Humans Transcend Biology by Ray Kurzweil

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

additive manufacturing, AI winter, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, anthropic principle, Any sufficiently advanced technology is indistinguishable from magic, artificial general intelligence, augmented reality, autonomous vehicles, Benoit Mandelbrot, Bill Joy: nanobots, bioinformatics, brain emulation, Brewster Kahle, Brownian motion, business intelligence, c2.com, call centre, carbon-based life, cellular automata, Claude Shannon: information theory, complexity theory, conceptual framework, Conway's Game of Life, cosmological constant, cosmological principle, cuban missile crisis, data acquisition, Dava Sobel, David Brooks, Dean Kamen, disintermediation, double helix, Douglas Hofstadter, en.wikipedia.org, epigenetics, factory automation, friendly AI, George Gilder, Gödel, Escher, Bach, informal economy, information retrieval, invention of the telephone, invention of the telescope, invention of writing, Isaac Newton, iterative process, Jaron Lanier, Jeff Bezos, job automation, job satisfaction, John von Neumann, Kevin Kelly, Law of Accelerating Returns, life extension, linked data, Loebner Prize, Louis Pasteur, mandelbrot fractal, Mikhail Gorbachev, mouse model, Murray Gell-Mann, mutually assured destruction, natural language processing, Network effects, new economy, Norbert Wiener, oil shale / tar sands, optical character recognition, pattern recognition, phenotype, premature optimization, randomized controlled trial, Ray Kurzweil, remote working, reversible computing, Richard Feynman, Richard Feynman, Rodney Brooks, Search for Extraterrestrial Intelligence, semantic web, Silicon Valley, Singularitarianism, speech recognition, statistical model, stem cell, Stephen Hawking, Stewart Brand, strong AI, superintelligent machines, technological singularity, Ted Kaczynski, telepresence, The Coming Technological Singularity, transaction costs, Turing machine, Turing test, Vernor Vinge, Y2K, Yogi Berra

Wolfram postulates that the universe itself is a giant cellular-automaton computer. In his hypothesis there is a digital basic for apparently analog phenomena (such as motion and time) and for formulas in physics, and we can model our understanding of physics as the simple transformation of a cellular automaton. Others have proposed this possibility. Richard Feynman wondered about it in considering the relationship of information to matter and energy. Norbert Wiener heralded a fundamental change in focus from energy to information in his 1948 book Cybernetic and suggested that the transformation of information, not energy, was the fundamental building block of the universe.60 Perhaps the first to postulate that the universe is being computed on a digital computer was Konrad Zuse in 1967.61 Zuse is best known as the inventor of the first working programmable computer, which he developed from 1935 to 1941.

Only about 1 percent of the messages it identifies as "okay" are actually spam; it almost never marks a good message as spam. The system is almost as accurate as I would be and much faster. Markov Models. Another method that is good at applying probabilistic networks to complex sequences of information involves Markov models.170 Andrei Andreyevich Markov (1856–1922), a renowned mathematician, established a theory of "Markov chains," which was refined by Norbert Wiener (1894–1964) in 1923. The theory provided a method to evaluate the likelihood that a certain sequence of events would occur. It has been popular, for example, in speech recognition, in which the sequential events are phonemes (parts of speech). The Markov models used in speech recognition code the likelihood that specific patterns of sound are found in each phoneme, how the phonemes influence each other, and likely orders of phonemes.

See the classic article Edward Fredkin and Tommaso Toffoli, "Conservative Logic," International Journal of Theoretical Physics 21.3–4 (l982): 219–53, http://www.digitalphilosophy.org/download_documents/ConservativeLogic.pdf. Also, a set of concerns about the physics of computation analytically similar to those of Fredkin's may be found in Norman Margolus, "Physics and Computation," Ph.D. thesis, MIT/LCS/TR-415, MIT Laboratory for Computer Science, 1988. 65. I discussed Norbert Wiener and Ed Fredkin's view of information as the fundamental building block for physics and other levels of reality in my 1990 book, The Age of Intelligent Machines. The complexity of casting all of physics in terms of computational transformations proved to be an immensely challenging project, but Fredkin has continued his efforts. Wolfram has devoted a considerable portion of his work over the past decade to this notion, apparently with only limited communication with some of the others in the physics community who are also pursuing the idea.

 

pages: 372 words: 101,174

How to Create a Mind: The Secret of Human Thought Revealed by Ray Kurzweil

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, Albert Michelson, anesthesia awareness, anthropic principle, brain emulation, cellular automata, Claude Shannon: information theory, cloud computing, computer age, Dean Kamen, discovery of DNA, double helix, en.wikipedia.org, epigenetics, George Gilder, Google Earth, Isaac Newton, iterative process, Jacquard loom, Jacquard loom, John von Neumann, Law of Accelerating Returns, linear programming, Loebner Prize, mandelbrot fractal, Norbert Wiener, optical character recognition, pattern recognition, Peter Thiel, Ralph Waldo Emerson, random walk, Ray Kurzweil, reversible computing, self-driving car, speech recognition, Steven Pinker, strong AI, the scientific method, theory of mind, Turing complete, Turing machine, Turing test, Wall-E, Watson beat the top human players on Jeopardy!, X Prize

Finding a metaphor is the process of recognizing a pattern despite differences in detail and context—an activity we undertake trivially every moment of our lives. The metaphorical leaps that we consider of significance tend to take place in the interstices of different disciplines. Working against this essential force of creativity, however, is the pervasive trend toward ever greater specialization in the sciences (and just about every other field as well). As American mathematician Norbert Wiener (1894–1964) wrote in his seminal book Cybernetics, published the year I was born (1948): There are fields of scientific work, as we shall see in the body of this book, which have been explored from the different sides of pure mathematics, statistics, electrical engineering, and neurophysiology; in which every single notion receives a separate name from each group, and in which important work has been triplicated or quadruplicated, while still other important work is delayed by the unavailability in one field of results that may have already become classical in the next field.

He went on to hypothesize a situation in which a system has such a hierarchy of linear sequences of states, but those are unable to be directly examined—hence the name hidden Markov models. The lowest level of the hierarchy emits signals, which are all we are allowed to see. Markov provides a mathematical technique to compute what the probabilities of each transition must be based on the observed output. The method was subsequently refined by Norbert Wiener in 1923. Wiener’s refinement also provided a way to determine the connections in the Markov model; essentially any connection with too low a probability was considered not to exist. This is essentially how the human neocortex trims connections—if they are rarely or never used, they are considered unlikely and are pruned away. In our case, the observed output is the speech signal created by the person talking, and the state probabilities and connections of the Markov model constitute the neocortical hierarchy that produced it.

 

pages: 394 words: 108,215

What the Dormouse Said: How the Sixties Counterculture Shaped the Personal Computer Industry by John Markoff

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Any sufficiently advanced technology is indistinguishable from magic, Apple II, back-to-the-land, Bill Duvall, Bill Gates: Altair 8800, Buckminster Fuller, California gold rush, card file, computer age, computer vision, conceptual framework, cuban missile crisis, Douglas Engelbart, Dynabook, El Camino Real, general-purpose programming language, Golden Gate Park, Hacker Ethic, hypertext link, informal economy, information retrieval, invention of the printing press, Jeff Rulifson, John Nash: game theory, John von Neumann, Kevin Kelly, knowledge worker, Mahatma Gandhi, Menlo Park, Mother of all demos, Norbert Wiener, packet switching, Paul Terrell, popular electronics, QWERTY keyboard, RAND corporation, RFC: Request For Comment, Richard Stallman, Robert X Cringely, Sand Hill Road, Silicon Valley, Silicon Valley startup, South of Market, San Francisco, speech recognition, Steve Crocker, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, Ted Nelson, Thorstein Veblen, Turing test, union organizing, Vannevar Bush, Whole Earth Catalog, William Shockley: the traitorous eight

Taylor was a psychologist who had received his master’s degree at the University of Texas studying psychoacoustics, the study of the perception of sound. In the early sixties, he was running a research program on computing at NASA headquarters. Although he was not a computer scientist, Taylor had read widely in the literature about the interaction of humans and computers. He had also been intrigued by Vannevar Bush’s Atlantic article when he was in college and had read the work of cyberneticist Norbert Wiener. Most important, however, was that he knew J. C. R. Licklider, who was a leading researcher in the area of psychoacoustics and a close friend of Taylor’s thesis adviser at Texas. Beginning in 1960, Licklider had sketched out a vision that closely paralleled Engelbart’s in a paper entitled “Man-Computer Symbiosis.” His ideas were rooted in research done by a small group that Licklider had headed at Bolt, Beranek and Newman, a Cambridge, Massachusetts, engineering and military contractor.

It was the second half of the short introduction that neatly captured the various threads that would soon come together to liberate the computer from large, impersonal institutions: “a realm of intimate, personal power is developing—power of the individual to conduct his own education, find his own inspiration, shape his own environment, and share his adventure with whoever is interested. Tools that aid this process are sought and promoted by the WHOLE EARTH CATALOG.” In the first catalog, there wasn’t much computing power to tap into. The HP 9100A calculator, referred to as a computer on the title page, was given a glowing review; Norbert Wiener’s Cybernetics and the September 1966 Scientific American issue on information were also reviewed. The scarcity of material in this particular area didn’t matter; the principle of valued tools controlled by the individual was established firmly. On the verge of publishing the first Catalog the following month, Brand saw himself not so much as an entrepreneur but as an artist who was exploring new media, and he was immediately struck by the possibilities of computers that were moving beyond being calculators.

 

pages: 299 words: 99,080

The Soul of a New Machine by Tracy Kidder

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

carbon-based life, Jarndyce and Jarndyce, Mason jar, Norbert Wiener, pattern recognition, post-industrial society, silicon-based life

Also: the Society for Computer Simulation, and Randomex, and Edge Technology, and Van San, which sold "Quietizers." There were Datum, Data Pro and Data I/O, Tri Data, Epic Data, Facit Data, Control Data, Decision Data, Data General and Data Specialties. And we didn't have time even to glance at the wares of Itek, Pertec, Mostek, Wavetek, Intertek, Ramtek ... Ah, Ramtek. "In 'seventy-three," said Wallach, "there were two floors, and now there are four floors and it's just as crowded." Norbert Wiener coined the term cybernetics in order to describe the study of "control and communication in the animal and the machine." In 1947 he wrote that because of the development of the "ultra-rapid computing machine,... the average human being of mediocre attainments or less" might end up having "nothing to sell that is worth anyone's money to buy." Although Wiener clearly intended this as a plea for humane control over the development and application of computers, many people who have written about these machines' effects on society have quoted Wiener's statement as though it were a claim of fact; and some, particularly the computer's boosters, have held the remark up to ridicule — "See, it hasn't happened."

"Whether it's the technology or the way people use it, it has an insidious ability to reduce things to less than human dimensions." Which is it, though: the technology or the way people use it? Who controls this technology? Can it be controlled? Jacques Ellul, throwing up his hands, wrote that technology operates by its own terrible laws, alterable by no human action except complete abandonment of technique. More sensible, I think, Norbert Wiener, prophesied that the computer would offer "unbounded possibilities for good and for evil," and he advanced, faintly, the hope that the contributors to this new science would nudge it in a humane direction. But he also invoked the fear that its development would fall "into the hands of the most irresponsible and venal of our engineers." One of the best surveys of the studies of the effects of computers ends with an appeal to the "computer professionals" that they exercise virtue and restraint.

 

pages: 379 words: 113,656

Six Degrees: The Science of a Connected Age by Duncan J. Watts

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Berlin Wall, Bretton Woods, business process, corporate governance, Drosophila, Erdős number, experimental subject, Frank Gehry, Geoffrey West, Santa Fe Institute, invisible hand, Long Term Capital Management, market bubble, Milgram experiment, Murray Gell-Mann, Network effects, new economy, Norbert Wiener, Paul Erdős, rolodex, Ronald Coase, Silicon Valley, supply-chain management, The Nature of the Firm, The Wealth of Nations by Adam Smith, Toyota Production System, transaction costs, transcontinental railway, Y2K

Network Economics: A Variational Inequality Approach (Kluwer Academic, Boston, 1993). Synchrony The best way to learn about the subject of coupled oscillators is from Steve Strogatz himself in his recent book: Strogatz, S. H. Sync: The Emerging Science of Spontaneous Order (Hyperion, Los Angeles, 2003). Strogatz has also written two shorter accounts of his (and related) work on the Kuramoto model: Strogatz, S. H. Norbert Wiener’s brain waves. In Levin, S. A. (ed.), Frontiers in Mathematical Biology, Lecture Notes in Biomathematics, 100 (Springer, New York, 1994), pp. 122–138. Strogatz, S. H., and Stewart, I. Coupled oscillators and biological synchronization. Scientific American, 269(6), 102–109 (1993). The Road Less Traveled Winfree’s original paper on the entrainment of coupled oscillators that kicked off much of the recent literature, and that was my initial reference point, is Winfree, A.

Introduction to Percolation Theory (Taylor and Francis, London, 1992). Stein, D. L. Disordered systems: Mostly spin systems. In Stein, D. L. (ed.), Lectures in the Sciences of Complexity, vol. I, Santa Fe Institute Studies in the Sciences of Complexity (Addison-Wesley, Reading, MA, 1989), pp. 301–354. Strogatz, S. H. Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley, Reading, MA, 1994). ———. Norbert Wiener’s brain waves. In Levin, S. A. (ed.), Frontiers in Mathematical Biology, Lecture Notes in Biomathematics, 100 (Springer, New York, 1994), pp. 122–138. ———. Exploring complex networks. Nature, 410, 268–275 (2001). ———. Sync: The Emerging Science of Spontaneous Order (Hyperion, Los Angeles, 2003). Strogatz, S. H., and Stewart, I. Coupled oscillators and biological synchronization. Scientific American, 269(6), 102–109 (1993).

