15 results back to index

The Concepts and Practice of Mathematical Finance by Mark S. Joshi Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
BlackScholes formula, Brownian motion, correlation coefficient, Credit Default Swap, delta neutral, discrete time, Emanuel Derman, implied volatility, incomplete markets, interest rate derivative, interest rate swap, London Interbank Offered Rate, martingale, millennium bug, quantitative trading / quantitative ﬁnance, short selling, stochastic process, stochastic volatility, the market place, time value of money, transaction costs, value at risk, volatility smile, yield curve, zerocoupon bond A closedform formula as an infinite sum can be developed for the price of a call or put option in a jumpdiffusion model. The market consisting of a stock evolving to a jumpdiffusion model and a riskless bond is incomplete. In an incomplete market an option does not have a unique price. When changing measure in a jumpdiffusion world, we can change the drift, the intensity of the jumps and the jump distribution but we cannot change the volatility of the underlying. 386 Incomplete markets and jumpdiffusion processes Increasing jumpintensity always increases the price of a European option, which has a convex final payoff. For a digital option increasing jumpintensity can either increase or decrease the price of an option. In an incomplete market it is the market which chooses the measure. It is possible to hedge in a jumpdiffusion model using options provided we assume that the market does not change its choice of measure. … Our hedging argument has shown that only prices between zero and five can be nonarbitrageable, whilst the riskneutral argument shows that prices between zero and five are not arbitrageable. We therefore conclude that the set of arbitragefree prices for the option is the set of prices between zero and five. The threeworld universe is an example of an incomplete market, that is, a market where portfolios cannot be arranged to give precisely the desired payoff, and it is characteristic of incomplete markets that the price of an option can only be shown to lie in an interval rather than being forced to take a precise value. The market price of such an option would then be determined within the range of possible prices by the riskpreferences of traders in the market rather than mathematics. , 3.3 Multiple time steps 3.3.1 More realism At this point, option pricing is not looking very successful  clearly we will want to price options on assets that can have more than two values in the future. … The bank can still make money by selling put options but it is doing so by taking on risk, rather than by charging for the cost of hedging, as in the BlackScholes framework. The purchase of the put option is therefore a transference of risk from the fund manager to the bank. The market price will settle on a point where the 361 362 Incomplete markets and jumpdiffusion processes banks feel that they are being adequately compensated for taking on the extra risk. A major determinant of the price is therefore risk preferences rather than arbitrage. Once we have moved to an incomplete market, there are two different issues to be addressed. The first is how to use arbitrage to bound the prices of vanilla options. The second is to determine prices for exotic options which are compatible with both the model and the prices of the vanilla options traded in the market. 

Mathematical Finance: Core Theory, Problems and Statistical Algorithms by Nikolai Dokuchaev Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
BlackScholes formula, Brownian motion, buy low sell high, discrete time, fixed income, implied volatility, incomplete markets, martingale, random walk, short selling, stochastic process, stochastic volatility, transaction costs, volatility smile, Wiener process, zerocoupon bond In other words, all these measures coincide on In addition, note that theoretical problems also arise for the case of random r. 5.11.2 Pricing for an incomplete market Meanvariance hedging Similarly to the case of the discrete time market, Definition 5.43 leads to superreplication for incomplete markets. Clearly, it is not always meaningful. Therefore, there is another popular approach for an incomplete market. Definition 5.65 (meanvariance hedging). The fair price of the option is the initial wealth X(0) such EX(T)−ψ2 is minimal over all admissible selffinancing strategies. In many cases, this definition leads to the option price e−rTE*ψ, where E* is the expectation for a riskneutral equivalent measure that needs to be chosen by some optimal way, since this measure is not unique for an incomplete market. This measure needs to be found via solution of an optimization problem. … Find the fair price of the option with payoff F(S1,…, ST)=max(ST−1, 0). Solution. We have For incomplete markets, Definition 3.49 leads to superreplication. That is not always meaningful. Therefore, there is another popular approach for incomplete markets. Definition 3.55 (meanvariance hedging). The fair price of the option is the initial wealth X0 such that EXT−ψ2 is minimal over all admissible selffinancing strategies. © 2007 Nikolai Dokuchaev Discrete Time Market Models 41 In many cases, this definition leads to the option price calculated as the expectation under a riskneutral equivalent measure which needs to be chosen by some optimal way, since a riskneutral equivalent measure is not unique for an incomplete market. 3.11 Increasing frequency and continuous time limit In reality, prices may change and be measured very frequently. … If an equivalent riskneutral measure is not unique then, by Theorem 5.35, the market cannot be complete, i.e., there are claims ψ that cannot be replicable. In this section, we assume that r is nonrandom and constant. Let be the filtration generated by the process S(t). (For this case of nonrandom general case, the filtration For the generated by the process (w(t), η(t) is larger than 5.11.1 Examples of incomplete markets An example with a≡r Let a(t)≡r(t), and let σ=σ(t, η), where η is a random process (or a random vector, or a random variable), independent from the driving Wiener process w(t) (for instance, η may represent another Wiener process). Clearly, any original probability measure P=Pη is a riskneutral measure (note that for any η). Any probability measure is defined by the pair (w, η), therefore it depends on the choice of η. 
pages: 345 words: 86,394 
Frequently Asked Questions in Quantitative Finance by Paul Wilmott Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
Albert Einstein, asset allocation, BlackScholes formula, Brownian motion, butterfly effect, capital asset pricing model, collateralized debt obligation, Credit Default Swap, credit default swaps / collateralized debt obligations, delta neutral, discrete time, diversified portfolio, Emanuel Derman, Eugene Fama: efficient market hypothesis, fixed income, fudge factor, implied volatility, incomplete markets, interest rate derivative, interest rate swap, iterative process, London Interbank Offered Rate, Long Term Capital Management, Louis Bachelier, mandelbrot fractal, margin call, market bubble, martingale, Norbert Wiener, quantitative trading / quantitative ﬁnance, random walk, regulatory arbitrage, risk/return, Sharpe ratio, statistical arbitrage, statistical model, stochastic process, stochastic volatility, transaction costs, urban planning, value at risk, volatility arbitrage, volatility smile, Wiener process, yield curve, zerocoupon bond Oxford Science Publications Lewis, A Series of articles in Wilmott magazine September 2002 to August 2004 Merton, RC 1976 Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3 12544 What is Meant by “Complete” and “Incomplete” Markets? Short Answer A complete market is one in which a derivative product can be artificially made from more basic instruments, such as cash and the underlying asset. This usually involves dynamically rebalancing a portfolio of the simpler instruments, according to some formula or algorithm, to replicate the more complicated product, the derivative. Obviously, an incomplete market is one in which you can’t replicate the option with simpler instruments. Example The classic example is replicating an equity option, a call, say, by continuously buying or selling the equity so that you always hold the amountΔ = e−D(T −t)N (d1), in the stock, where and Long Answer A slightly more mathematical, yet still quite easily understood, description is to say that a complete market is one for which there exist the same number of linearly independent securities as there are states of the world in the future. … People can therefore disagree on the probability of a stock rising or falling but still agree on the value of an option, as long as they share the same view on the stock’s volatility. In probabilistic terms we say that in a complete market there exists a unique martingale measure, but for an incomplete market there is no unique martingale measure. The interpretation of this is that even though options are risky instruments we don’t have to specify our own degree of risk aversion in order to price them. Enough of complete markets, where can we find incomplete markets? The answer is ‘everywhere.’ In practice, all markets are incomplete because of realworld effects that violate the assumptions of the simple models. Take volatility as an example. As long as we have a lognormal equity random walk, no transaction costs, continuous hedging, perfectly divisible assets,..., and constant volatility then we have a complete market. … This is because there are now more states of the world than there are linearly independent securities. In reality, we don’t know what volatility will be in the future so markets are incomplete. We also get incomplete markets if the underlying follows a jumpdiffusion process. Again more possible states than there are underlying securities. Another common reason for getting incompleteness is if the underlying or one of the variables governing the behaviour of the underlying is random. Options on terrorist acts cannot be hedged since terrorist acts aren’t traded (to my knowledge at least). We still have to price contracts even in incomplete markets, so what can we do? There are two main ideas here. One is to price the actuarial way, the other is to try to make all option prices consistent with each other. The actuarial way is to look at pricing in some average sense. 