 

pages: 389 words: 109,207

Fortune's Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall Street by William Poundstone

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, anti-communist, asset allocation, Benoit Mandelbrot, Black-Scholes formula, Brownian motion, buy low sell high, capital asset pricing model, Claude Shannon: information theory, computer age, correlation coefficient, diversified portfolio, en.wikipedia.org, Eugene Fama: efficient market hypothesis, high net worth, index fund, interest rate swap, Isaac Newton, Johann Wolfgang von Goethe, John von Neumann, Long Term Capital Management, Louis Bachelier, margin call, market bubble, market fundamentalism, Marshall McLuhan, New Journalism, Norbert Wiener, offshore financial centre, publish or perish, quantitative trading / quantitative finance, random walk, risk tolerance, risk-adjusted returns, Robert Shiller, Robert Shiller, Ronald Reagan, short selling, speech recognition, statistical arbitrage, The Predators' Ball, The Wealth of Nations by Adam Smith, transaction costs, traveling salesman, value at risk, zero-coupon bond

Shannon promptly published this idea in 1937 (he would not, in subsequent years, be known for promptly publishing anything). It has been claimed that this was the most important master’s thesis of all time. Vannevar Bush was so impressed that he insisted that the mathematics department accept Shannon for his doctoral work. The result was too momentous to be “mere” electrical engineering. Bush’s mercurial colleague Norbert Wiener was equally impressed. (When Wiener got upset with someone, which was often, he sometimes wrote an unflattering caricature of the person into a private, forever-unpublished novel. Bush was the villain of one of these novels.) Wiener realized the superiority of Shannon’s digital computation to that in Bush’s analog computer. With these two famous scientists behind him, Shannon was a budding intellectual celebrity at age twenty-one.

To people like Cage and Rauschenberg, who were exploring how minimal a work of music or art may be, information theory appeared to have something to say—even if no one was ever entirely sure what. Shannon came to feel that information theory had been over-sold. In a 1956 editorial he gently derided the information theory “bandwagon.” People who did not understand the theory deeply were seizing on it as a trendy metaphor and overstating its relevance to fields remote from its origin. Other theorists such as Norbert Wiener and Peter Elias took up this theme. It was time, Elias acidly wrote, to stop publishing papers with titles like “Information Theory, Photosynthesis, and Religion.” To Shannon, Wiener, and Elias, the question of information theory’s relevance was more narrowly defined than it was for Marshall McLuhan. Does information theory have deep relevance to any field outside of communications? The answer, it appeared, is yes.

 

pages: 326 words: 103,170

The Seventh Sense: Power, Fortune, and Survival in the Age of Networks by Joshua Cooper Ramo

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Airbnb, Albert Einstein, algorithmic trading, barriers to entry, Berlin Wall, bitcoin, British Empire, cloud computing, crowdsourcing, Danny Hillis, defense in depth, Deng Xiaoping, Edward Snowden, Fall of the Berlin Wall, Firefox, Google Chrome, income inequality, Isaac Newton, Jeff Bezos, job automation, market bubble, Menlo Park, natural language processing, Network effects, Norbert Wiener, Oculus Rift, packet switching, Paul Graham, price stability, quantitative easing, RAND corporation, recommendation engine, Republic of Letters, Richard Feynman, Richard Feynman, road to serfdom, Sand Hill Road, secular stagnation, self-driving car, Silicon Valley, Skype, Snapchat, social web, sovereign wealth fund, Steve Jobs, Steve Wozniak, Stewart Brand, Stuxnet, superintelligent machines, technological singularity, The Coming Technological Singularity, The Wealth of Nations by Adam Smith, too big to fail, Vernor Vinge, zero day

Network power is wild at the ends, with all the creative energy of a world filled with devices, empowered human dreams, and the violent slips of old balances. Yang. But at the center it is dense, still, and even quiet, with the silently cranking algorithms of massively concentrated power. Yin. In fact, this debate hovers at the dawn of the network revolution. The computer-science pioneer Claude Shannon saw information in 1949 as pulsing with the instability of an entropic system. Yang. The machine architect Norbert Wiener, writing at nearly the same moment in 1948, saw the digital age differently, as an expression of stability and structure. Yin. His vision for a digital order, what he called cybernetics, emerged from the Greek concept of kibernetes—the orderly steering of a ship through sometimes chaotic waters. We now know the humming webs around us are both yin and yang. They are ordered and chaotic. Good and evil.

Meanwhile, my father’s ideas: I. Akyildiz, M. Pierobon, S. Balasubramaniam, and Yevgeni Koucheryavy, “The Internet of Bio-Nano Things,” IEEE Communications Magazine 53, no. 3 (March 2015): 32–40. The computer-science pioneer: See David Bawden and Lyn Robinson, “Waiting for Carnot: Information and Complexity,” Journal of the Association for Information Science and Technology 66, no. 11 (November 2015): 2177–86; Norbert Wiener, Cybernetics; or, Control and Communication in the Animal and the Machine (New York: John Wiley and Sons, 1948); Warren Weaver, “Science and Complexity,” American Scientist 36, no. 4 (October 1948): 536–44. They are ordered: Carlos Gershenson, Péter Csermely, Péter Érdi, “The Past, Present and Future of Cybernetics and Systems Research,” arXiv:1308.6317v3, September 23, 2013. Chapter 5.

 

pages: 137 words: 36,231

Information: A Very Short Introduction by Luciano Floridi

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

agricultural Revolution, Albert Einstein, bioinformatics, carbon footprint, Claude Shannon: information theory, conceptual framework, double helix, Douglas Engelbart, George Akerlof, Gordon Gekko, industrial robot, Internet of things, invention of writing, John Nash: game theory, John von Neumann, moral hazard, Nash equilibrium, Norbert Wiener, phenotype, prisoner's dilemma, RAND corporation, RFID, Turing machine

Several philosophers have accepted the principle while defending the possibility that the universe might ultimately be non-material, or based on a non-material source. Indeed, the classic debate on the ultimate nature of reality could be reconstructed in terms of the possible interpretations of that principle. All this explains why the physics of information is consistent with two slogans, this time popular among scientists, both favourable to the proto-physical nature of information. The first is by Norbert Wiener (1894-1964), the father of cybernetics: `information is information, not matter or energy. No materialism which does not admit this can survive at the present day.' The other is by John Archibald Wheeler (1911-2008), a very eminent physicist, who coined the expression `it from bit' to indicate that the ultimate nature of physical reality, the `it', is informational, comes from the `bit'. In both cases, physics ends up endorsing an information-based description of nature.

 

pages: 636 words: 202,284

Piracy : The Intellectual Property Wars from Gutenberg to Gates by Adrian Johns

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

banking crisis, Berlin Wall, British Empire, Buckminster Fuller, business intelligence, Corn Laws, demand response, distributed generation, Douglas Engelbart, Edmond Halley, Ernest Rutherford, Fellow of the Royal Society, full employment, Hacker Ethic, Howard Rheingold, informal economy, invention of the printing press, Isaac Newton, James Watt: steam engine, John Harrison: Longitude, Marshall McLuhan, Mont Pelerin Society, new economy, New Journalism, Norbert Wiener, pirate software, Republic of Letters, Richard Stallman, road to serfdom, Ronald Coase, software patent, South Sea Bubble, Steven Levy, Stewart Brand, Ted Nelson, the scientific method, traveling salesman, Whole Earth Catalog

He preceded his famous account of the norms of science by an analysis of the relation between social order and inventive activity – an analysis stimulated by British economist Arnold Plant’s attack on intellectual property, which we will encounter again below. From 1941, moreover, Merton worked with Paul Lazarsfeld at Columbia’s Office of Radio Research, a group seen by the industry as allied to the critics of the communications monopoly. Lazarsfeld and Merton developed methods for studying radio as a social agent, which they subsequently took pains to discuss with Norbert Wiener’s cybernetics group. Social Theory and Social Structure (1949), the book that made Merton’s name, proceeded sequentially from the sociology of media to the sociology of science – something we miss today when we read only the latter sections. In fact, he had pursued the two fields simultaneously. Mertonian sociology of science thus appeared in the guise of an outcrop of communications work. His insistence on a norm of “communism” deserves to be seen in that light.

the patent as jamming device When the British Post Office used oscillation to detect pirate listeners, it was making pioneering use of what a generation of researchers in the 1930s–1940s came to recognize as a general class of physical phenomena. These phenomena occurred across a range of systems the outputs of which “fed back” into the system itself: guncontrol devices, engine governors, electronic circuits. All could in principle be treated as mathematically isomorphic. Tackling them as such, mathematicians and engineers like Claude Shannon, Warren Weaver, and Norbert Wiener developed a theory of what they called information. Piracy and patenting took on new and central roles in that theory. Wiener in particular took the commitments to openness voiced in the AT&T furor and by proponents of liberalism like Plant and Polanyi, and articulated for them a place in the creation of an information age. From his arrival at MIT, an institution closely allied to AT&T and Bell Labs, Wiener devoted himself to research in electronics and communications.

To make this pirate revolution work, experts (“technical freaks”) would be needed, and Hoffman recommended that readers find them in the world of amateur radio. He also directed them to Radical Software, a periodical emanating from a New York group of artists in the brandnew homeproduction medium of videotape. Operating oxymoronically as the Center for Decentralized Television, Radical Software was heavily influenced by Marshall McLuhan and Buckminster Fuller, and also by Norbert Wiener’s antiproprietorial vision of information. The magazine proclaimed in the first lines of its first issue the imperative to universalize access to information, not least by abjuring copyright. It included what it called a “pirated” interview with Fuller, and invented a symbol to represent the “antithesis” of ©. The symbol was a circle containing an X (for Xerox). It meant “DO copy.” figure 16.1.

 

pages: 542 words: 161,731

Alone Together by Sherry Turkle

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Columbine, global village, Hacker Ethic, helicopter parent, Howard Rheingold, industrial robot, information retrieval, Jacques de Vaucanson, Jaron Lanier, Kevin Kelly, Loebner Prize, Marshall McLuhan, meta analysis, meta-analysis, Nicholas Carr, Norbert Wiener, Ralph Waldo Emerson, Rodney Brooks, Skype, stem cell, technoutopianism, The Great Good Place, the medium is the message, theory of mind, Turing test, Vannevar Bush, Wall-E, women in the workforce

., Genesis Redux: Essays on the History and Philosophy of Artificial Life (Chicago: University of Chicago Press, 2007); Gaby Wood, Edison’s Eve: A Magical History of the Quest for Mechanical Life (New York: Anchor, 2003); and Barbara Johnson, Persons and Things (Cambridge, MA: Harvard University Press, 2008). Johnson explores how relations between persons and things can be more fluid while arguing a central ethical tenet: persons should be treated as persons. 2 Norbert Wiener, God and Golem, Inc.: A Comment on Certain Points Where Cybernetics Impinges on Religion (Cambridge, MA: MIT Press, 1966). 3 The literature on the negotiation of technology, self, and social world is rich and varied. I have been particularly influenced by the perspectives described in Wiebe Bijker, Thomas P. Hughes, and Trevor Pinch, eds., The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology (1987; Cambridge, MA: MIT Press, 1999) and by the work of Karin D.

., Massachusetts Institute of Technology, 2000); and Cynthia Breazeal, Designing Sociable Robots (Cambridge, MA: MIT Press, 2002). 4 Cynthia Breazeal discusses the astronaut project in Claudia Dreifus, “A Conversation with Cynthia Breazeal: A Passion to Build a Better Robot, One with Social Skills and a Smile,” New York Times, June 10, 2003, www.nytimes.com/2003/06/10/science/conversation-with-cynthia-breazeal-passion-build-better-robot-one-with-social.html?pagewanted=all (accessed September 9, 2009). 5 I cite this student in Sherry Turkle, The Second Self: Computers and the Human Spirit (1984; Cambridge, MA: MIT Press, 2005), 271. The full Norbert Weiner citation is “This is an idea with which I have toyed before—that it is conceptually possible for a human being to be sent over a telegraph line.” See Norbert Wiener, God and Golem, Inc.: A Comment on Certain Points Where Cybernetics Impinges on Religion (Cambridge, MA: MIT Press, 1966), 36. 6 People drawn to sociable robots seem to hit a wall that has come to be known as the “uncanny valley.” This phrase is believed to have been coined by Masahiro Mori in “The Uncanny Valley,” Energy 7, no. 4 (1970): 33-35, An English translation by Karl F. MacDorman and Takashi Minato is available at www.androidscience.com/theuncannyvalley/proceedings2005/uncannyvalley.html (accessed November 14, 2009).If one plots a graph with humanlike appearance on the x axis and approval of the robot on the y axis, as the robot becomes more lifelike, approval increases until the robot becomes too lifelike, at which point approval plummets into a “valley.”

 

pages: 429 words: 114,726

The Computer Boys Take Over: Computers, Programmers, and the Politics of Technical Expertise by Nathan L. Ensmenger

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

barriers to entry, business process, Claude Shannon: information theory, computer age, deskilling, Firefox, Frederick Winslow Taylor, future of work, Grace Hopper, informal economy, information retrieval, interchangeable parts, Isaac Newton, Jacquard loom, Jacquard loom, job satisfaction, John von Neumann, knowledge worker, loose coupling, new economy, Norbert Wiener, pattern recognition, performance metric, post-industrial society, Productivity paradox, RAND corporation, Robert Gordon, sorting algorithm, Steve Jobs, Steven Levy, the market place, Thomas Kuhn: the structure of scientific revolutions, Thorstein Veblen, Turing machine, Von Neumann architecture, Y2K

In reality, many of the predictions made by contemporaries about the revolutionary potential of the electronic computer were, if anything, wildly optimistic. Almost before there were any computers—functional, modern, electronic digital stored-program computers—enthusiasts for the new technology were confidently anticipating its influence on contemporary society. As early as 1948 the cybernetician Norbert Wiener was predicting a “second industrial revolution” enabled by the electronic computer.2 A year later, the computer consultant Edmund Berkeley, in his popular book Giant Brains; or, Machines That Think, described a near future in which computers radically transformed a broad range of human cognitive and occupational activities, including business, law, education, and medicine.3 Despite the fact that electronic computers were in this period little more than glorified calculating machines, the provocative image of the computer as a “giant” or “mechanical brain” quickly became established in the popular imagination.