pages: 819 words: 181,185 
Derivatives Markets by David Goldenberg Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
BlackScholes formula, Brownian motion, capital asset pricing model, commodity trading advisor, compound rate of return, conceptual framework, Credit Default Swap, discounted cash flows, discrete time, diversification, diversified portfolio, en.wikipedia.org, financial innovation, fudge factor, implied volatility, incomplete markets, interest rate derivative, interest rate swap, law of one price, locking in a profit, London Interbank Offered Rate, Louis Bachelier, margin call, market microstructure, martingale, Norbert Wiener, price mechanism, random walk, reserve currency, risk/return, riskless arbitrage, Sharpe ratio, short selling, stochastic process, stochastic volatility, time value of money, transaction costs, volatility smile, Wiener process, Y2K, yield curve, zerocoupon bond Unfortunately, contrary to intuition, the noarbitrage condition is not enough machinery to uniquely price derivative securities. That is, noarbitrage is not a sufficient condition for uniquely pricing derivative securities. There are generally many linear, positive pricing mechanisms, all consistent with noarbitrage, for nonreplicable ﬁnancial claims! OPTION PRICING IN DISCRETE TIME, PART 1 451 Another way to say this is that in an incomplete market, there can be many equally valid (noarbitrage) pricing mechanisms. We already have an inkling of this through our study of ROP. Rational option pricing, which is exclusively based on the foundation of the noarbitrage principle, produces pricing relationships (such as European PutCall Parity) and pricing bounds or ranges into which rational option prices must fall. ROP does not produce speciﬁc, unique prices. … Therefore, no risk premium for pricing the option is needed; a risk premium is built into the pricing of the underlying stock, St (see Chapter 17). There is no immediate and completely adequate empirical ﬁx for the constant assumption, except to throw out Black–Scholes’ assumption of a stationary lognormal diffusion, and search for a viable (smileconsistent) underlying stochastic process among the vast set of alternatives, many of which will lead to incomplete markets. Black–Scholes and its modiﬁcations, however, still have tremendous appeal, especially among traders, who use Black–Scholes calibrated to an implied volatility surface. Traders use ATM options to imply volatility, since these are the most liquid, and therefore most informative about future volatility. Furthermore, there are exotic and American options for which the lognormal GBM remains the workhorse. … Because the nonhedgeable risks are precisely those that cannot be diversiﬁed away (hedged out) by attempting to replicate the contingent claim, they would RISKNEUTRAL VALUATION 601 command risk premia in the contingent claim price. These would, of necessity, show up in arbitragefree pricing formulas for the contingent claim. This also renders such contingent claim prices not preferencefree. We can summarize this as follows. In incomplete markets, nonreplicable claims could be priced in a manner that is arbitragefree (EMMs exist), and yet not preferencefree. Furthermore, there would be multiple arbitragefree, nonpreferencefree valuations of nonreplicable claims. We know this is true, because FTAP2 tells us that a claim is replicable if and only if there is a unique EMM for the discounted price process. We will also see this in another, more practical manner below. 17.1.5 Black–Scholes’ Contribution A few more observations about Black–Scholes are in order. 

Monte Carlo Simulation and Finance by Don L. McLeish Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
BlackScholes formula, Brownian motion, capital asset pricing model, compound rate of return, discrete time, distributed generation, finite state, frictionless, frictionless market, implied volatility, incomplete markets, invention of the printing press, martingale, pvalue, random walk, Sharpe ratio, short selling, stochastic process, stochastic volatility, the market place, transaction costs, value at risk, Wiener process, zerocoupon bond SOME BASIC THEORY OF FINANCE While it is not too diﬃcult to solve this system in this case one can see that with more branches and more derivatives, this nonlinear system of equations becomes diﬃcult very quickly. What do we do if we observe market prices for only two derivatives defined on this stock, and only two parameters can be obtained from the market information? This is an example of what is called an incomplete market, a market in which the risk neutral distribution is not uniquely specified by market information. In general when we have fewer equations than parameters in a model, there are really only two choices (a) Simplify the model so that the number of unknown parameters and the number of equations match. (b) Determine additional natural criteria or constraints that the parameters must satisfy. In this case, for example, one might prefer a model in which the probability of a step up or down depends on the time, but not on the current price of the stock. … SOME BASIC THEORY OF FINANCE Theorem 9 shows that this exponentially tilted distribution has the property of being the closest to the original measure P while satisfying the condition that the normalized sequence of stock prices forms a martingale. There is a considerable literature exploring the links between entropy and riskneutral valuation of derivatives. See for example Gerber and Shiu (1994), Avellaneda et. al (1997), Gulko(1998), Samperi (1998). In a complete or incomplete market, riskneutral valuation may be carried out using a martingale measure which maximizes entropy or minimizes crossentropy subject to some natural constraints including the martingale constraint. For example it is easy to show that when interest rates r are constant, Q is the riskneutral measure for pricing derivatives on a stock with stock price process St , t = 0, 1, ... if and only if it is the probability measure minimizing H(Q, P ) subject to the martingale constraint 1 St+1 ]. 1̄ + r St = EQ [ (2.23) There is a continuous time analogue of (2.22) as well which we can anticipate by inspecting the form of the solution. 
pages: 153 words: 12,501 
Mathematics for Economics and Finance by Michael Harrison, Patrick Waldron Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
Brownian motion, buy low sell high, capital asset pricing model, compound rate of return, discrete time, incomplete markets, law of one price, market clearing, risk tolerance, riskless arbitrage, short selling, stochastic process PRICING STATECONTINGENT CLAIMS Theorem 5.4.1 If there are M complex securities (M = N ) and the payoff matrix Y is nonsingular, then markets are complete. Proof Suppose the optimal trade for consumer i state j is xij − eij . Then can invert Y to work out optimal trades in terms of complex securities. Q.E.D. An (N + 1)st security would be redundant. Either a singular square matrix or < N complex securities would lead to incomplete markets. So far, we have made no assumptions about the form of the utility function, written purely as u (x0 , x1 , x2 , . . . , xN ) , where x0 represents the quantity consumed at date 0 and xi (i > 0) represents the quantity consumed at date 1 if state i materialises. 5.4.1 Completion of markets using options Assume that there exists a state index portfolio, Y , yielding different nonzero payoffs in each state (i.e. a portfolio with a different payout in each state of nature, possibly one mimicking aggregate consumption). 