Frank Wagner, “Letter to the Editors,” Communications of the ACM 33, no. 6 (1990): 628–629. 65. Ann Dooley, “100% over Budget,” Computerworld 21, no. 7 (1987): 5. 66. David Morrison, “Software Crisis,” Defense 21, no. 2 (1989): 72. 67. John Shore, “Why I Never Met a Programmer I Could Trust,” Communications of the ACM 31, no. 4 (1988): 372. Chapter 2 1. I. Bernard Cohen, Howard Aiken: Portrait of a Computer Pioneer (Cambridge, MA: MIT Press, 1999). 2. Norbert Wiener, Cybernetics, or, Control and Communication in the Animal and the Machine (Cambridge, MA: Technology Press, 1948). 3. Edmund Callis Berkeley, Giant Brains; or, Machines That Think (New York: Wiley, 1949). 4. Steven P. Schnaars and Sergio Carvalho, “Predicting the Market Evolution of Computers: Was the Revolution Really Unforeseen,” Technology in Society 26, no. 1 (2004): 1–16. 5. Roddy Osborn, “GE and UNIVAC: Harnessing the High-Speed Computer,” Harvard Business Review 32, no. 4 (1954): 99–107; M.

 

pages: 464 words: 127,283

Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia by Anthony M. Townsend

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

1960s counterculture, 4chan, A Pattern Language, Airbnb, Amazon Web Services, anti-communist, Apple II, Bay Area Rapid Transit, Burning Man, business process, call centre, carbon footprint, charter city, chief data officer, clean water, cleantech, cloud computing, computer age, congestion charging, connected car, crack epidemic, crowdsourcing, DARPA: Urban Challenge, data acquisition, Deng Xiaoping, East Village, Edward Glaeser, game design, garden city movement, Geoffrey West, Santa Fe Institute, George Gilder, ghettoisation, global supply chain, Grace Hopper, Haight Ashbury, Hedy Lamarr / George Antheil, hive mind, Howard Rheingold, interchangeable parts, Internet Archive, Internet of things, Jacquard loom, Jacquard loom, Jane Jacobs, jitney, John Snow's cholera map, Khan Academy, Kibera, knowledge worker, load shedding, M-Pesa, Mark Zuckerberg, megacity, mobile money, mutually assured destruction, new economy, New Urbanism, Norbert Wiener, Occupy movement, openstreetmap, packet switching, patent troll, place-making, planetary scale, popular electronics, RFC: Request For Comment, RFID, ride hailing / ride sharing, Robert Gordon, self-driving car, sharing economy, Silicon Valley, Skype, smart cities, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, smart grid, smart meter, social graph, social software, social web, special economic zone, Steve Jobs, Steve Wozniak, Stuxnet, supply-chain management, technoutopianism, Ted Kaczynski, telepresence, The Death and Life of Great American Cities, too big to fail, trade route, Tyler Cowen: Great Stagnation, Upton Sinclair, uranium enrichment, urban decay, urban planning, urban renewal, Vannevar Bush, working poor, working-age population, X Prize, Y2K, zero day, Zipcar

“I am glad you do not accept my word blindly. However, this is an approximation which will serve to demonstrate the proposition. Will you accept that?”48 Asimov’s depiction of psychohistory was inspired by the new field of cybernetics. Along with nuclear fission and rocketry, the costarring technologies in the science fiction of the day, automated control systems were one of the great technological leaps of World War II. Led by Norbert Wiener at MIT, cybernetics built on wartime research in antiaircraft targeting techniques that used past observations of flight trajectories to improve predictions of an aircraft’s future position. Cybernetics took the idea of using sensing and feedback to optimize performance and extended it to the universe generally. To cyberneticians, everything—machines, organizations, cities, even the human mind—could be seen as a system, a balanced network of things connected by information flows.

If the United States could show that it could survive a Soviet sneak attack and launch a counterstrike, deterrence would be more effective. Thinking about the unthinkable dictated a whole new approach to building cities. By concentrating population, infrastructure, and industrial capacity in nice, big, juicy, megaton-sized targets, they had become a liability in the nuclear age. As early as 1950, none other than the father of cybernetics, Norbert Wiener, wrote in Life magazine, “The decentralization of our cities on the spots on which they stand, plus the release of our whole communications system from the threat of a disastrous tie-up, are reforms which are long overdue. . . . For a city is primarily a communications center, serving the same purpose as a nerve center in the body.”72 While suburbanization was driven by broader economic and technological forces, defense planners certainly welcomed and encouraged the decentralization of population.73 The federal government was much less subtle with businesses, intensively studying and promoting “industrial dispersion” throughout the 1950s.74 Today, our own doomsday scenario is also man-made.

 

pages: 675 words: 141,667

Open Standards and the Digital Age: History, Ideology, and Networks (Cambridge Studies in the Emergence of Global Enterprise) by Andrew L. Russell

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

barriers to entry, borderless world, Chelsea Manning, computer age, Edward Snowden, Frederick Winslow Taylor, Hacker Ethic, Howard Rheingold, Hush-A-Phone, interchangeable parts, invisible hand, Joseph Schumpeter, means of production, Menlo Park, Network effects, new economy, Norbert Wiener, open economy, packet switching, pre–internet, RAND corporation, RFC: Request For Comment, Richard Stallman, Ronald Coase, Ronald Reagan, Silicon Valley, Steve Crocker, Steven Levy, Stewart Brand, technoutopianism, Ted Nelson, The Nature of the Firm, Thomas L Friedman, Thorstein Veblen, transaction costs, web of trust

In 1939, the British Keynesian economist George Shackle published an article titled “The Multiplier in Closed and Open Systems,” a commentary on the theoretical uncertainties inherent in export and import values in an “open economy.”26 The language of open systems also appeared in the work of the sociologist Talcott Parsons, who in 1943 described the “Kinship System of the Contemporary United States” as an “open, multilineal, conjugal system,” one in which individuals choose their marriage partners rather than having marriages arranged on their behalf. In 1945, the term “open systems” appeared again in a different context – this time in the journal Philosophy of Science. Arturo Rosenblueth and Norbert Wiener published an article, “The Role of Models in Science,” where they contrasted theoretical models that they called “closed box” and “open box.” The distinction between these two types of models came from the number of fixed finite variables that each system had: fewer in closed boxes, many more in open boxes. “All scientific problems,” they explained, “begin as closed-box problems, i.e., only a few of the significant variables are recognized.

Soon after publishing his article, Shackle joined Churchill’s staff of economic advisors for the duration of World War II. “An Interview with G.L.S. Shackle,” The Austrian Economics Newsletter (1983), available from http://mises.org/journals/aen/aen4_1_1.asp (accessed January 27, 2012). 27 Talcott Parsons, “The Kinship System of the Contemporary United States,” American Anthropologist, New Series, 45 (1943): 22–38; Arturo Rosenblueth and Norbert Wiener, “The Role of Models in Science,” Philosophy of Science 12 (1945): 316–321. 28 Ludwig von Bertalanffy, “The Theory of Open Systems in Physics and Biology,” Science New Series 111 (1950): 23–29; Ludwig von Bertalanffy, “An Outline of General System Theory,” British Journal for the Philosophy of Science 1 (1950): 139–164. 29 W. Richard Scott, “Ecosystems and the Structuring of Organizations,” in Larry V.

 

pages: 171 words: 54,334

Barefoot Into Cyberspace: Adventures in Search of Techno-Utopia by Becky Hogge, Damien Morris, Christopher Scally

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

A Declaration of the Independence of Cyberspace, back-to-the-land, Berlin Wall, Buckminster Fuller, Chelsea Manning, citizen journalism, cloud computing, corporate social responsibility, disintermediation, Douglas Engelbart, Fall of the Berlin Wall, game design, Hacker Ethic, informal economy, Jacob Appelbaum, jimmy wales, Julian Assange, Kevin Kelly, Menlo Park, Mother of all demos, Naomi Klein, Network effects, New Journalism, Norbert Wiener, Richard Stallman, Silicon Valley, Skype, Socratic dialogue, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, technoutopianism, Telecommunications Act of 1996, Vannevar Bush, Whole Earth Catalog, Whole Earth Review, WikiLeaks

Opposite it sits a gushing review of the HP 9100A Calculator, “the best of the new tabletop number-crunchers”. On the previous page sits a review of The Human Biocomputer, an exploration into psychedelics and sensory deprivation by the neuroscientist John Lily, inventor of the flotation tank. The page following it features the McGraw-Hill encyclopaedia of Space. Sitting respectably on page 12, Norbert Wiener’s now seminal work on cybernetics, The Human Use of Human Beings is described as “social, untechnical, ultimate in most of its consideration. Its domain is the whole earth of mind.” Later in the catalogue, Wiener’s other great work, Cybernetics, or Control and Communication in the Animal and the Machine is reviewed. Wiener is described by the reviewer – presumably Brand – as “one of the founders of an n-dimensional world whose nature we’ve yet to learn.

 

pages: 210 words: 62,771

Turing's Vision: The Birth of Computer Science by Chris Bernhardt

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, Andrew Wiles, British Empire, cellular automata, Claude Shannon: information theory, complexity theory, Conway's Game of Life, discrete time, Douglas Hofstadter, Georg Cantor, Gödel, Escher, Bach, Henri Poincaré, Internet Archive, Jacquard loom, Jacquard loom, John Conway, John von Neumann, Joseph-Marie Jacquard, Norbert Wiener, Paul Erdős, Turing complete, Turing machine, Turing test, Von Neumann architecture

This collection of cells and their connections they called a neural net. McCulloch and Pitts realized that this was a simplified model of how brains actually worked, but studied neural nets to see how logic could be handled by them. Since their nets had basic features in common with neurons and the human brain, their work, they hoped, would shed some light on logical reasoning in people. Their paper caught the attention of both John von Neumann and Norbert Wiener. Both were very impressed. Wiener, the famous American mathematician and philosopher, saw the power of feedback loops. He realized that they were widely applicable and used this idea to develop the theory of cybernetics.1 Cybernetics naturally led to the idea of machines that could learn and, in turn, led to the birth of artificial intelligence. Von Neumann recognized that McCulloch and Pitt’s description of cells and their connections could also be applied to electrical components and computation.

 

pages: 229 words: 68,426

Everyware: The Dawning Age of Ubiquitous Computing by Adam Greenfield

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

augmented reality, business process, defense in depth, demand response, demographic transition, facts on the ground, game design, Howard Rheingold, Internet of things, James Dyson, knowledge worker, late capitalism, Marshall McLuhan, new economy, Norbert Wiener, packet switching, pattern recognition, profit motive, recommendation engine, RFID, Steve Jobs, technoutopianism, the built environment, the scientific method

Especially when you consider how dependent on everyware we are likely to become, the prospect of having to cut through such a Gordian tangle of interconnected parts just to figure out which one has broken down is somewhat less than charming. Thesis 45 Users will understand their transactions with everyware to be essentially social in nature. There's good reason to believe that users will understand their transactions with ubiquitous systems to be essentially social in nature, whether consciously or otherwise—and this will be true even if there is only one human party to a given interaction. Norbert Wiener, the "father of cybernetics," had already intuited something of this in his 1950 book, The Human Use of Human Beings: according to Wiener, when confronted with cybernetic machines, human beings found themselves behaving as if the systems possessed agency. This early insight was confirmed and extended in the pioneering work of Byron Reeves and Clifford Nass, published in 1996 as The Media Equation.

 

pages: 239 words: 56,531

The Secret War Between Downloading and Uploading: Tales of the Computer as Culture Machine by Peter Lunenfeld

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Andrew Keen, Apple II, Berlin Wall, British Empire, Brownian motion, Buckminster Fuller, Burning Man, butterfly effect, computer age, crowdsourcing, cuban missile crisis, Dissolution of the Soviet Union, don't be evil, Douglas Engelbart, Dynabook, East Village, Edward Lorenz: Chaos theory, Fall of the Berlin Wall, Francis Fukuyama: the end of history, Frank Gehry, Grace Hopper, gravity well, Guggenheim Bilbao, Honoré de Balzac, Howard Rheingold, invention of movable type, Isaac Newton, Jacquard loom, Jacquard loom, Jane Jacobs, Jeff Bezos, John von Neumann, Mark Zuckerberg, Marshall McLuhan, Mercator projection, Mother of all demos, mutually assured destruction, Network effects, new economy, Norbert Wiener, PageRank, pattern recognition, planetary scale, Plutocrats, plutocrats, Post-materialism, post-materialism, Potemkin village, RFID, Richard Feynman, Richard Feynman, Richard Stallman, Robert X Cringely, Schrödinger's Cat, Search for Extraterrestrial Intelligence, SETI@home, Silicon Valley, Skype, social software, spaced repetition, Steve Ballmer, Steve Jobs, Steve Wozniak, Ted Nelson, the built environment, The Death and Life of Great American Cities, the medium is the message, Thomas L Friedman, Turing machine, Turing test, urban planning, urban renewal, Vannevar Bush, walkable city, Watson beat the top human players on Jeopardy!, William Shockley: the traitorous eight

—Vannevar Bush People tend to overestimate what can be done in one year and underestimate what can be done in five to ten years. —J.C.R. Licklider 147 GENERATIONS There are many mathematicians, early computer scientists, and engineers who deserve to be considered part of the first generation of pioneering Patriarchs. They include Alan Turing, already discussed in chapter 2; mathematician and quantum theorist John von Neumann; cyberneticist Norbert Wiener; information theorist Claude Shannon; and computer architects like the German Konrad Zuse, and Americans J. Presper Eckert and John Mauchly, who developed ENIAC, the room-sized machine at the University of Pennsylvania that we recognize as the first general-purpose electronic computer. These were the Patriarchs who set the parameters for computer science, laying out the issues for software development, building the original architectures for hardware, and creating the cultures of computer science and engineering.