pages: 515 words: 142,354 
The Euro: How a Common Currency Threatens the Future of Europe by Joseph E. Stiglitz, Alex HydeWhite Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
bank run, banking crisis, barriers to entry, battle of ideas, Berlin Wall, Bretton Woods, capital controls, Carmen Reinhart, cashless society, central bank independence, centre right, cognitive dissonance, collapse of Lehman Brothers, collective bargaining, corporate governance, correlation does not imply causation, credit crunch, Credit Default Swap, currency peg, dark matter, David Ricardo: comparative advantage, disintermediation, diversified portfolio, eurozone crisis, Fall of the Berlin Wall, fiat currency, financial innovation, full employment, George Akerlof, Gini coefficient, global supply chain, Growth in a Time of Debt, housing crisis, income inequality, incomplete markets, inflation targeting, investor state dispute settlement, invisible hand, Kenneth Rogoff, knowledge economy, labour market flexibility, labour mobility, manufacturing employment, market bubble, market friction, market fundamentalism, Martin Wolf, Mexican peso crisis / tequila crisis, moral hazard, mortgage debt, neoliberal agenda, new economy, open economy, paradox of thrift, pension reform, pensions crisis, price stability, profit maximization, purchasing power parity, quantitative easing, race to the bottom, riskadjusted returns, Robert Gordon, Robert Shiller, Robert Shiller, Ronald Reagan, savings glut, secular stagnation, Silicon Valley, sovereign wealth fund, the payments system, The Wealth of Nations by Adam Smith, too big to fail, transaction costs, transfer pricing, trickledown economics, Washington Consensus, workingage population ,” IMF Staff Discussion Note 11/08, April 8, 2011, available at https://www.imf.org/external/pubs/ft/sdn/2011/sdn1108.pdf; and Jonathan D. Ostry, Andrew Berg, and Charalambos G. Tsangarides, “Redistribution, Inequality, and Growth,” IMF Staff Discussion Note 14/02, February 2014, available at https://www.imf.org/external/pubs/ft/sdn/2014/sdn1402.pdf. 14 Bruce C. Greenwald and Joseph E. Stiglitz, “Externalities in Economies with Imperfect Information and Incomplete Markets,” Quarterly Journal of Economics 101, no. 2 (1986): 229–64. 15 I became particularly engaged in “the economics of crises” during my time at the World Bank and wrote extensively on the subject, both alone and with my colleagues at the World Bank. A popular account is provided in Globalization and Its Discontents. See also my articles “Lessons from the Global Financial Crisis,” in Global Financial Crises: Lessons from Recent Events, ed. … Neyman [Berkeley: University of California Press, 1951], pp. 507–32; and Gerard Debreu, “Valuation Equilibrium and Pareto Optimum,” Proceedings of the National Academy of Sciences 40, no. 7 [1954]: 588–92; and Debreu, The Theory of Value [New Haven, CT: Yale University Press, 1959.]) The circumstances that they identified where markets did not lead to efficiency were called market failures. Subsequently, Greenwald and Stiglitz showed that whenever information was imperfect and markets incomplete—essentially always—markets were not efficient (“Externalities in Economies with Imperfect Information and Incomplete Markets”). Of course, even earlier, Keynes had emphasized that markets do not by themselves maintain full employment. 34 See James Edward Meade, The Theory of International Economic Policy, vol. 2, Trade and Welfare (London: Oxford University Press, 1955); and Richard G. Lipsey and Kelvin Lancaster, “The General Theory of Second Best,” Review of Economic Studies 24, no. 1 (1956): 11–32. 35 See David Newbery and J. 
pages: 411 words: 108,119 
The Irrational Economist: Making Decisions in a Dangerous World by Erwann MichelKerjan, Paul Slovic Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
Andrei Shleifer, availability heuristic, bank run, Black Swan, Cass Sunstein, clean water, cognitive dissonance, collateralized debt obligation, complexity theory, conceptual framework, corporate social responsibility, Credit Default Swap, credit default swaps / collateralized debt obligations, crosssubsidies, Daniel Kahneman / Amos Tversky, endowment effect, experimental economics, financial innovation, Fractional reserve banking, George Akerlof, hindsight bias, incomplete markets, invisible hand, Isaac Newton, iterative process, Loma Prieta earthquake, London Interbank Offered Rate, market bubble, market clearing, moral hazard, mortgage debt, placebo effect, price discrimination, price stability, RAND corporation, Richard Thaler, Robert Shiller, Robert Shiller, Ronald Reagan, statistical model, stochastic process, The Wealth of Nations by Adam Smith, Thomas Kuhn: the structure of scientific revolutions, too big to fail, transaction costs, ultimatum game, University of East Anglia, urban planning K. Hsee (2000). “The Affection Effect in Insurance Decisions.” Journal of Risk and Uncertainty 20, no. 2: 149159. Kunreuther, H., and M. V. Pauly (2000). NBER Reporter, March 22. Pagán, J. A., and M. V. Pauly (2006). “CommunityLevel Uninsurance and Unmet Medical Needs of Insured and Uninsured Adults.” Health Services Research 41, no. 3: 788803. Schlesinger, H., and N. Doherty (1985). “Incomplete Markets for Insurance: An Overview.” Journal of Risk and Insurance 52: 402423. 17 The HoldUp Problem Why It Is Urgent to Rethink the Economics of Disaster Insurance Protection W. KIP VISCUSI As other contributors to this book have suggested, how people make decisions involving risk and uncertainty and how economists think people should make these decisions are often quite different matters. 
pages: 313 words: 34,042 
Tools for Computational Finance by Rüdiger Seydel Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
bioinformatics, BlackScholes formula, Brownian motion, continuous integration, discrete time, implied volatility, incomplete markets, interest rate swap, linear programming, London Interbank Offered Rate, mandelbrot fractal, martingale, random walk, stochastic process, stochastic volatility, transaction costs, value at risk, volatility smile, Wiener process, zerocoupon bond Index Absolute error 93 Accuracy 20, 49, 107, 116, 161–165, 177 Adapted 50, 259 Admissible trading 262 Algorithm 10 – American options 154, 158–159 – Assembling 192 – Binomial method 55 – Box–Muller method 73 – BrennanSchwartz 181 – Correlated random variables 76 – Crank–Nicolson method 138 – Distribution function 53 – Euler discretization of an SDE 33, 91 – Fibonacci generator 67 – Finite elements 197–198 – Implied volatility 54 – Interpolation 169 – Inversion of the standard normal distribution 281 – LaxWendroﬀ 232 – Linear congruential generator 62 – Marsaglias polar method 74 – Milstein integrator 99 – Monte Carlo simulation 105 – Projection SOR 156 – Quadratic approximation 171 – Radical–inverse function 83, 90 – Variance 53–54 – Wiener process 27 Analytic methods 124 Antithetic variates 86, 108–109, 111 Arbitrage 4–5, 9, 15, 23, 37, 52, 59, 124, 141, 143, 180, 212, 220, 241–243, 245, 260–262, 277 ARCH 52 Artiﬁcial viscosity, see Numerical dissipation Asian option, see Option Assembling 191–192, 196, 205 Autonomous 95–96 Average option, see Option, Asian Bachelier 25, 51 Backward diﬀerence 127, 133, 135, 152 Backward diﬀerence formula (BDF) 127, 154, 175, 181 Backward time centered space (BTCS) 134 Barrier option, see Option Basis function 185–193, 195, 201, 205–206, 221 Basis representation 185 Bernoulli experiment 45, 256 Bias 107, 256 Bifurcation 52 Bilinear form 199–204 Binary option, see Option Binomial coeﬃcient 257 Binomial distribution 56, 257 Binomial method 12–21, 49, 55–58, 103, 115, 123, 177, 211, 213, 236 Bisection 69, 268 Bivariate integral 173 Black–Merton–Scholes approach 8, 34, 49, 50–51, 103, 116, 138 Black–Scholes equation 9, 48, 49, 53, 59, 60, 116, 118, 123–126, 135, 138, 146–148, 169–170, 172, 174, 177, 179–181, 209, 211–213, 215, 220–224, 226, 231, 235, 237, 244–246, 248–249 Black–Scholes formula 10, 19, 41, 54, 55, 103, 105, 164, 166–169, 171, 177, 211, 213, 246–247 Bond 5, 37, 49, 59, 239–240, 242, 244–245, 267 Boundary conditions 9, 53, 123, 125, 129–130, 136, 138–145, 151, 153, 159, 161, 172, 174–175, 179–181, 186, 294 Index 188, 193–194, 198–201, 204, 211–213, 217–218, 235, 274 Bounds on options 4–5, 7–8, 59, 113–115, 121, 139–141, 167–168, 277–279 Box–Muller method 72–75, 85, 117 Bridge 102, 116, 118, 121, 236 Brownian motion 25–26, see Wiener process Bubnov 186 Business time 52 Calculus of variations 200 Calibration 38, 52, 54 Call, see Option Cancellation 54 Cauchy convergence 31, 275 Cauchy distribution 88 Céa 202 Centered time centered space (CTCS) 232 Central Limit Theorem 69, 78, 256 Chain rule 40, 71, 95 Chaos 52 Cholesky decomposition 75–76, 270 Chooser option, see Option Classical solution, see Strong solution Collateralized mortgage obligation (CMO) 78 Collocation 187 Commodities 239 Complementarity 124, 149–155, 175, 178, 194 Compound option, see Option Compound Poisson process 47 Conditional expectation 14, 115, 259 Conforming element 205 Congruential generator 62–68, 85, 87 Conservation law 231, 236 Contact point 141–142, 145, 147 Continuation function 115 Continuation region 142, 146–147, 169, 194, 249 Continuum 11–12, 128 Control variate 86, 109–110, 119 Convection 223–224, 226 Convection–diﬀusion problem 209, 222–226, 231 Convergence 20, 81, 155, 157, 165, 268, 270–272 Convergence in the mean 29–31, 257 Convergence order, see Order of error Correlated random variable 75–77, 89 Correlation 39–40, 63, 68, 108, 110, 212–213 Courant–Friedrichs–Lewy (CFL) condition 227, 232 Courant number 225–227 Covariance 75–76, 100, 108, 110, 212, 254–255 Cox 12, 38, 49 Crank–Nicolson method 135–140, 152, 154, 158, 160–161, 164, 174–175, 178, 196, 221, 235 Cryer 154–157, 272 Cubic spline 206 Curse of dimension 86, 212–213 DAX 55 Decomposition of a matrix 134, 138, 159, 268–270 Delta 25, 49–50, 116, 246–247 Density function 41–43, 57, 70–77, 88, 90, 102–103, 116, 248, 254–255 Derivatives 240–242 Diﬀerentiable (smooth) 27–28, 40–41, 50, 86, 96, 103, 126, 135, 143, 147, 154, 160–161, 164–165, 175–177, 184, 188, 194–195, 200, 265, 272 Diﬀusion 32–33, 50, 223–224, 226, 228, 233, 236 Dirac’s delta function 187 Discounting 36, 50, 56, 103–105, 138, 263 Discrepancy 61, 79–84, 86, 89, 117, 119 Discrete monitoring 220–221 Discretization 11–13, 27, 33, 35, 126–127, 150, 152, 184 Discretization error 12, 91, 106, 109, 117, 135, 161–162, 172 Dispersion 226, 230–231 Dissipation 231, see Numerical dissipation Distribution 61, 63, 69–71, 88, 90, 92, 103, 167, 213, 248 Distribution function 254, see also Distribution Dividend 5, 9, 14, 21, 118, 123–124, 139, 142–146, 151, 163, 167, 169, 174, 176, 178–179, 213, 224, 243, 246, 251, 277, 279 Dow Jones Industrial Average 1, 26 Drift 27, 32–33, 36–38, 106, 259–262 Index Dynamic programming Dynamical system 52 19, 115 Early exercise 5, 7, 19, 23, 49, 105, 111, 115, 123, 214 Early–exercise curve (Free boundary) Sf 7, 112–113, 124, 140–149, 151–152, 154, 159–160, 168–173, 175–177, 180–181, 195, 249–251 Eﬃcient market 25, 242 Eigenmode 225 Eigenvalue 131–132, 137, 156, 225, 236, 268, 272 Element matrix 191–192, 206 Elliptic 202 Equivalent diﬀerential equation 230 Error control 11–12, 55, 161–165 Error damping 131 Error function 53 Error projection 202 Error propagation 131 Estimate 78, 256 Euler diﬀerential equation 125 Euler discretization method 33, 91, 93–94, 98, 101, 106, 109, 118, 119, 174–175 Excess return 36 Exercise of an option 1–3, 5–6, 105, 115, 143, 167, 173, 180, 241 Exotic option, see Option Expectation 14, 39–41, 51, 56, 77–78, 89, 94–95, 100, 103, 105, 120, 212, 248, 254–257 Expiration 2, see also Maturity Explicit method 91, 128–134, 152, 174–175 Exponential distribution 46–47, 71 Extrapolation 20, 49, 165–166, 173, 182, 267 Faure sequence 83, 86 Feynman 118 Fibonacci generator 67–68, 85, 88, 90 Filtration 111, 253, 258–259 Financial engineering 240 Finite diﬀerences 11, Chapter 4, 183, 188, 197–198, 222–227, 230–234, 236 Finite elements 11, Chapter 5, 212, 236 Finite–volume method 236 Fixed–point equation 270 Foreign exchange 244 Forward 240–244 295 Forward diﬀerence 129, 133, 135 Forward time backward space (FTBS) 227, 237 Forward time centered space (FTCS) 225–227, 229, 231 Fourier mode 225, 230–231 Fractal interpolation 102 Free boundary problem 140–149, 152 Frequency 230 Front ﬁxing 146, 175, 177, 181 Function spaces 188, 199–200, 272–275 Future 240–242 Galerkin 183, 186, 188, 192, 206 GARCH 52 Gaussian elimination 268–270 Gaussian process 25, 51 Gauß–Seidel method 179, 271–272 Geometric Brownian motion (GBM) 9, 34, 36, 41–43, 45, 47, 49, 51, 102, 121, 124, 138, 212, 215, 244, 262 Gerschgorin 137, 268 Girsanov 260 Godunov 236 Greek 116, 246–247 Grid 11–17, 49, 58, 79, 126–128, 150, 152, 161, 165, 178, 183–184, 193, 195, 222, 227, 231, 235 Halton sequence 