 

pages: 369 words: 80,355

Too Big to Know: Rethinking Knowledge Now That the Facts Aren't the Facts, Experts Are Everywhere, and the Smartest Person in the Room Is the Room by David Weinberger

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

airport security, Alfred Russel Wallace, Amazon Mechanical Turk, Berlin Wall, Black Swan, book scanning, Cass Sunstein, corporate social responsibility, crowdsourcing, Danny Hillis, David Brooks, Debian, double entry bookkeeping, double helix, en.wikipedia.org, Exxon Valdez, Fall of the Berlin Wall, future of journalism, Galaxy Zoo, Hacker Ethic, Haight Ashbury, hive mind, Howard Rheingold, invention of the telegraph, jimmy wales, John Harrison: Longitude, Kevin Kelly, linked data, Netflix Prize, New Journalism, Nicholas Carr, Norbert Wiener, openstreetmap, P = NP, Pluto: dwarf planet, profit motive, Ralph Waldo Emerson, RAND corporation, Ray Kurzweil, Republic of Letters, RFID, Richard Feynman, Richard Feynman, Ronald Reagan, semantic web, slashdot, social graph, Steven Pinker, Stewart Brand, technological singularity, Ted Nelson, the scientific method, The Wisdom of Crowds, Thomas Kuhn: the structure of scientific revolutions, Thomas Malthus, Whole Earth Catalog, X Prize

Smitha, “An Imperfect Democracy,” in Macrohistory and World Report, http://www.fsmitha.com/h1/hell04.htm. 11 The IBM 650 could use the “IBM 650 Magnetic Drum Data Processing machine with a series of disk memory units, which are capable of storing a total of 24-million digits” (http://www-03.ibm.com/ibm/history/exhibits/650/650_pr2.html). I am assuming that a desktop computer these days has a terabyte of hard-disk space. 12 Alvin Toffler, Future Shock (Random House, 1970), p. 350. The term “information overload” appeared as early as 1962; see Bertram M. Gross, “Operation Basic: The Retrieval of Wasted Knowledge,” Journal of Communication 12 (1967): 67–83, DOI: 10.1111. And Norbert Wiener talked about overloading the nervous system even earlier in his 1948 book Cybernetics (MIT Press, reprinted in 1961). 13 The concept of sensory overload was itself new. It’s often traced back to an article by Georg Simmel, written in 1903, that explained how the overwhelming sensations experienced by city-dwellers can make them reserved and unresponsive. The term “sensory overload” doesn’t show up until the 1950s, and hit public consciousness in the late 1960s only when it became useful for warning kids to stay away from psychedelics. 14 Toffler, Future Shock, p. 301. 15 Ibid. 16 Ibid. 17 Writing ten years later, one of the authors, Jacob Jacoby, criticized his own research: “Respondents were told that each of the brands of rice/prepared dinners were either high or low in calories per serving.”

 

pages: 262 words: 65,959

The Simpsons and Their Mathematical Secrets by Simon Singh

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Andrew Wiles, Benoit Mandelbrot, cognitive dissonance, Erdős number, Georg Cantor, Grace Hopper, Isaac Newton, John Nash: game theory, mandelbrot fractal, Menlo Park, Norbert Wiener, P = NP, Paul Erdős, probability theory / Blaise Pascal / Pierre de Fermat, Richard Feynman, Richard Feynman, Schrödinger's Cat, Simon Singh, Stephen Hawking, Wolfskehl Prize, women in the workforce

Curious about what else was making my fellow geeks chortle, I asked people to e-mail me their favorite mathematical jokes, and for the past decade I have received a steady flow of comedic offerings of a nerdy nature, ranging from dismal puns to rich anecdotes. One of my favorites is a story that was originally told by the historian of mathematics Howard Eves (1911–2004). The tale concerns the mathematician Norbert Wiener, who pioneered cybernetics: When [Wiener] and his family moved to a new house a few blocks away, his wife gave him written directions on how to reach it, since she knew he was absentminded. But when he was leaving his office at the end of the day, he couldn’t remember where he put her note, and he couldn’t remember where the new house was. So he drove to his old neighborhood instead. He saw a young child and asked her, “Little girl, can you tell me where the Wieners moved?”

 

Blindside: How to Anticipate Forcing Events and Wild Cards in Global Politics by Francis Fukuyama

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Asian financial crisis, banking crisis, Berlin Wall, Bretton Woods, British Empire, capital controls, Carmen Reinhart, cognitive bias, cuban missile crisis, energy security, flex fuel, income per capita, informal economy, invisible hand, John von Neumann, Menlo Park, Mikhail Gorbachev, moral hazard, Norbert Wiener, oil rush, oil shale / tar sands, oil shock, packet switching, RAND corporation, Ray Kurzweil, reserve currency, Ronald Reagan, The Wisdom of Crowds, trade route, Vannevar Bush, Vernor Vinge, Yom Kippur War

But the stored-program approach had the obvious advantage of convenience: once all the instructions were stored electronically, so that the problemsolving sequence was entirely separate from the hardware, the function of the computer could be changed without having to touch the wiring. Or to put it another way, the act of computation had become an abstraction embodied in what is now known as software. The history of information technology offers many other examples of invention-by-convergence. Among them: —The modern concept of information and information processing was a synthesis of insights developed in the 1930s and 1940s by Alan Turing, Claude Shannon, Norbert Wiener, Warren McCulloch, Walter Pitts, and John von Neumann.12 —The hobbyists who sparked the personal computer revolution in the late 1970s were operating (consciously or not) in the context of ideas that had been around for a decade or more. There was the notion of interactive comput- 2990-7 ch11 waldrop 7/23/07 12:13 PM innovation and adaptation Page 125 125 ing, for example, in which a computer would respond to the user’s input immediately (as opposed to generating a stack of fanfold printout hours later); this idea dated back to the Whirlwind project, an experiment in real-time computing that began at MIT in the 1940s.13 There were the twin notions of individually controlled computing (having a computer apparently under the control of a single user) and home computing (having a computer in your own house); both emerged in the 1960s from MIT’s Project MAC, an early experiment in time-sharing.14 And then there was the notion of a computer as an open system, meaning that a user could modify it, add to it, and upgrade it however he or she wanted; that practice was already standard in the minicomputer market, which was pioneered by the Digital Equipment Corporation in the 1960s.15 —The Internet as we know it today represents the convergence of (among other ideas) the notion of packet-switched networking from the 1960s;16 the notion of internetworking (as embodied in the TCP/IP protocol), which was developed in the 1970s to allow packets to pass between different networks;17 and the notion of hypertext—which, of course, goes back to Vannevar Bush’s article on the memex in 1945. 2990-7 ch11 waldrop 7/23/07 12:13 PM Page 126 2990-7 ch12 kurth 7/23/07 12:14 PM Page 127 Part IV What Could Be 2990-7 ch12 kurth 7/23/07 12:14 PM Page 128 2990-7 ch12 kurth 7/23/07 12:14 PM Page 129 12 Cassandra versus Pollyanna A Debate between James Kurth and Gregg Easterbrook James Kurth: I am an optimist about the current pessimism, but a pessimist overall.

 

pages: 257 words: 80,100

Time Travel: A History by James Gleick

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, Albert Einstein, Albert Michelson, Arthur Eddington, augmented reality, butterfly effect, crowdsourcing, Doomsday Book, index card, Isaac Newton, John von Neumann, luminiferous ether, Marshall McLuhan, Norbert Wiener, pattern recognition, Richard Feynman, Richard Feynman, Schrödinger's Cat, self-driving car, Stephen Hawking, telepresence, wikimedia commons

“There is a venerable strain of intellectual history that proclaims that time does not exist,” he noted. “There is a strong temptation to throw up one’s hands and proclaim the whole thing is an illusion.” A landmark on that road is an essay published in 1908 by the journal Mind, “The Unreality of Time,” by John McTaggart Ellis McTaggart. He was an English philosopher, by then a fixture at Trinity College, Cambridge.*9 McTaggart was said (by Norbert Wiener) to have made a cameo appearance in Alice’s Adventures in Wonderland as the Dormouse, “with his pudgy hands, his sleepy air, and his sidelong walk.” He had been arguing for years that our common view of time is an illusion, and now he made his case. “It doubtless seems highly paradoxical to assert that Time is unreal,” he began. But consider… He contrasts two different ways of talking about “positions in time” (or “events”).

 

pages: 829 words: 186,976

The Signal and the Noise: Why So Many Predictions Fail-But Some Don't by Nate Silver

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

airport security, availability heuristic, Benoit Mandelbrot, Berlin Wall, Bernie Madoff, big-box store, Black Swan, Broken windows theory, Carmen Reinhart, Claude Shannon: information theory, Climategate, Climatic Research Unit, cognitive dissonance, collapse of Lehman Brothers, collateralized debt obligation, complexity theory, computer age, correlation does not imply causation, Credit Default Swap, credit default swaps / collateralized debt obligations, cuban missile crisis, Daniel Kahneman / Amos Tversky, diversification, Donald Trump, Edmond Halley, Edward Lorenz: Chaos theory, en.wikipedia.org, equity premium, Eugene Fama: efficient market hypothesis, everywhere but in the productivity statistics, fear of failure, Fellow of the Royal Society, Freestyle chess, fudge factor, George Akerlof, haute cuisine, Henri Poincaré, high batting average, housing crisis, income per capita, index fund, Internet Archive, invention of the printing press, invisible hand, Isaac Newton, James Watt: steam engine, John Nash: game theory, John von Neumann, Kenneth Rogoff, knowledge economy, locking in a profit, Loma Prieta earthquake, market bubble, Mikhail Gorbachev, Moneyball by Michael Lewis explains big data, Monroe Doctrine, mortgage debt, Nate Silver, new economy, Norbert Wiener, PageRank, pattern recognition, pets.com, prediction markets, Productivity paradox, random walk, Richard Thaler, Robert Shiller, Robert Shiller, Rodney Brooks, Ronald Reagan, Saturday Night Live, savings glut, security theater, short selling, Skype, statistical model, Steven Pinker, The Great Moderation, The Market for Lemons, the scientific method, The Signal and the Noise by Nate Silver, The Wisdom of Crowds, Thomas Kuhn: the structure of scientific revolutions, too big to fail, transaction costs, transfer pricing, University of East Anglia, Watson beat the top human players on Jeopardy!, wikimedia commons

Too many of its parameters are not known to within an order of magnitude; depending on which values you plug in, it can yield answers anywhere from that we are all alone in the universe to that there are billions and billions of extraterrestrial species. However, the Drake equation has nevertheless been a highly useful lens for astronomers to think about life, the universe, and everything. 90. George E. P. Box and Norman R. Draper, Empirical Model-Building and Response Surfaces (New York: Wiley, 1987), p. 424. 91. “Norbert Wiener,” Wikiquote.org. http://en.wikiquote.org/wiki/Norbert_Wiener. CHAPTER 8: LESS AND LESS AND LESS WRONG 1. Roland Lazenby, The Show: The Inside Story of the Spectacular Los Angeles Lakers in the Words of Those Who Lived It (New York: McGraw-Hill Professional, 2006). 2. Mark Heisler, “The Times’ Rankings: Top to Bottom/NBA,” Los Angeles Times, November 7, 1999. 3. Tom Spousta, “Pro Basketball: Trail Blazers Have Had Some Success Containing O’Neal,” New York Times, May 20, 2000. http://www.nytimes.com/2000/05/20/sports/pro-basketball-trail-blazers-have-had-some-success-containing-o-neal.html?

 

pages: 879 words: 233,093

The Empathic Civilization: The Race to Global Consciousness in a World in Crisis by Jeremy Rifkin

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

agricultural Revolution, Albert Einstein, back-to-the-land, British Empire, carbon footprint, collaborative economy, death of newspapers, delayed gratification, distributed generation, en.wikipedia.org, energy security, feminist movement, global village, hydrogen economy, illegal immigration, income inequality, income per capita, interchangeable parts, Internet Archive, invention of movable type, invention of the steam engine, invisible hand, Isaac Newton, James Watt: steam engine, Johann Wolfgang von Goethe, labour mobility, Mahatma Gandhi, Marshall McLuhan, means of production, megacity, meta analysis, meta-analysis, Milgram experiment, new economy, New Urbanism, Norbert Wiener, out of africa, Peace of Westphalia, peak oil, planetary scale, Simon Kuznets, Skype, smart grid, smart meter, supply-chain management, surplus humans, the medium is the message, the scientific method, The Wealth of Nations by Adam Smith, The Wisdom of Crowds, theory of mind, transaction costs, upwardly mobile, uranium enrichment, working poor, World Values Survey

Ruef explain that physiological synchrony and emotional synchrony are bidirectional—that is, “emotional synchrony can produce physiological synchrony, and physiological synchrony can produce emotional synchrony.”28 While the bidirectional nature is duly noted, Hoffman believes that the physiological component is a more powerful driver than we previously thought. William James drew attention to the significance of the physiological trigger in inducing an emotional state. He observed that “[w]e feel sorry because we cry, angry because we strike, and afraid because we tremble.”29 We call this afferent feedback. (The term “feedback” was first popularized by Norbert Wiener, the father of cybernetics theory, in the 1950s.) In an interesting study conducted in the 1970s, researchers were able to lend scientific credibility to James’s theoretical musings. Electrodes were placed on the faces of subjects. The researcher then arranged the subjects’ faces into emotional expressions—smiles and frowns—without their realizing it, simply by asking them to contract various muscles.