83–84, 116–117 Hat function 187–191, 196, 198, 201, 203–206 Harrison 260 Hedging 5, 22, 25, 49, 240–241, 244–248 Hermite 206, 270 High–contact condition 145, 148, 170, 173, 176, 180 High resolution 209, 231–235 Hilbert space 274–275 Histogram 35, 37, 42–44, 58 Hitting time 112, 121 Hlawka 81, 84, 86 Holder 1–4, 23, 142, 180 Horner scheme 265 Implicit method 133–134, 136, 160, 174–175, 178, 235 Implied volatility 36, 54 Importance sampling 119 Incomplete market 262 296 Index Independent random variable 26–27, 46–47, 73, 78, 89, 101, 118, 248, 255–256 Inequalities 123, 146–152, 175, 194, 196, 203, 243 Ingersoll 38 Initial conditions 125, 129, 131, 151, 153, 174 Inner product 186, 199, 274–275 Integrability 188, 200–201, 273 Integral representation 42, 103, 138, 177 Integration by parts 119, 149, 188, 193–194, 199, 273 Interest rate r 4–6, 9, 14–15, 23–24, 37–38, 49, 52, 116, 224, 240–241, 243 Interpolation 12, 88, 102, 167–169, 184, 190, 203–204, 221, 265–267 Intrinsic value 2, 3, 115 Inversion method 69–70, 72, 85, 88, 117, 280 Isometry 31, 120 Iteration 267, 270–271 Itô integral 31–32, 50, 91, 119 Itô Lemma, see Lemma of Itô Itô process 32, 40–41, 59, 91, 257, 260–261 Itô–Taylor expansion 96–97 Jacobi matrix 72–73, 101, 267 Jacobi method 271–272 Jump 45, 220–221, 247 Jump diﬀusion 47–48, 52, 247–248 Jump process 45–48, 51–52, 247–248 Kac 118 Koksma 81, 84, 86 Kuhn–Tucker theorem Kurtosis 51 156–157 Lack of smoothness 147, 154, 160, 164, 175, 177 Landau symbol XVII, 267 Lattice method, see Binomial method Law of large numbers 78, 256 Lax–Friedrichs scheme 227, 233–234, 237 Lax–Wendroﬀ scheme 231–234, 236–237 Leap frog 236 Least squares 115, 187 Lebesgue integral 32, 78, 273 Lehmer generator 85 Lemma of Céa 202–203 Lemma of Itô 40–42, 43–44, 51, 57, 97, 119, 212, 215, 244–245, 247, 257, 260, 262 Lemma of Lax–Milgram 202 Lévy process 52, 85 LIBOR 240 Limiter 234–235 Linear element, see Hat function Local discretization error 136 Lognormal 42, 48, 51, 57, 102–103, 213, 248 Long position 4, 22, 243–244 Lookback option, see Option Low discrepancy 82, see Discrepancy Malliavin 116 Market model 8–9, see Model of the Market Market price of risk 36, 262 Markov Chain Monte Carlo (MCMC) 86 Markov process 25, 46 Marsaglia method 73–76, 85, 88, 117 Martingale 24, 27, 31, 37, 50, 118, 259–262 Maruyama 33 Mass matrix 194, 205 Maturity (expiration) T 1, 3, 5–6, 16, 21, 52, 54, 111, 121, 125, 138, 159, 166, 169, 175, 239–245, 251, 267, 279 Mean reversion 37–39 Mean square error 107 Measurable 253, 259 Merton 48, 49 Mersenne twister 85 Method of lines 172 Milstein 98–99, 109, 121 Minimization 150, 156–157, 178, 187, 195, 200 Mode, see Fourier mode Model error 161–162 Model of the Market 8–10, 25, 161, 242, 262 Model problem – −u = f 192, 200–201, 203 – ut + aux = buxx 224–226, 228 – ut + aux = 0 226–227, 230–235 Modulo congruence 62 Molecule 129, 134–135 Moment 51, 57, 94, 100–101, 120, 254 Index Monotonicity of a numerical scheme 232–236 Monte Carlo method 11, 40, 61, 77–82, 85–86, 89, 102–118, 121, 211–213, 236, 237, 263 Multifactor model 39, 116, 210–213 Multigrid 178 Newton’s method 54, 69, 166, 171, 235, 267–268 Nicolson, see Crank Niederreiter sequence 83, 86 Nitsche 204 No–arbitrage principle 4, 242–243, see Arbitrage Nobel Prize 49, 51 Node 16, 128–129, 213, 227 Nonconstant coeﬃcients 44, 224, 246 Norm 202–204, 268, 270, 272–275 Normal distribution 10, 25–28, 35, 40–41, 46–47, 51–53, 56, 61, 69–76, 87–91, 101, 106, 108, 117, 120, 167, 170, 173, 246, 255–256, 279–280 Numerical dissipation 228, 233–236 Obstacle problem 148–151, 175, 194, 200 One–factor model 39 One–period model 21–25, 115 Option 1, 41, 103, 240–241 – American 2–8, 10, 19–21, 23, 55, 105, 111–115, 123, 139, 140–148, 151–165, 167, 173, 176–177, 179–182, 194–195, 210, 213, 214, 249–252, 277–279 – Asian 126, 209–211, 214–221, 224, 235–237 – average, see Asian option – barrier 210–211, 235–237 – Basket 211–212, 237 – Bermudan 115 – binary 210 – call 1, 3–5, 9–10, 17, 19, 52, 55, 59, 103, 123, 125, 138–139, 142–143, 145–147, 151–152, 159, 181, 210, 212, 216–217, 221–222, 228, 241, 246–247, 249, 251–252, 277–279 – chooser 210 – compound 173, 210 – European 2, 5, 8–9, 19–20, 42, 52, 54, 55, 103–106, 111, 113, 121, 123, 139–143, 146, 159, 163–164, 167–168, 297 173, 175, 210–211, 214, 216–217, 221–223, 228, 245–247, 263, 277–279 – exotic 11, 177, 209–221, 235–237 – in the money 104 – lookback 107, 210–211, 235–236 – out of the money 104 – path–dependent 16, 21, 107, 111, 210–211, 214, 235–236 – perpetual 145, 179, 249 – put 1, 3–8, 18–21, 42, 52, 57, 103, 105–106, 112, 121, 138–139, 141–144, 147, 151–152, 159, 163, 167, 173, 176–177, 179–180, 182, 210, 218, 223, 241, 246–247, 249–252, 277–279 – rainbow 211–212 – vanilla (standard) 1, 59, 209–210 Order of error 20, 79, 91, 93–94, 98, 127, 135–136, 154, 161–162, 174, 178, 183, 198, 202–204, 268 Orthogonality 186, 205 Oscillations 223–224, 226, 229–236 Parabolic PDE 126 Parallelization 118 Pareto 51 Partial diﬀerential equation (PDE) 9–11, 123–126, 213 Partial integrodiﬀerential equation (PIDE) 48, 248 Partition of a domain 185 Path (Trajectory) 25, 33, 35, 40, 45, 92, 104, 106, 113–115, 118–119, 121 Path–(in)dependent, see Option Payoﬀ 2–4, 7–9, 17, 19, 21, 2324, 56–57, 59, 103–105, 110, 113, 115, 138, 140–143, 145–148, 160, 168–170, 173, 177, 210–212, 214–217, 221, 235, 241, 245, 249–251, 263 Péclet number 174, 223–227, 236 Penalty method 178 Period of random numbers 62–63, 67 Phase shift 230–231 Pliska 260 Poincaré 203 Poisson distribution 45, 257 Poisson process 45–48, 52, 259 Pole behavior 70, 266 Polygon 190, 201, 203–204, 265 Polynomial 184, 188, 201, 204–206, 226, 265–266, 280 Portfolio 22–25, 28, 49, 52, 59–60, 180, 212, 237, 239, 242, 244–247 Power method 272 298 Index Preconditioner 271–272 Premium 1–2, 4, 169, 177, 241, 243 Present value 267 Probability 14–15, 22–24, 36, 45–46, 57, 63, 69, 75, 79, 90, 103, 173, 253–257, 259–260 Proﬁt 4, 143, 242–243 Projection SOR 154–158, 160, 198, 272 Pseudo–random number 61 Put, see Option Put–call parity 5, 52, 139, 171, 179, 246, 279 Quadratic approximation 169–171 Quadrature 53, 82, 104, 266, 280 Quasi Monte Carlo 84 Quasi–random number 61, 82, 116–117 Radical–inverse function 83 Radon–Nikodym 260 Rainbow option, see Option Random number 27, 40, 47, 61–90, 106, 108, 114, 116–119 Random variable 25, 56, 100–101, 105, 108, 111, 120, 253, 259 RANDU 66 Rational approximation 70, 88, 266, 280 Rayleigh–Ritz