The T-groups brought together a small number of strangers with the goal of teaching them how to function better in groups. The participants spent two to three weeks together to give them sufficient time to reorient their behavior and solidify their new psyche before returning to their communities. One of the critical features of T-groups is feedback—a concept that was just then being popularized by Norbert Wiener in his work in the new field of cybernetics. As part of the sensitivity training, each participant is asked to share his or her own perceptions of everyone else in the group. In doing so, the individual often reveals as much about himself—his attitudes, biases, emotional concerns, and his preconceived ideas and opinions about human nature and relationships, and so forth, all of which, in turn, become the subject of feedback from others.

 

pages: 798 words: 240,182

The Transhumanist Reader by Max More, Natasha Vita-More

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, Any sufficiently advanced technology is indistinguishable from magic, artificial general intelligence, augmented reality, Bill Joy: nanobots, bioinformatics, brain emulation, Buckminster Fuller, cellular automata, clean water, cloud computing, cognitive bias, cognitive dissonance, combinatorial explosion, conceptual framework, Conway's Game of Life, cosmological principle, data acquisition, discovery of DNA, Drosophila, en.wikipedia.org, experimental subject, Extropian, fault tolerance, Flynn Effect, Francis Fukuyama: the end of history, Frank Gehry, friendly AI, game design, germ theory of disease, hypertext link, impulse control, index fund, John von Neumann, joint-stock company, Kevin Kelly, Law of Accelerating Returns, life extension, Louis Pasteur, Menlo Park, meta analysis, meta-analysis, moral hazard, Network effects, Norbert Wiener, P = NP, pattern recognition, phenotype, positional goods, prediction markets, presumed consent, Ray Kurzweil, reversible computing, RFID, Richard Feynman, Ronald Reagan, silicon-based life, Singularitarianism, stem cell, stochastic process, superintelligent machines, supply-chain management, supply-chain management software, technological singularity, Ted Nelson, telepresence, telepresence robot, telerobotics, the built environment, The Coming Technological Singularity, the scientific method, The Wisdom of Crowds, transaction costs, Turing machine, Turing test, Upton Sinclair, Vernor Vinge, Von Neumann architecture, Whole Earth Review, women in the workforce

Further Reading Carabine, Deirdre (2000) John Scottus Eriugena. Oxford: Oxford University Press. Cecconi, F., Alvarez-Bolado, G., Meyer, B., Roth, K., and Gruss, P. (1998) “Apaf1 (CED-4 Homolog) Regulates Programmed Cell Death in Mammalian Development.” Cell 94 (September 18), pp. 727–737. Published 5-10092. Göttingen: Max Planck Institute for Biophysical Chemistry. Conway, Flo and Siegelman, Jim (2005) Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics. New York: Basic Books. 8 The Hybronaut Affair A Ménage of Art, Technology, and Science Laura Beloff Techno-Organic Environment Alfons Schilling began his long-term investigations on perception during the early 1960s by designing motion paintings,1 and continued the research with design of optical instruments called Vision Machines.2 Schilling’s experiments were constructed as head-worn objects, or instruments, in various shapes and sizes, which transformed the viewer’s perception through first-hand experience.

I am not, of course, wanting to invoke the old metaphors of Nature in this assertion, but seeking to identify the metaphors of a new nature, second-order nature, emergent nature, Nature II, a new creativity whose “engines of creation” (Drexler 1990) will embrace artificial life. In Engines of Creation, Drexler gives a visionary and authoritative account of the consequences for “nature” of new technological developments, particularly of nanotechnology, the engineering of molecular computers which can self-assemble and replicate within human cells or build complex structures in outer space, which contains for artists some of the most radical implications since Norbert Wiener’s Cybernetics (Wiener 1948), published in 1948. Wiener’s ideas led effectively to the computer revolution, the Information Society, and to the Telematic Culture. It may very well be that Drexler’s writing signals the stirrings of a twenty-first-century revolution, the molecular revolution, the first shots of which have already been fired with the synthesis of chemicals with internal moving parts, a prototype of the molecular machine which will lead us in a matter of decades to the optical molecular computers which may make our present “electronic space” an obsolescent environment But following McLuhan’s idea that the content of a new medium is the medium which preceded it, the rear-view mirror effect, we telematic artists can be optimistic that the molecular society of tomorrow will realize with ease the ideas of telepresence, connectivity, distributed authorship, and interactivity, which we are working with today.

 

pages: 396 words: 112,748

Chaos by James Gleick

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Benoit Mandelbrot, butterfly effect, cellular automata, Claude Shannon: information theory, discrete time, Edward Lorenz: Chaos theory, experimental subject, Georg Cantor, Henri Poincaré, Isaac Newton, iterative process, John von Neumann, Louis Pasteur, mandelbrot fractal, Murray Gell-Mann, Norbert Wiener, pattern recognition, Richard Feynman, Richard Feynman, Stephen Hawking, stochastic process, trade route

THE BUTTERFLY EFFECT Lorenz originally used the image of a seagull; the more lasting name seems to have come from his paper, “Predictability; Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?” address at the annual meeting of the American Association for the Advancement of Science in Washington, 29 December 1979. SUPPOSE THE EARTH Yorke. “PREDICTION, NOTHING” Lorenz, White. THERE MUST BE A LINK “The Mechanics of Vacillation.” FOR WANT OF A NAIL George Herbert; cited in this context by Norbert Wiener, “Nonlinear Prediction and Dynamics,” in Collected Works with Commentaries, ed. P. Masani (Cambridge, Mass.: The M.I.T. Press, 1981), 3:371. Wiener anticipated Lorenz in seeing at least the possibility of “self-amplitude of small details of the weather map.” He noted, “A tornado is a highly local phenomenon, and apparent trifles of no great extent may determine its exact track.” “THE CHARACTER OF THE EQUATION” John von Neumann, “Recent Theories of Turbulence” (1949), in Collected Works, ed.

 

pages: 335 words: 107,779

Some Remarks by Neal Stephenson

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

airport security, augmented reality, barriers to entry, British Empire, cable laying ship, call centre, cellular automata, edge city, Eratosthenes, Fellow of the Royal Society, Hacker Ethic, impulse control, Iridium satellite, Isaac Newton, Jaron Lanier, John von Neumann, Just-in-time delivery, Kevin Kelly, music of the spheres, Norbert Wiener, offshore financial centre, oil shock, packet switching, pirate software, Richard Feynman, Richard Feynman, Saturday Night Live, shareholder value, Silicon Valley, Skype, slashdot, social web, Socratic dialogue, South China Sea, special economic zone, Stephen Hawking, the scientific method, trade route, Turing machine, uranium enrichment, Vernor Vinge, X Prize

A translator of Leibniz’s work, beginning in a.d. 2010 from a blank sheet of paper, would, I submit, be more likely to use words like “computer” and “computation” than “soul” and “cognition.” During Leibniz’s era, the only person who had thought seriously about such machines was Leibniz himself; building on earlier work by Blaise Pascal, he designed, and caused to be built, a mechanical computer, and envisioned coupling it to a formal logical system called the Characteristica Universalis. He invented binary arithmetic, and, according to no less an authority than Norbert Wiener, pioneered the idea of feedback. 3. In particular, the monads’ production rule scheme clearly presages the modern concept of cellular automata. Quoting from Mercer’s work: “The Production Rule of F is a rule for the continuous production of the discrete states of F so that it instructs F about exactly what to think at every moment of F’s existence. Following Leibniz’s suggestion, if F exists from t1 to tn and has a different thought at each moment of its existence, then at every moment, there will be an instruction about what to think next.

 

pages: 378 words: 110,518

Postcapitalism: A Guide to Our Future by Paul Mason

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Alfred Russel Wallace, bank run, banking crisis, banks create money, Basel III, Bernie Madoff, Bill Gates: Altair 8800, bitcoin, Branko Milanovic, Bretton Woods, BRICs, British Empire, business process, butterfly effect, call centre, capital controls, Claude Shannon: information theory, collaborative economy, collective bargaining, Corn Laws, corporate social responsibility, credit crunch, currency manipulation / currency intervention, currency peg, David Graeber, deglobalization, deindustrialization, deskilling, discovery of the americas, Downton Abbey, en.wikipedia.org, energy security, eurozone crisis, factory automation, financial repression, Firefox, Fractional reserve banking, Frederick Winslow Taylor, full employment, future of work, game design, income inequality, inflation targeting, informal economy, Internet of things, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, Joseph Schumpeter, Kevin Kelly, knowledge economy, knowledge worker, late capitalism, low skilled workers, market clearing, means of production, Metcalfe's law, money: store of value / unit of account / medium of exchange, mortgage debt, Network effects, new economy, Norbert Wiener, Occupy movement, oil shale / tar sands, oil shock, payday loans, post-industrial society, precariat, price mechanism, profit motive, quantitative easing, race to the bottom, RAND corporation, rent-seeking, reserve currency, RFID, Richard Stallman, Robert Gordon, secular stagnation, sharing economy, Stewart Brand, structural adjustment programs, supply-chain management, the scientific method, The Wealth of Nations by Adam Smith, Transnistria, union organizing, universal basic income, urban decay, urban planning, wages for housework, women in the workforce

Over roughly the same period, the cost of one gigabyte of storage has fallen from a dollar to 3 cents; and the cost of a one megabit broadband connection has fallen from $1,000 in the year 2000 to $23 today. Deloitte, who did these calculations, describes the falling price of basic info-tech as exponential: ‘The current pace of technological advance is unprecedented in history and shows no signs of stabilizing as other historical technological innovations, such as electricity, eventually did.’26 It has become commonplace to think of information as ‘immaterial’. Norbert Wiener, one of the founders of information theory once claimed: ‘Information is information, not matter or energy. No materialism which does not admit this can survive at the present day.’27 But this is a fallacy. In 1961, IBM physicist Rolf Landauer proved, logically, that information is physical.28 He wrote: ‘Information is not a disembodied abstract entity; it is always tied to a physical representation.

 

pages: 323 words: 95,939

Present Shock: When Everything Happens Now by Douglas Rushkoff

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

algorithmic trading, Andrew Keen, bank run, Benoit Mandelbrot, big-box store, Black Swan, British Empire, Buckminster Fuller, cashless society, citizen journalism, clockwork universe, cognitive dissonance, Credit Default Swap, crowdsourcing, Danny Hillis, disintermediation, Donald Trump, double helix, East Village, Elliott wave, European colonialism, Extropian, facts on the ground, Flash crash, game design, global supply chain, global village, Howard Rheingold, hypertext link, Inbox Zero, invention of agriculture, invention of hypertext, invisible hand, iterative process, John Nash: game theory, Kevin Kelly, laissez-faire capitalism, Law of Accelerating Returns, loss aversion, mandelbrot fractal, Marshall McLuhan, Merlin Mann, Milgram experiment, mutually assured destruction, Network effects, New Urbanism, Nicholas Carr, Norbert Wiener, Occupy movement, passive investing, pattern recognition, peak oil, price mechanism, prisoner's dilemma, Ralph Nelson Elliott, RAND corporation, Ray Kurzweil, recommendation engine, Silicon Valley, Skype, social graph, South Sea Bubble, Steve Jobs, Steve Wozniak, Steven Pinker, Stewart Brand, supply-chain management, the medium is the message, The Wisdom of Crowds, theory of mind, Turing test, upwardly mobile, Whole Earth Catalog, WikiLeaks, Y2K

As writer Archibald MacLeish described it, “To see the Earth as it truly is, small and blue and beautiful in that eternal silence where it floats, is to see ourselves as riders on the Earth together, brothers on that bright loveliness in the eternal cold—brothers who know now that they are truly brothers.”11 Soon after that, the development of the Internet—also an outgrowth of the Cold War funding—concretized this sense of lateral, peer-to-peer relationships between people in a network. Hierarchies of command and control began losing ground to networks of feedback and iteration. A new way of modeling and gaming the activities of people would have to be found. The idea of bringing feedback into the mix came from the mathematician Norbert Wiener, back in the 1940s, shortly after his experiences working for the military on navigation and antiaircraft weapons. He had realized that it’s much harder to plan for every eventuality in advance than simply to change course as conditions change. As Wiener explained it to his peers, a boat may set a course for a destination due east, but then wind and tides push the boat toward the south. The navigator reads the feedback on the compass and corrects for the error by steering a bit north.

 

pages: 502 words: 107,657

Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die by Eric Siegel

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, algorithmic trading, Amazon Mechanical Turk, Apple's 1984 Super Bowl advert, backtesting, Black Swan, book scanning, bounce rate, business intelligence, business process, call centre, computer age, conceptual framework, correlation does not imply causation, crowdsourcing, dark matter, data is the new oil, en.wikipedia.org, Erik Brynjolfsson, experimental subject, Google Glasses, happiness index / gross national happiness, job satisfaction, Johann Wolfgang von Goethe, Machine translation of "The spirit is willing, but the flesh is weak." to Russian and back, Moneyball by Michael Lewis explains big data, Nate Silver, natural language processing, Netflix Prize, Network effects, Norbert Wiener, personalized medicine, placebo effect, prediction markets, Ray Kurzweil, recommendation engine, risk-adjusted returns, Ronald Coase, Search for Extraterrestrial Intelligence, self-driving car, sentiment analysis, software as a service, speech recognition, statistical model, Steven Levy, text mining, the scientific method, The Signal and the Noise by Nate Silver, The Wisdom of Crowds, Turing test, Watson beat the top human players on Jeopardy!, X Prize, Yogi Berra

Jitters For the Win After Match: Honor, Accolades, and Awe Iambic IBM AI Predict the Right Thing Chapter 7: Persuasion by the Numbers (uplift) Churn Baby Churn Sleeping Dogs A New Thing to Predict Eye Can’t See It Perceiving Persuasion Persuasive Choices Business Stimulus and Business Response The Quantum Human Predicting Influence with Uplift Modeling Banking on Influence Predicting the Wrong Thing Response Uplift Modeling The Mechanics of Uplift Modeling How Uplift Modeling Works The Persuasion Effect Influence Across Industries Immobilizing Mobile Customers Afterword: Ten Predictions for the First Hour of 2020 Appendices Appendix A. Five Effects of Prediction Appendix B. Twenty-One Applications of Predictive Analytics Appendix C. Prediction People—Cast of “Characters” Notes Acknowledgments About the Author Supplement: A Cross-Industry Compendium of 147 Examples Index Foreword This book deals with quantitative efforts to predict human behavior. One of the earliest efforts to do that was in World War II. Norbert Wiener, the father of “cybernetics,” began trying to predict the behavior of German airplane pilots in 1940—with the goal of shooting them from the sky. His method was to take as input the trajectory of the plane from its observed motion, consider the pilot’s most likely evasive maneuvers, and predict where the plane would be in the near future so that a fired shell could hit it. Unfortunately, Wiener could predict only one second ahead of a plane’s motion, but 20 seconds of future trajectory were necessary to shoot down a plane.