principle 202, 205 Regression 168 Relaxation parameter 155, 176, 271–272 Replication portfolio 49–50, 245, 247, 263 Residual 185–186 Return 33, 35–36, 42–43, 51–52, 58, 212, 242 Riemann–(Stieltjes–) integral 29, 50 Risk 4, 5, 36, 43, 48, 52, 239–242, 246 Risk free, Risk neutral 5, 14, 18, 21–25, 36–37, 49–50, 57, 102–103, 115, 143, 167, 240, 242–244, 246 Ross 12, 38, 49 Rounding error 12, 54, 85, 117, 131, 133, 161–162, 236 Rubinstein 12, 49 Runge–Kutta method 99–100 Sample 61, 63, 69, 90, 253 Sample variance 63, 256 Sampling error 78–79, 107, 117 Samuelson 51 Scholes 49, see Black Schwarzian inequality 201, 203, 275 SDE, see Stochastic Diﬀerential Equation Secant method 54, 69, 268 Seed 62, 68, 93, 105–106 Self–ﬁnancing 50, 60, 242, 247, 260–261, 263 Separation 195, 216–217, 222 Semi–discretization 13, 115, 127, 180 Short position 4, 22, 52, 243–244 Short sale 243 Shuﬄing 67 Similarity reduction 235 Simple process 31 Simulation 33, 40, 47, 61, 93, 102–106, 111, 115, 121, 213 Singular matrix 193 Smooth, see Diﬀerentiable Sobol sequence 83, 86 Sobolev space 200–201, 274 Software 10, 280–282 SOR 155, 158–159, 179, 181, 198, 271–272 Sparse matrix 187, 201 Spectral method 178, 205 Spectral radius 131, 270 Spline 188, 201, 206, 265 Spot market 239 Spot price 6, 13, 239, 243–244 Spurious 209, 223–236 Square integrable 201, 273 Square mean 257 Stability 11–12, 118, 126, 130–135, 137, 140, 174, 174, 178, 224–232, 235–237 Staggered grid 231–232 Standard deviation 5, 58, 78, 106, 254 State–price process 260–262 Star discrepancy 81 Step length 33, 91, 93, 102, 106, 118, 128, 133, 160, 226 Stiﬀness 118, 191 Stiﬀness matrix 194, 205 Stochastic diﬀerential equation (SDE) 11, 32–44, 47–48, 51, 91–96, 104–107, 110–111, 115–116, 118–119, 121, 124, 215–216, 235, 244, 260–261 Stochastic integral 28–31, 39, 50 Stochastic process 6, 10, 25–32, 45, 50–52, 57, 91, 102, 213 Index Stochastic Taylor expansion 95–99 Stock 1, 33, 37, 41–42, 51, 58–59, 239, 241, 244–245 Stopping time 111–113, 142 Stopping region 142–143, 146–147, 159 Stratiﬁed sampling 85 Stratonovich integral 50 Strike price K 1–2, 5–6, 49, 52, 142–143, 159, 161, 167, 174, 207, 215, 241, 279 Strong convergence 94–95, 99–100, 118 Strong (classical) solution 92, 118, 195, 199–200 Subdomain 184–185, 187, 190–191 Subordinator 52 Support 70–72, 90, 188, 201, 206 Swap 240–242 Symmetry of put and call 252 Tail of a distribution 43, 51–52 Taylor expansion 41, 126–127, 136, 183, 230, 258 Terminal condition 9, 53, 169, 221, 224, 246 Test function, see Weighting function Total variation diminishing (TVD) 232–237 Trading strategy 28, 262–263 Trajectory, see Path Transaction costs 4, 9–10, 52 Transformations 42, 53, 69–74, 76, 88, 124–125, 128, 139, 146, 151, 154, 174, 181, 209, 216, 224, 237 Trapezoidal rule 175, 266 Trapezoidal sum (composite rule) 79, 248, 266 Traveling wave, see Wave Tree 12–13, 16–18, 21, 213 Tree method 49, 213, see Binomial method Trial function, see Basis function Tridiagonal matrix 130, 132, 134–135, 137, 181, 192, 198, 269–270 Trinomial model 21, 175, 213 Truncation error 299 161, 172 Underlying 1–2, 5, 58 Uniform distribution 61–74, 77–79, 88, 90, 255 Upwind scheme 209, 226–234, 237 Value at Risk 52, 116 Value function 9 Van der Corput sequence 82–83, 86 Van Leer 235 Variance 14–15, 40–43, 51, 53, 78–79, 87, 94–95, 100, 107–108, 110, 121, 254–257 Variance reduction 85, 108–111, 116, 119 Variation 29, 85, 215 Variational problem 149–151, 194, 200, 202 Vasicek 38 Vieta 17 Volatility 5–6, 9, 15, 17, 34, 36–40, 43, 52, 54, 58, 92, 102, 107, 116, 164, 212, 224, 226, 235, 246 Volatility smile 55, 174 Von Neumann stability 225, 227, 235–237 Wave 226, 230–231 Wave number 225–226, 231 Wavelet 206 Weak convergence 94–95, 100–101, 109, 118 Weak derivative 273–274 Weak solution 92, 120, 195, 199–202 Weighted residuals 183–187 Weighting function 186 White noise 32, 51 Wiener process (Brownian motion) Wt 25–34, 36, 38–44, 47, 50–52, 56, 57, 91–93, 96–102, 105, 119–121, 212, 215, 257–261 Writer 1–2, 4 Yield to maturity 267 Universitext Aguilar, M.; Gitler, S.; Prieto, C.: Algebraic Topology from a Homotopical Viewpoint Bonnans, J. 
pages: 382 words: 92,138 
The Entrepreneurial State: Debunking Public vs. Private Sector Myths by Mariana Mazzucato Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
Apple II, banking crisis, barriers to entry, Bretton Woods, California gold rush, call centre, carbon footprint, Carmen Reinhart, cleantech, computer age, credit crunch, David Ricardo: comparative advantage, demand response, deskilling, energy security, energy transition, eurozone crisis, everywhere but in the productivity statistics, Financial Instability Hypothesis, full employment, Growth in a Time of Debt, Hyman Minsky, incomplete markets, information retrieval, invisible hand, Joseph Schumpeter, Kenneth Rogoff, knowledge economy, knowledge worker, natural language processing, new economy, offshore financial centre, popular electronics, profit maximization, Ralph Nader, renewable energy credits, rentseeking, ride hailing / ride sharing, risk tolerance, shareholder value, Silicon Valley, Silicon Valley ideology, smart grid, Steve Jobs, Steve Wozniak, The Wealth of Nations by Adam Smith, Tim Cook: Apple, too big to fail, total factor productivity, trickledown economics, Washington Consensus, William Shockley: the traitorous eight Imperfections can arise for various reasons: the unwillingness of private firms to invest in areas, like basic research, from which they cannot appropriate private profits because the results are a ‘public good’ accessible to all firms (results of basic R&D as a positive externality); the fact that private firms do not factor in the cost of their pollution in setting prices (pollution as a negative externality); or the fact that the risk of certain investments is too high for any one firm to bear them all alone (leading to incomplete markets). Given these different forms of market failure, examples of the expected role of the State would include publicly funded basic research, taxes levied on polluting firms and public funding for infrastructure projects. While this framework is useful, it cannot explain the ‘visionary’ strategic role that government has played in making these investments. Indeed, the discovery of the Internet or the emergence of the nanotechnology industry did not occur because the private sector wanted something but could not find the resources to invest in it. 