 

pages: 366 words: 94,209

Throwing Rocks at the Google Bus: How Growth Became the Enemy of Prosperity by Douglas Rushkoff

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Airbnb, algorithmic trading, Amazon Mechanical Turk, Andrew Keen, bank run, banking crisis, barriers to entry, bitcoin, blockchain, Burning Man, business process, buy low sell high, California gold rush, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, centralized clearinghouse, citizen journalism, clean water, cloud computing, collaborative economy, collective bargaining, colonial exploitation, Community Supported Agriculture, corporate personhood, crowdsourcing, cryptocurrency, disintermediation, diversified portfolio, Elon Musk, Erik Brynjolfsson, ethereum blockchain, fiat currency, Firefox, Flash crash, full employment, future of work, gig economy, Gini coefficient, global supply chain, global village, Google bus, Howard Rheingold, IBM and the Holocaust, impulse control, income inequality, index fund, iterative process, Jaron Lanier, Jeff Bezos, jimmy wales, job automation, Joseph Schumpeter, Kickstarter, loss aversion, Lyft, Mark Zuckerberg, market bubble, market fundamentalism, Marshall McLuhan, means of production, medical bankruptcy, minimum viable product, Naomi Klein, Network effects, new economy, Norbert Wiener, Oculus Rift, passive investing, payday loans, peer-to-peer lending, Peter Thiel, post-industrial society, profit motive, quantitative easing, race to the bottom, recommendation engine, reserve currency, RFID, Richard Stallman, ride hailing / ride sharing, Ronald Reagan, Satoshi Nakamoto, Second Machine Age, shareholder value, sharing economy, Silicon Valley, Snapchat, social graph, software patent, Steve Jobs, TaskRabbit, trade route, transportation-network company, Turing test, Uber and Lyft, Uber for X, unpaid internship, Y Combinator, young professional, Zipcar

Already in China, the implementation of 3-D printing and other automated solutions is threatening hundreds of thousands of high-tech manufacturing jobs, many of which have existed for less than a decade.43 American factories would be winning back this business but for a shortage of workers with the training necessary to run an automated factory. Still, this wealth of opportunity will likely be only temporary. Once the robots are in place, their continued upkeep and a large part of their improvement will be automated as well. Humans may have to learn to live with it. It’s a conundrum that was first articulated back in the 1940s by Norbert Wiener, the inventor of cybernetics and the feedback mechanisms that turned plain old machines into responsive, decision-making robots. Wiener understood that in order for people to remain valuable in the coming technologized economy, we were going to have to figure out what we can do—if anything—better than the technologies we have created. If not, we were going to have to figure out a way to cope in a world where robots tilled the fields.

 

pages: 345 words: 86,394

Frequently Asked Questions in Quantitative Finance by Paul Wilmott

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, asset allocation, Black-Scholes formula, Brownian motion, butterfly effect, capital asset pricing model, collateralized debt obligation, Credit Default Swap, credit default swaps / collateralized debt obligations, delta neutral, discrete time, diversified portfolio, Emanuel Derman, Eugene Fama: efficient market hypothesis, fixed income, fudge factor, implied volatility, incomplete markets, interest rate derivative, interest rate swap, iterative process, London Interbank Offered Rate, Long Term Capital Management, Louis Bachelier, mandelbrot fractal, margin call, market bubble, martingale, Norbert Wiener, quantitative trading / quantitative finance, random walk, regulatory arbitrage, risk/return, Sharpe ratio, statistical arbitrage, statistical model, stochastic process, stochastic volatility, transaction costs, urban planning, value at risk, volatility arbitrage, volatility smile, Wiener process, yield curve, zero-coupon bond

The two main ways of doing this are Monte Carlo and finite differences (a sophisticated version of the binomial model). The very first use of the finite-difference method, in which a differential equation is discretized into a difference equation, was by Lewis Fry Richardson in 1911, and used to solve the diffusion equation associated with weather forecasting. See Richardson (1922). Richardson later worked on the mathematics for the causes of war. 1923 Wiener Norbert Wiener developed a rigorous theory for Brownian motion, the mathematics of which was to become a necessary modelling device for quantitative finance decades later. The starting point for almost all financial models, the first equation written down in most technical papers, includes the Wiener process as the representation for randomness in asset prices. See Wiener (1923). 1950s Samuelson The 1970 Nobel Laureate in Economics, Paul Samuelson, was responsible for setting the tone for subsequent generations of economists.

 

The Future of Money by Bernard Lietaer

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

agricultural Revolution, banks create money, barriers to entry, Bretton Woods, clean water, complexity theory, dematerialisation, discounted cash flows, diversification, fiat currency, financial deregulation, financial innovation, floating exchange rates, full employment, George Gilder, German hyperinflation, global reserve currency, Golden Gate Park, Howard Rheingold, informal economy, invention of the telephone, invention of writing, Lao Tzu, Mahatma Gandhi, means of production, microcredit, money: store of value / unit of account / medium of exchange, Norbert Wiener, North Sea oil, offshore financial centre, pattern recognition, post-industrial society, price stability, reserve currency, Ronald Reagan, seigniorage, Silicon Valley, South Sea Bubble, the market place, the payments system, trade route, transaction costs, trickle-down economics, working poor

If Keynes is right, we will for the first time in history be forced to reinvent ourselves, to find other ways to identify who we are. We won't any longer be able to identify ourselves with these 'production labels'. In other words, we will be forced to seek other identities, other reasons that give a purpose to our lives. Keynes concluded that 'no country can look forward ... without a dread' to this unprecedented historic shift. Nor was Keynes the only one to foresee such problems. Norbert Wiener, the originator of cybernetics, was also one of the very first to warn us of the social implications of computers: Let us remember that the automatic machine [i.e. computer-driven production equipment] ... is the precise economic equivalent of slave labour. Any labour, which competes with slave labour, must accept economic conditions of slave labour. It is perfectly clear that this will produce an unemployment situation in comparison with which the present recession and even the depression of the thirties will seem a pleasant joke.

 

pages: 362 words: 97,862

Physics in Mind: A Quantum View of the Brain by Werner Loewenstein

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, complexity theory, dematerialisation, discovery of DNA, Gödel, Escher, Bach, Henri Poincaré, informal economy, information trail, Isaac Newton, Murray Gell-Mann, Necker cube, Norbert Wiener, Richard Feynman, Richard Feynman, stem cell, trade route, Turing machine

.* You may be inclined to think that rigorous logical reasoning is an exception, that surely mathematical thinking could not possibly be unconscious. Well, you would be wrong. Mathematicians themselves insist that some of their most profound thinking is unconscious. There is firsthand testimony in a fascinating book by the mathematician Jacques Hadamard, in which he offers his insights and those of two other distinguished mathematicians, George Polya and Norbert Wiener. All three stress that many of their cogitations are unconscious. There is no shortage of other testimony of this sort, and quite a few go further back. Poincaré, for example, describes in one of his lectures how the crucial idea for one of his famous theorems (on the fuchsian function) suddenly came to him as he put his foot on the steps of a bus coming from the town of Coutances. And Gauss tells about a theorem he had unsuccessfully tried to prove for years, “Finally, two days ago, I succeeded, not on account of my painful efforts. . . .

 

pages: 302 words: 82,233

Beautiful security by Andy Oram, John Viega

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Amazon Web Services, business intelligence, business process, call centre, cloud computing, corporate governance, credit crunch, crowdsourcing, defense in depth, en.wikipedia.org, fault tolerance, Firefox, loose coupling, market design, Monroe Doctrine, new economy, Nicholas Carr, Nick Leeson, Norbert Wiener, optical character recognition, packet switching, performance metric, pirate software, Search for Extraterrestrial Intelligence, security theater, SETI@home, Silicon Valley, Skype, software as a service, statistical model, Steven Levy, The Wisdom of Crowds, Upton Sinclair, web application, web of trust, x509 certificate, zero day, Zimmermann PGP

In 2008 PC World named him one of the Top 50 Tech Visionaries of the last 50 years. In 2003 he was included on the Heinz Nixdorf MuseumsForum Wall of Fame, and in 2001 he was inducted into the CRN Industry Hall of Fame. In 1999 he received the Louis Brandeis Award from Privacy International, in 1998 a Lifetime Achievement Award from CONTRIBUTORS 267 Secure Computing Magazine, and in 1996 the Norbert Wiener Award from Computer Professionals for Social Responsibility for promoting the responsible use of technology. In 1995, Newsweek named Zimmermann one of the “Net 50,” the 50 most influential people on the Internet. Zimmermann received his bachelor’s degree in computer science from Florida Atlantic University in 1978. He is a member of the International Association of Cryptologic Research, the Association for Computing Machinery, and the League for Programming Freedom.

 

pages: 696 words: 143,736

The Age of Spiritual Machines: When Computers Exceed Human Intelligence by Ray Kurzweil

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, Any sufficiently advanced technology is indistinguishable from magic, Buckminster Fuller, call centre, cellular automata, combinatorial explosion, complexity theory, computer age, computer vision, cosmological constant, cosmological principle, Danny Hillis, double helix, Douglas Hofstadter, first square of the chessboard / second half of the chessboard, fudge factor, George Gilder, Gödel, Escher, Bach, I think there is a world market for maybe five computers, information retrieval, invention of movable type, Isaac Newton, iterative process, Jacquard loom, Jacquard loom, John von Neumann, Lao Tzu, Law of Accelerating Returns, mandelbrot fractal, Marshall McLuhan, Menlo Park, natural language processing, Norbert Wiener, optical character recognition, pattern recognition, phenotype, Ralph Waldo Emerson, Ray Kurzweil, Richard Feynman, Richard Feynman, Schrödinger's Cat, Search for Extraterrestrial Intelligence, self-driving car, Silicon Valley, speech recognition, Steven Pinker, Stewart Brand, stochastic process, technological singularity, Ted Kaczynski, telepresence, the medium is the message, traveling salesman, Turing machine, Turing test, Whole Earth Review, Y2K

Cybernetic artists will become increasingly commonplace starting in 2009. Cybernetic chauffeur Self-driving cars that use special sensors in the roads. Self driving cars are being experimented with in the late 1990s, with implementation on major highways feasible during the first decade of the twenty-first century. Cybernetic poet A computer program that is able to create original poetry. Cybernetics A term coined by Norbert Wiener to describe the “science of control and communication in animals and machines.” Cybernetics is based on the theory that intelligent living beings adapt to their environments and accomplish objectives primarily by reacting to feedback from their surroundings. Database The structured collection of data that is designed in connection with an information retrieval system. A database management system (DBMS) allows monitoring, updating, and interacting with the database.

 

pages: 550 words: 154,725

The Idea Factory: Bell Labs and the Great Age of American Innovation by Jon Gertner

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, back-to-the-land, Black Swan, business climate, Claude Shannon: information theory, Clayton Christensen, complexity theory, corporate governance, cuban missile crisis, horn antenna, Hush-A-Phone, information retrieval, invention of the telephone, James Watt: steam engine, Karl Jansky, knowledge economy, Nicholas Carr, Norbert Wiener, Picturephone, Richard Feynman, Richard Feynman, Sand Hill Road, Silicon Valley, Skype, Steve Jobs, Telecommunications Act of 1996, traveling salesman, uranium enrichment, William Shockley: the traitorous eight

It seemed lost on Shannon that the scientist who had declared that any message could be sent through any noisy channel with almost perfect fidelity was now himself a proven exception. Transmissions could reach Claude Shannon. But then they would fail to go any farther. Information theory, in the meantime, was getting ready for the masses. In 1953, one of the premier science journalists of the era, Francis Bello of Fortune magazine, profiled Shannon along with Norbert Wiener, an MIT mathematician who was putting forward theories on the command and control of machines, a discipline closely related to Shannon’s work on information. Wiener called his work cybernetics. “Within the last five years a new theory has appeared that seems to bear some of the same hallmarks of greatness,” Bello wrote. “The new theory, still almost unknown to the general public, goes under either of two names: communication theory or information theory.

 

pages: 394 words: 118,929

Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One Quest for Transcendent Software by Scott Rosenberg

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

A Pattern Language, Berlin Wall, c2.com, call centre, collaborative editing, conceptual framework, continuous integration, Douglas Engelbart, Douglas Hofstadter, Dynabook, en.wikipedia.org, Firefox, Ford paid five dollars a day, Francis Fukuyama: the end of history, Grace Hopper, Gödel, Escher, Bach, Howard Rheingold, index card, Internet Archive, inventory management, Jaron Lanier, John von Neumann, knowledge worker, life extension, Loma Prieta earthquake, Menlo Park, Merlin Mann, new economy, Nicholas Carr, Norbert Wiener, pattern recognition, Paul Graham, Potemkin village, RAND corporation, Ray Kurzweil, Richard Stallman, Ronald Reagan, semantic web, side project, Silicon Valley, Singularitarianism, slashdot, software studies, South of Market, San Francisco, speech recognition, stealth mode startup, stem cell, Stephen Hawking, Steve Jobs, Stewart Brand, Ted Nelson, Therac-25, thinkpad, Turing test, VA Linux, Vannevar Bush, Vernor Vinge, web application, Whole Earth Catalog, Y2K

Bush’s Memex provided the nascent field of computing with its very own grail. For decades it would inspire visionary inventors to devise balky new technologies in an effort to deliver an upgrade to the human brain. By far the most ambitious and influential acolyte of the Memex dream was Douglas Engelbart, best known today as the father of the computer mouse. Engelbart, a former radar technician and student of Norbert Wiener’s cybernetics, woke up one day in 1950 with an epiphany: The world had so many problems, of such accelerating complexity, that humankind’s only hope of mastering them was to find ways to get smarter faster. He vowed to devote his life to developing a “Framework for the Augmentation of Human Intellect.” Beginning in the early 1960s under the aegis of the Stanford Research Institute, he gathered a band of researchers and began breaking conceptual and technical ground.

 

pages: 574 words: 164,509

Superintelligence: Paths, Dangers, Strategies by Nick Bostrom

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

agricultural Revolution, AI winter, Albert Einstein, algorithmic trading, anthropic principle, anti-communist, artificial general intelligence, autonomous vehicles, barriers to entry, bioinformatics, brain emulation, cloud computing, combinatorial explosion, computer vision, cosmological constant, dark matter, DARPA: Urban Challenge, data acquisition, delayed gratification, demographic transition, Douglas Hofstadter, Drosophila, Elon Musk, en.wikipedia.org, epigenetics, fear of failure, Flash crash, Flynn Effect, friendly AI, Gödel, Escher, Bach, income inequality, industrial robot, informal economy, information retrieval, interchangeable parts, iterative process, job automation, John von Neumann, knowledge worker, Menlo Park, meta analysis, meta-analysis, mutually assured destruction, Nash equilibrium, Netflix Prize, new economy, Norbert Wiener, NP-complete, nuclear winter, optical character recognition, pattern recognition, performance metric, phenotype, prediction markets, price stability, principal–agent problem, race to the bottom, random walk, Ray Kurzweil, recommendation engine, reversible computing, social graph, speech recognition, Stanislav Petrov, statistical model, stem cell, Stephen Hawking, strong AI, superintelligent machines, supervolcano, technological singularity, technoutopianism, The Coming Technological Singularity, The Nature of the Firm, Thomas Kuhn: the structure of scientific revolutions, transaction costs, Turing machine, Vernor Vinge, Watson beat the top human players on Jeopardy!, World Values Survey

For a systematic review of AI predictions, see Armstrong and Sotala (2012). 8. See, for example, Baum et al. (2011) and Armstrong and Sotala (2012). 9. It might suggest, however, that AI researchers know less about development timelines than they think they do—but this could cut both ways: they might overestimate as well as underestimate the time to AI. 10. Good (1965, 33). 11. One exception is Norbert Wiener, who did have some qualms about the possible consequences. He wrote, in 1960: “If we use, to achieve our purposes, a mechanical agency with whose operation we cannot efficiently interfere once we have started it, because the action is so fast and irrevocable that we have not the data to intervene before the action is complete, then we had better be quite sure that the purpose put into the machine is the purpose which we really desire and not merely a colourful imitation of it” (Wiener 1960).

 

pages: 377 words: 21,687

Digital Apollo: Human and Machine in Spaceflight by David A. Mindell

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

1960s counterculture, computer age, deskilling, fault tolerance, interchangeable parts, Mars Rover, more computing power than Apollo, Norbert Wiener, Silicon Valley, Stewart Brand, telepresence, telerobotics

The Oxford English Dictionary shows that uses of the term system exploded after 1950, including systems engineering, systems analysis, systems dynamics, general systems theory, and a host of others.48 Each field had its own innovators, its own emphasis, and its own home institutions and professions, but they shared common concerns with feedback, dynamics, flows, block diagrams, human-machine interaction, signals, simulation, and the exciting new possibilities of computers.49 Norbert Wiener’s Cybernetics (1948) exemplified the trend, arguing that feedback control and statistics evoked analogies between computers and organisms, social systems, even the mind itself.50 The idea of the cyborg, part human, part machine, emerged as Wiener-inspired NACA researchers considered the future mix of mechanical and organic necessary for spaceflight.51 Chauffeurs and Airmen in the Age of Systems 37 The management aspects of systems engineering formalized in the mid-1950s when the air force stretched its resources to quickly build an intercontinental ballistic missile (ICBM).

 

pages: 481 words: 125,946

What to Think About Machines That Think: Today's Leading Thinkers on the Age of Machine Intelligence by John Brockman

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, agricultural Revolution, AI winter, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, algorithmic trading, artificial general intelligence, augmented reality, autonomous vehicles, bitcoin, blockchain, clean water, cognitive dissonance, Colonization of Mars, complexity theory, computer age, computer vision, constrained optimization, corporate personhood, cosmological principle, cryptocurrency, cuban missile crisis, Danny Hillis, dark matter, discrete time, Elon Musk, Emanuel Derman, endowment effect, epigenetics, Ernest Rutherford, experimental economics, Flash crash, friendly AI, Google Glasses, hive mind, income inequality, information trail, Internet of things, invention of writing, iterative process, Jaron Lanier, job automation, John von Neumann, Kevin Kelly, knowledge worker, loose coupling, microbiome, Moneyball by Michael Lewis explains big data, natural language processing, Network effects, Norbert Wiener, pattern recognition, Peter Singer: altruism, phenotype, planetary scale, Ray Kurzweil, recommendation engine, Republic of Letters, RFID, Richard Thaler, Rory Sutherland, Search for Extraterrestrial Intelligence, self-driving car, sharing economy, Silicon Valley, Skype, smart contracts, speech recognition, statistical model, stem cell, Stephen Hawking, Steve Jobs, Steven Pinker, Stewart Brand, strong AI, Stuxnet, superintelligent machines, supervolcano, the scientific method, The Wisdom of Crowds, theory of mind, Thorstein Veblen, too big to fail, Turing machine, Turing test, Von Neumann architecture, Watson beat the top human players on Jeopardy!, Y2K

Because of the power and influence of industrial technology, he believed that political power would flow to engineers, whose deep knowledge of technology would be transformed into control of the emerging industrial economy. It certainly didn’t work out that way. Veblen was speaking to the Progressive Era, looking for a middle ground between Marxism and capitalism. Perhaps his timing was off, but his basic point, as echoed some thirty years later at the dawn of the computer era by Norbert Wiener, may yet be proved correct. Perhaps Veblen wasn’t wrong, merely premature. Today, the engineers who design the artificial-intelligence-based programs and robots have a tremendous influence over how we use them. As computer systems are woven more deeply into the fabric of everyday life, the tension between intelligence augmentation and artificial intelligence becomes increasingly visible. At the dawn of the computing age, Wiener had a clear sense of the significance of the relationship between humans and smart machines.

 

pages: 566 words: 122,184

Code: The Hidden Language of Computer Hardware and Software by Charles Petzold

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Bill Gates: Altair 8800, Claude Shannon: information theory, computer age, Douglas Engelbart, Dynabook, Eratosthenes, Grace Hopper, invention of the telegraph, Isaac Newton, Jacquard loom, Jacquard loom, James Watt: steam engine, John von Neumann, Joseph-Marie Jacquard, Louis Daguerre, millennium bug, Norbert Wiener, optical character recognition, popular electronics, Richard Feynman, Richard Feynman, Richard Stallman, Silicon Valley, Steve Jobs, Turing machine, Turing test, Vannevar Bush, Von Neumann architecture

Information theory is concerned with transmitting digital information in the presence of noise (which usually prevents all the information from getting through) and how to compensate for that. In 1949, he wrote the first article about programming a computer to play chess, and in 1952 he designed a mechanical mouse controlled by relays that could learn its way around a maze. Shannon was also well known at Bell Labs for riding a unicycle and juggling simultaneously. Norbert Wiener (1894–1964), who earned his Ph.D. in mathematics from Harvard at the age of 18, is most famous for his book Cybernetics, or Control and Communication in the Animal and Machine (1948). He coined the word cybernetics (derived from the Greek for steersman) to identify a theory that related biological processes in humans and animals to the mechanics of computers and robots. In popular culture, the ubiquitous cyber-prefix now denotes anything related to the computer.

 

pages: 510 words: 120,048

Who Owns the Future? by Jaron Lanier

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, 4chan, Affordable Care Act / Obamacare, Airbnb, augmented reality, automated trading system, barriers to entry, bitcoin, book scanning, Burning Man, call centre, carbon footprint, cloud computing, computer age, crowdsourcing, David Brooks, David Graeber, delayed gratification, digital Maoism, en.wikipedia.org, facts on the ground, Filter Bubble, financial deregulation, Fractional reserve banking, Francis Fukuyama: the end of history, George Akerlof, global supply chain, global village, Haight Ashbury, hive mind, if you build it, they will come, income inequality, informal economy, invisible hand, Jacquard loom, Jaron Lanier, Jeff Bezos, job automation, Kevin Kelly, Khan Academy, Kickstarter, Kodak vs Instagram, life extension, Long Term Capital Management, Mark Zuckerberg, meta analysis, meta-analysis, moral hazard, mutually assured destruction, Network effects, new economy, Norbert Wiener, obamacare, packet switching, Peter Thiel, place-making, Plutocrats, plutocrats, Ponzi scheme, post-oil, pre–internet, race to the bottom, Ray Kurzweil, rent-seeking, reversible computing, Richard Feynman, Richard Feynman, Ronald Reagan, self-driving car, side project, Silicon Valley, Silicon Valley ideology, Silicon Valley startup, Skype, smart meter, stem cell, Steve Jobs, Steve Wozniak, Stewart Brand, Ted Nelson, The Market for Lemons, Thomas Malthus, too big to fail, trickle-down economics, Turing test, Vannevar Bush, WikiLeaks

Each node had no accountability, so nodes could accumulate in a “friction-free” way, even though there is no such thing as a free lunch, and the friction would surely appear later on in some fashion. We were all impatient and bored and leapt at the thrill of quick adoption. Ted was the source point for much of what we hold familiar today. For instance, he called the new medium “hypertext.” Ted was very fond of cyber-, which originally related to navigation, and which Norbert Wiener adopted into cybernetics because navigation was a great example of the core process of feedback in an information system. But Ted’s preferred prefix was hyper-, which, he once told me, when I must have still been a teenager, also captured something of the frenetic edge that digital obsessions seem to bring into human character. So Ted coined terms like hypermedia and hypertext. Much later, in the early 1990s, the Web would be born when Tim Berners-Lee proposed HTML, the foundational protocol for Web pages.

 

pages: 422 words: 131,666

Life Inc.: How the World Became a Corporation and How to Take It Back by Douglas Rushkoff

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

affirmative action, Amazon Mechanical Turk, banks create money, big-box store, Bretton Woods, car-free, colonial exploitation, Community Supported Agriculture, complexity theory, computer age, corporate governance, credit crunch, currency manipulation / currency intervention, David Ricardo: comparative advantage, death of newspapers, don't be evil, Donald Trump, double entry bookkeeping, easy for humans, difficult for computers, financial innovation, Firefox, full employment, global village, Google Earth, greed is good, Howard Rheingold, income per capita, invention of the printing press, invisible hand, Jane Jacobs, John Nash: game theory, joint-stock company, Kevin Kelly, laissez-faire capitalism, loss aversion, market bubble, market design, Marshall McLuhan, Milgram experiment, moral hazard, mutually assured destruction, Naomi Klein, new economy, New Urbanism, Norbert Wiener, peak oil, place-making, placebo effect, Ponzi scheme, price mechanism, price stability, principal–agent problem, private military company, profit maximization, profit motive, race to the bottom, RAND corporation, rent-seeking, RFID, road to serfdom, Ronald Reagan, short selling, Silicon Valley, Simon Kuznets, social software, Steve Jobs, Telecommunications Act of 1996, telemarketer, The Wealth of Nations by Adam Smith, Thomas L Friedman, too big to fail, trade route, trickle-down economics, union organizing, urban decay, urban planning, urban renewal, Vannevar Bush, Victor Gruen, white flight, working poor, Works Progress Administration, Y2K, young professional

In contradiction to popular mythology about them, these researchers had less allegiance to the Defense Advanced Research Projects Agency (DARPA) and the U.S. military than they did to the pure pursuit of knowledge and the expansion of human capabilities. Although their budgets may have come partly from the Pentagon, their aims were decidedly nonmilitary As seminal essays by World War II technologists Vannevar Bush, Norbert Wiener, and J.C.R. Licklider made clear, the job before them was to convert a wartime technology industry into a peacetime leap forward for humanity. Bush, FDR’s former war advisor, wrote of a hypothetical computer or “Memex” machine he intended as an extension of human memory. Wiener, the founder of “cybernetics,” believed that lessons in feedback learned by the Air Force during the war could be applied to a vast range of technologies, giving machines the ability to extend the senses and abilities of real people.