pages: 443 words: 51,804 
Handbook of Modeling HighFrequency Data in Finance by Frederi G. Viens, Maria C. Mariani, Ionut Florescu Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
algorithmic trading, asset allocation, automated trading system, backtesting, BlackScholes formula, Brownian motion, business process, continuous integration, corporate governance, discrete time, distributed generation, fixed income, Flash crash, housing crisis, implied volatility, incomplete markets, linear programming, mandelbrot fractal, market friction, market microstructure, martingale, Menlo Park, pvalue, pattern recognition, performance metric, principal–agent problem, random walk, risk tolerance, risk/return, short selling, statistical model, stochastic process, stochastic volatility, transaction costs, value at risk, volatility smile, Wiener process Remark 3.6.8 in Karatzas and Shreve (1998). 11.6 Duality Approach For any stopping time τ ∈ S[0,T ] , we denote by τ (x) the set of portfolio/ consumptionrate processes triplets (π, C) for which (π, C, τ ) ∈ A(x). For ﬁxed τ ∈ S, we consider the utility maximization problem Vτ (x) sup (π ,C )∈ τ (x) J (x; π, C, τ ). (11.25) 301 11.6 Duality Approach Not allowing our agent to invest in the stock market (π(τ ,T ] ≡ 0) after retirement, creates an incomplete market in which the problem is difﬁcult to solve explicitly. However, under the additional Assumption (11.1) that the interest rate is locked after retirement, we can solve the optimization problem after retirement explicitly by pathwise optimization given the information available at retirement time Fτ . Equation 11.12 with π(τ ,T ] ≡ 0 implies that we have the following constraint ∞ γ (t)c(t)dt ≤ γ (τ )(X x,π ,C − ξ ), a.s. (11.26) τ In conjunction with Equation 11.15 this constraint leads to τ H (τ ) T E γ (t)c(t)dt + H (τ )ξ + H (s)c(s)ds γ (τ ) τ 0 τ x,π ,C (τ ) − ξ ) + H (τ )ξ + H (s)c(s)ds ≤ x. ≤ E H (τ )(X 0 The problem can be solved as usual, with the introduction of a Lagrange multiplier λ > 0: τ T −βt −βτ −βt e U1 (c(t))dt + e U2 (ξ ) + e U3 (c(t))dt J (x; π, C, τ ) = E τ 0 τ ≤E + e−βt Ũ1 (λeβt H (t))dt + e−βτ Ũ2 (λeβτ H (τ )) 0 T −βt e τ τ +λ·E 0 τ ≤E + τ −βt e H (τ ) H (t)c(t)ds + H (τ )ξ + γ (τ ) τ T γ (t)c(t)dt e−βt Ũ1 (λeβt H (t))dt + e−βτ Ũ2 (λeβτ H (τ )) 0 T βt H (τ ) Ũ3 λe γ (t) dt γ (τ ) βt H (τ ) Ũ3 λe γ (t) dt γ (τ ) + λx with equality if and only if ⎧ βt ⎨I1 (λe 0 < t < τ, H (t)) H (τ ) (11.27) c(t) = ⎩I3 λeβt γ (t) τ < t ≤ T. γ (τ ) T γ (s) βτ x,π ,C βs H (τ ) −ξ = ξ = I2 (λe H (τ )) and X I3 λe γ (s) ds, γ (τ ) τ γ (τ ) (11.28) 302 CHAPTER 11 The ‘‘Retirement’’ Problem τ E 0 H (τ ) H (t)c(t)dt + H (τ )ξ + γ (τ ) T τ γ (t)c(t)dt = x 
pages: 545 words: 137,789 
How Markets Fail: The Logic of Economic Calamities by John Cassidy Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
Albert Einstein, Andrei Shleifer, anticommunist, asset allocation, assetbacked security, availability heuristic, bank run, banking crisis, Benoit Mandelbrot, Berlin Wall, Bernie Madoff, BlackScholes formula, Bretton Woods, British Empire, capital asset pricing model, centralized clearinghouse, collateralized debt obligation, Columbine, conceptual framework, Corn Laws, correlation coefficient, credit crunch, Credit Default Swap, credit default swaps / collateralized debt obligations, crony capitalism, Daniel Kahneman / Amos Tversky, debt deflation, diversification, Elliott wave, Eugene Fama: efficient market hypothesis, financial deregulation, financial innovation, Financial Instability Hypothesis, financial intermediation, full employment, George Akerlof, global supply chain, Haight Ashbury, hiring and firing, Hyman Minsky, income per capita, incomplete markets, index fund, invisible hand, John Nash: game theory, John von Neumann, Joseph Schumpeter, laissezfaire capitalism, liquidity trap, London Interbank Offered Rate, Long Term Capital Management, Louis Bachelier, mandelbrot fractal, margin call, market bubble, market clearing, mental accounting, Mikhail Gorbachev, Mont Pelerin Society, moral hazard, mortgage debt, Naomi Klein, Network effects, Nick Leeson, Northern Rock, paradox of thrift, Ponzi scheme, price discrimination, price stability, principal–agent problem, profit maximization, quantitative trading / quantitative ﬁnance, race to the bottom, Ralph Nader, RAND corporation, random walk, Renaissance Technologies, rent control, Richard Thaler, risk tolerance, riskadjusted returns, road to serfdom, Robert Shiller, Robert Shiller, Ronald Coase, Ronald Reagan, shareholder value, short selling, Silicon Valley, South Sea Bubble, sovereign wealth fund, statistical model, technology bubble, The Chicago School, The Great Moderation, The Market for Lemons, The Wealth of Nations by Adam Smith, too big to fail, transaction costs, unorthodox policies, value at risk, Vanguard fund For the past thirty or forty years, many of the brightest minds in economics have been busy examining how markets function when the unrealistic assumptions of the free market model don’t apply. For some reason, the economics of market failure has received a lot less attention than the economics of market success. Perhaps the word “failure” has such negative connotations that it offends the American psyche. For whatever reason, “market failure economics” never took off as a catchphrase. Some textbooks refer to the “economics of information,” or the “economics of incomplete markets.” Recently, the term “behavioral economics” has come into vogue. For myself, I prefer the phrase “realitybased economics,” which is the title of Part II. Realitybased economics is less unified than utopian economics: because the modern economy is labyrinthine and complicated, it encompasses many different theories, each applying to a particular market failure. These theories aren’t as general as the invisible hand, but they are more useful. 