 

pages: 528 words: 146,459

Computer: A History of the Information Machine by Martin Campbell-Kelly, William Aspray, Nathan L. Ensmenger, Jeffrey R. Yost

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, air freight, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Apple's 1984 Super Bowl advert, barriers to entry, Bill Gates: Altair 8800, borderless world, Buckminster Fuller, Build a better mousetrap, Byte Shop, card file, cashless society, cloud computing, combinatorial explosion, computer age, deskilling, don't be evil, Douglas Engelbart, Dynabook, fault tolerance, Fellow of the Royal Society, financial independence, Frederick Winslow Taylor, game design, garden city movement, Grace Hopper, informal economy, interchangeable parts, invention of the wheel, Jacquard loom, Jacquard loom, Jeff Bezos, jimmy wales, John von Neumann, linked data, Mark Zuckerberg, Marshall McLuhan, Menlo Park, natural language processing, Network effects, New Journalism, Norbert Wiener, Occupy movement, optical character recognition, packet switching, PageRank, pattern recognition, pirate software, popular electronics, prediction markets, pre–internet, QWERTY keyboard, RAND corporation, Robert X Cringely, Silicon Valley, Silicon Valley startup, Steve Jobs, Steven Levy, Stewart Brand, Ted Nelson, the market place, Turing machine, Vannevar Bush, Von Neumann architecture, Whole Earth Catalog, William Shockley: the traitorous eight, women in the workforce, young professional

Instead, most individuals who viewed computers as tools for liberation were politically agnostic, more focused on forming alternative communities, and inclined to embrace new technology as a means to better achieve personal liberty and human happiness—what one scholar has labeled as the “New Communalists.” Stewart Brand, Stanford University biology graduate turned publishing entrepreneur, became a leading voice for the New Communalists through creating The Whole Earth Catalog. Deeply influenced by cybernetics visionary Norbert Wiener, electronics media theorist Marshall McLuhan, and architect and designer Buckminster Fuller, Brand pressed NASA to publicly release a satellite photo of the Earth in 1966. Two years later the photo adorned the cover of the first edition of The Whole Earth Catalog. Publishing regularly between 1968 and 1971, Brand’s catalog identified and promoted key products or tools for communal living and, in doing so, sought to help “transform the individual into a capable, creative person.”

 

pages: 420 words: 119,928

The Three-Body Problem (Remembrance of Earth's Past) by Cixin Liu

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

back-to-the-land, cosmic microwave background, Deng Xiaoping, game design, Henri Poincaré, horn antenna, invisible hand, Isaac Newton, Norbert Wiener, Panamax, RAND corporation, Search for Extraterrestrial Intelligence, Von Neumann architecture

However, the calculating capacity required is such that even if all of the world’s mathematicians worked without pause, they’d still not be able to complete them by the time the world ended. Of course, if we can’t figure out the pattern of the suns’ movements soon, the end of the world will not be too far away.” He bowed at Wang as well, a more modern bow. “Von Neumann.” “Didn’t you bring us thousands of miles to the East specifically to solve the problem of calculating these equations?” Newton asked. Then he turned to Wang. “Norbert Wiener and that degenerate who just ran away also came with us. We encountered some pirates near Madagascar. Wiener fought the pirates by himself so that the rest of us could escape, and he died valiantly.” “Why did you have to come to the East to build a computer?” Wang asked Von Neumann. Von Neumann and Newton looked at each other, puzzled. “A computer? A computing machine! Such a thing exists?”

 

pages: 634 words: 185,116

From eternity to here: the quest for the ultimate theory of time by Sean M. Carroll

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Albert Michelson, anthropic principle, Arthur Eddington, Brownian motion, cellular automata, Claude Shannon: information theory, Columbine, cosmic microwave background, cosmological constant, cosmological principle, dark matter, dematerialisation, double helix, en.wikipedia.org, gravity well, Harlow Shapley and Heber Curtis, Henri Poincaré, Isaac Newton, John von Neumann, Lao Tzu, lone genius, New Journalism, Norbert Wiener, pets.com, Richard Feynman, Richard Feynman, Richard Stallman, Schrödinger's Cat, Slavoj Žižek, Stephen Hawking, stochastic process, the scientific method, wikimedia commons

Two particles that are close to each other in position can interact, no matter what their relative velocities are, but the converse is not true. (Two particles that are separated by a few light years aren’t going to interact noticeably, no matter what their momentum is.) So the laws of physics pick out “measuring average properties within a small region of space” as a sensible thing to do. 136 A related argument has been given by mathematician Norbert Wiener in Cybernetics (1961), 34. 137 There is a loophole. Instead of starting with a system that had delicately tuned initial conditions for which the entropy would decrease, and then letting it interact with the outside world, we could just ask the following question: “Given that this system will go about interacting with the outside world, what state do I need to put it in right now so that its entropy will decrease in the future?”

 

pages: 584 words: 170,388

Hyperion by Dan Simmons

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

gravity well, invisible hand, New Journalism, Norbert Wiener

‘And there still will be blanks in the . . . predictive powers.’ I threw my cigarette out the window, watching the ember fall into the night. The breeze was suddenly cold; I hugged my arms. ‘How does all this . . . Old Earth, the resurrection projects, the cybrids . . . how does it lead to creating the Ultimate Intelligence?’ ‘I don’t know, Brawne. Eight standard centuries ago, at the beginning of the First Information Age, a man named Norbert Wiener wrote: “Can God play a significant game with his own creature? Can any creator, even a limited one, play a significant game with his own creature?” Humanity dealt with this inconclusively with their early AIs. The Core wrestles with it in the resurrection projects. Perhaps the UI program has been completed and all of this remains a function of the ultimate Creature/Creator, a personality whose motives are as far beyond the Core’s understanding as the Core’s are beyond humanity’s.’

 

pages: 651 words: 180,162

Antifragile: Things That Gain From Disorder by Nassim Nicholas Taleb

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Air France Flight 447, Andrei Shleifer, banking crisis, Benoit Mandelbrot, Berlin Wall, Black Swan, credit crunch, Daniel Kahneman / Amos Tversky, David Ricardo: comparative advantage, discrete time, double entry bookkeeping, Emanuel Derman, epigenetics, financial independence, Flash crash, Gary Taubes, Gini coefficient, Henri Poincaré, high net worth, Ignaz Semmelweis: hand washing, informal economy, invention of the wheel, invisible hand, Isaac Newton, James Hargreaves, Jane Jacobs, joint-stock company, joint-stock limited liability company, Joseph Schumpeter, knowledge economy, Lao Tzu, Long Term Capital Management, loss aversion, Louis Pasteur, mandelbrot fractal, meta analysis, meta-analysis, microbiome, moral hazard, mouse model, Norbert Wiener, pattern recognition, placebo effect, Ponzi scheme, principal–agent problem, purchasing power parity, quantitative trading / quantitative finance, Ralph Nader, random walk, Ray Kurzweil, rent control, Republic of Letters, Ronald Reagan, Rory Sutherland, Silicon Valley, six sigma, spinning jenny, statistical model, Steve Jobs, Steven Pinker, Stewart Brand, stochastic process, stochastic volatility, The Great Moderation, The Wealth of Nations by Adam Smith, Thomas Malthus, too big to fail, transaction costs, urban planning, Yogi Berra, Zipf's Law

Scranton was polite and focused on situations in which innovation is messy, “distinguished from more familiar analytic and synthetic innovation approaches,” as if the latter were the norm, which it is obviously not. I looked for more stories, and the historian of technology David Edgerton presented me with a quite shocking one. We think of cybernetics—which led to the “cyber” in cyberspace—as invented by Norbert Wiener in 1948. The historian of engineering David Mindell debunked the story; he showed that Wiener was articulating ideas about feedback control and digital computing that had long been in practice in the engineering world. Yet people—even today’s engineers—have the illusion that we owe the field to Wiener’s mathematical thinking. Then I was hit with the following idea. We all learn geometry from textbooks based on axioms, like, say, Euclid’s Book of Elements, and tend to think that it is thanks to such learning that we today have these beautiful geometric shapes in buildings, from houses to cathedrals; to think the opposite would be anathema.

 

pages: 819 words: 181,185

Derivatives Markets by David Goldenberg

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Black-Scholes formula, Brownian motion, capital asset pricing model, commodity trading advisor, compound rate of return, conceptual framework, Credit Default Swap, discounted cash flows, discrete time, diversification, diversified portfolio, en.wikipedia.org, financial innovation, fudge factor, implied volatility, incomplete markets, interest rate derivative, interest rate swap, law of one price, locking in a profit, London Interbank Offered Rate, Louis Bachelier, margin call, market microstructure, martingale, Norbert Wiener, price mechanism, random walk, reserve currency, risk/return, riskless arbitrage, Sharpe ratio, short selling, stochastic process, stochastic volatility, time value of money, transaction costs, volatility smile, Wiener process, Y2K, yield curve, zero-coupon bond

The details we have to leave out are usually covered in such courses. 16.1 ARITHMETIC BROWNIAN MOTION (ABM) ABM is a stochastic process {Wt()}t0 defined on a sample space (,ℑW,℘W ). We won’t go into all the details as to exactly what (,ℑW,℘W ) represents but you can think of the probability measure, ℘W, which is called Wiener measure, to be defined in terms of the transition density function p(T,y;t,x) for =T–t, OPTION PRICING IN CONTINUOUS TIME 541 p(T ,y;t,x ) = p( ,x,y ) ⎛ 1 ⎞ −(y −x )2 / 2 =⎜ ⎟e ⎝ 2 ⎠ Norbert Wiener gave the first rigorous mathematical construction (existence proof) for ABM and, because of this, it is sometimes called the Wiener process. It has the following properties, 1. W0=0 (starts at 0). 2. For every set of times t0=0<t1<t2<…tn–1<tn the increments (changes) Wt1–Wt0,Wt2–Wt1,…,Wtn–Wtn-1 are independent (independent increments). 3. For any times s and t with 0 s<t, the random variable Wt()–Ws() is normally distributed with mean E(Wt ()–Ws())=0 and variance Var(Wt ()–Ws())=t–s (normally distributed increments). 4.

 

pages: 1,079 words: 321,718

Surfaces and Essences by Douglas Hofstadter, Emmanuel Sander

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

affirmative action, Albert Einstein, Arthur Eddington, Benoit Mandelbrot, Brownian motion, Chance favours the prepared mind, cognitive dissonance, computer age, computer vision, dematerialisation, Donald Trump, Douglas Hofstadter, Ernest Rutherford, experimental subject, Flynn Effect, Georg Cantor, Gerolamo Cardano, Golden Gate Park, haute couture, haute cuisine, Henri Poincaré, Isaac Newton, l'esprit de l'escalier, Louis Pasteur, Mahatma Gandhi, mandelbrot fractal, Menlo Park, Norbert Wiener, place-making, Silicon Valley, statistical model, Steve Jobs, Steve Wozniak, theory of mind, upwardly mobile, urban sprawl

Page 334The 1930s is a composite analogy… Khong (1992), p. 59. Page 334The analogy of Munich raised the stakes… Khong (1992), p. 184. Page 337One of the most interesting fndings of researchers… Khong (1992), p. 217. Page 338These findings may leave us feeling… Gentner, Rattermann, and Forbus (1993), p. 567. Page 368When I look at an article in Russian… Personal letter from Warren Weaver to Norbert Wiener, quoted in Weaver (1955). Page 363Parfois, le succès ne fut pas au rendez-vous… Bertrand Poirot-Delpech, in the obituary “Sagan, l’art d’être soi”, in Le Monde, 26 September, 2004. Chapter 7 Page 388All summer long, without a care… La Fontaine (1668), Book I, p. 1. Page 400The real problem with the interface is… Norman (1990), p. 210. Page 408I will sette as I doe often in woorke use, a pair of paralleles… Recorde (1557).

 

pages: 1,104 words: 302,176

The Rise and Fall of American Growth: The U.S. Standard of Living Since the Civil War (The Princeton Economic History of the Western World) by Robert J. Gordon

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, Affordable Care Act / Obamacare, airline deregulation, airport security, Apple II, barriers to entry, big-box store, blue-collar work, Capital in the Twenty-First Century by Thomas Piketty, clean water, collective bargaining, computer age, deindustrialization, Detroit bankruptcy, discovery of penicillin, Donner party, Downton Abbey, Edward Glaeser, en.wikipedia.org, Erik Brynjolfsson, everywhere but in the productivity statistics, feminist movement, financial innovation, full employment, George Akerlof, germ theory of disease, glass ceiling, high net worth, housing crisis, immigration reform, impulse control, income inequality, income per capita, indoor plumbing, industrial robot, inflight wifi, interchangeable parts, invention of agriculture, invention of air conditioning, invention of the telegraph, invention of the telephone, inventory management, James Watt: steam engine, Jeff Bezos, jitney, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, labor-force participation, Loma Prieta earthquake, Louis Daguerre, Louis Pasteur, low skilled workers, manufacturing employment, Mark Zuckerberg, market fragmentation, Mason jar, McMansion, Menlo Park, minimum wage unemployment, mortgage debt, mortgage tax deduction, new economy, Norbert Wiener, obamacare, occupational segregation, oil shale / tar sands, oil shock, payday loans, Peter Thiel, pink-collar, Productivity paradox, Ralph Nader, Ralph Waldo Emerson, refrigerator car, rent control, Robert X Cringely, Ronald Coase, school choice, Second Machine Age, secular stagnation, Skype, stem cell, Steve Jobs, Steve Wozniak, Steven Pinker, The Market for Lemons, Thomas Malthus, total factor productivity, transaction costs, transcontinental railway, traveling salesman, Triangle Shirtwaist Factory, Unsafe at Any Speed, Upton Sinclair, upwardly mobile, urban decay, urban planning, urban sprawl, washing machines reduced drudgery, Washington Consensus, Watson beat the top human players on Jeopardy!, We wanted flying cars, instead we got 140 characters, working poor, working-age population, Works Progress Administration, yield management

Although commercial aviation was primitive in 1939, still it was easy to forecast from the rapid progress in the size and speed of aircraft over the 1920–40 period that much larger aircraft could fly much longer distances, and indeed within only a few years the DC-6 and DC-7 were spanning the continent and the globe before the epochal introduction of the Boeing 707 jet in 1958. What was missing at the 1939–40 World’s Fair was any vision of the computer revolution that created IR #3. But Norbert Wiener, a visionary, in a 1949 essay that was ultimately rejected by the New York Times, got a lot of the future of IR #3 right. Among his 1949 predictions were these: These new machines have a great capacity for upsetting the present basis of industry, and of reducing the economic value of the routine factory employee to a point at which he is not worth hiring at any price…. [I]f we move in the direction of making machines which learn and whose behavior is modified by experience, we must face the fact that every degree of independence we give the machine is a degree of possible defiance of our wishes.