Making Globalization Work by Joseph E. Stiglitz Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
affirmative action, Andrei Shleifer, Asian financial crisis, banking crisis, barriers to entry, Berlin Wall, business process, capital controls, central bank independence, corporate governance, corporate social responsibility, currency manipulation / currency intervention, Doha Development Round, Exxon Valdez, Fall of the Berlin Wall, Firefox, full employment, Gini coefficient, global reserve currency, happiness index / gross national happiness, illegal immigration, income inequality, income per capita, incomplete markets, Indoor air pollution, informal economy, inventory management, invisible hand, Kenneth Rogoff, low skilled workers, manufacturing employment, market fundamentalism, Martin Wolf, microcredit, moral hazard, North Sea oil, offshore financial centre, oil rush, open borders, open economy, price stability, profit maximization, purchasing power parity, quantitative trading / quantitative ﬁnance, race to the bottom, reserve currency, rising living standards, risk tolerance, Silicon Valley, special drawing rights, statistical model, the market place, The Wealth of Nations by Adam Smith, Thomas L Friedman, trade liberalization, trickledown economics, union organizing, Washington Consensus I should be clear: while the intellectual groundings have been taken away from market fundamentalism, newspaper columnists and pundits—and occasionally, even a few economists—sometimes still invoke economic "science" in defense of their position. 3. This research was cited when I was awarded the Nobel Prize. 4. See Bruce Greenwald and Joseph E. Stiglitz, "Externalities in Economies with Imperfect Information and Incomplete Markets," Quarterly Journal of Economics, vol. 101, no. 2 (May 1986), pp. 22964. 5. Joseph E. Stiglitz, The Roaring Nineties (New York: W W Norton, 2003). 6. An expression used by the philanthropist George Soros. 7. Matthew Miller, The Two Percent Solution: Fixing America's Problems in Ways Liberals and Conservatives Can Love (New York: PublicAffairs, 2003). This is how Miller phrases the issue in the prologue to his book: "We'll first step back and lay a little philosophical groundwork by examining the pervasive role of luck in 2 94 NOTES TO PAGES 1 1 –1 6 NOTES TO PAGES xvir1 1 life, and how taking life's 'prebirth lottery' seriously can bring the consensus we need to make progress." 8. 
pages: 1,088 words: 228,743 
Expected Returns: An Investor's Guide to Harvesting Market Rewards by Antti Ilmanen Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
Andrei Shleifer, asset allocation, assetbacked security, availability heuristic, backtesting, balance sheet recession, bank run, banking crisis, barriers to entry, Bernie Madoff, Black Swan, Bretton Woods, buy low sell high, capital asset pricing model, capital controls, Carmen Reinhart, central bank independence, collateralized debt obligation, commodity trading advisor, corporate governance, credit crunch, Credit Default Swap, credit default swaps / collateralized debt obligations, debt deflation, deglobalization, delta neutral, demand response, discounted cash flows, disintermediation, diversification, diversified portfolio, dividendyielding stocks, equity premium, Eugene Fama: efficient market hypothesis, fiat currency, financial deregulation, financial innovation, financial intermediation, fixed income, Flash crash, framing effect, frictionless, frictionless market, George Akerlof, global reserve currency, Google Earth, high net worth, hindsight bias, Hyman Minsky, implied volatility, income inequality, incomplete markets, index fund, inflation targeting, interest rate swap, invisible hand, Kenneth Rogoff, laissezfaire capitalism, law of one price, Long Term Capital Management, loss aversion, margin call, market bubble, market clearing, market friction, market fundamentalism, market microstructure, mental accounting, merger arbitrage, mittelstand, moral hazard, New Journalism, oil shock, pvalue, passive investing, performance metric, Ponzi scheme, prediction markets, price anchoring, price stability, principal–agent problem, private sector deleveraging, purchasing power parity, quantitative easing, quantitative trading / quantitative ﬁnance, random walk, reserve currency, Richard Thaler, risk tolerance, riskadjusted returns, risk/return, riskless arbitrage, Robert Shiller, Robert Shiller, savings glut, Sharpe ratio, short selling, sovereign wealth fund, statistical arbitrage, statistical model, stochastic volatility, systematic trading, The Great Moderation, The Myth of the Rational Market, too big to fail, transaction costs, tulip mania, value at risk, volatility arbitrage, volatility smile, workingage population, Y2K, yield curve, zerocoupon bond The model predicts a very low equity risk premium (well below 1%) due to the low observed volatility of consumption growth and low observed correlation between consumption growth and asset returns, unless an extremely high risk aversion coefficient is used. A huge academic literature has tried to reconcile this puzzle, using market frictions (borrowing constraints, limited market participation, incomplete markets, and idiosyncratic risk), nonstandard utility functions (habit formation, recursive utility), modified consumption data (durable goods, luxury goods, longterm consumption risk), and biased sample explanations (survivorship bias among countries studied, absence of negative rare events in the sample, unexpected repricing of equities or bonds) as rational explanations for high observed equity outperformance—but there is little consensus to date. 
pages: 662 words: 180,546 
Never Let a Serious Crisis Go to Waste: How Neoliberalism Survived the Financial Meltdown by Philip Mirowski Amazon: amazon.com — amazon.co.uk — amazon.de — amazon.fr
Andrei Shleifer, assetbacked security, bank run, barriers to entry, Basel III, Berlin Wall, Bernie Madoff, Bernie Sanders, Black Swan, bluecollar work, Bretton Woods, Brownian motion, capital controls, Carmen Reinhart, Cass Sunstein, central bank independence, cognitive dissonance, collapse of Lehman Brothers, collateralized debt obligation, complexity theory, constrained optimization, credit crunch, Credit Default Swap, credit default swaps / collateralized debt obligations, crony capitalism, dark matter, David Brooks, David Graeber, debt deflation, deindustrialization, Edward Glaeser, Eugene Fama: efficient market hypothesis, experimental economics, facts on the ground, Fall of the Berlin Wall, financial deregulation, financial innovation, Flash crash, full employment, George Akerlof, Goldman Sachs: Vampire Squid, Hernando de Soto, housing crisis, Hyman Minsky, illegal immigration, income inequality, incomplete markets, invisible hand, Jean Tirole, jointstock company, Kenneth Rogoff, knowledge economy, l'esprit de l'escalier, laborforce participation, liquidity trap, loose coupling, manufacturing employment, market clearing, market design, market fundamentalism, Martin Wolf, Mont Pelerin Society, moral hazard, mortgage debt, Naomi Klein, Nash equilibrium, nightwatchman state, Northern Rock, Occupy movement, offshore financial centre, oil shock, payday loans, Ponzi scheme, precariat, prediction markets, price mechanism, profit motive, quantitative easing, race to the bottom, random walk, rentseeking, Richard Thaler, road to serfdom, Robert Shiller, Robert Shiller, Ronald Coase, Ronald Reagan, savings glut, school choice, sealedbid auction, Silicon Valley, South Sea Bubble, Steven Levy, technoutopianism, The Chicago School, The Great Moderation, the map is not the territory, The Myth of the Rational Market, the scientific method, The Wisdom of Crowds, theory of mind, Thomas Kuhn: the structure of scientific revolutions, Thorstein Veblen, Tobin tax, too big to fail, transaction costs, War on Poverty, Washington Consensus, We are the 99%, working poor Neoliberalism has therefore expanded to become a comprehensive worldview, and has not been just a doctrine solely confined to economists.77 With regard to the crisis, one wing of neoliberals has appealed to natural science concepts of “complexity” to suggest that markets transcend the very possibility of management of systemic risk.78 However, the presumed relationship of the market to nature tends to be substantially different under neoliberalism than under standard neoclassical theory. In brief, neoclassical theory has a far more static conception of market ontology than do the neoliberals. In neoclassical economics, many theoretical accounts portray the market as somehow susceptible to “incompleteness” or “failure,” generally due to unexplained natural attributes of the commodities traded: these are retailed under the rubric of “externalities,” “incomplete markets,” or other “failures.” Neoliberals conventionally reject all such recourse to defects or glitches, in favor of a narrative where evolution and/or “spontaneous order” brings the market to ever more complex states of selfrealization, which may escape the ken of mere humans.79 This explains why the NTC has rejected out of hand all neoclassical “market failure” explanations of the crisis. [4] A primary ambition of the neoliberal project is to redefine the shape and functions of the state, not to destroy it. 