minimum viable product

59 results back to index


pages: 278 words: 83,468

The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses by Eric Ries

3D printing, barriers to entry, call centre, Clayton Christensen, clean water, cloud computing, commoditize, Computer Numeric Control, continuous integration, corporate governance, disruptive innovation, experimental subject, Frederick Winslow Taylor, Lean Startup, Marc Andreessen, Mark Zuckerberg, Metcalfe’s law, minimum viable product, Mitch Kapor, Network effects, payday loans, Peter Thiel, pets.com, Ponzi scheme, pull request, risk tolerance, selection bias, Silicon Valley, Silicon Valley startup, six sigma, skunkworks, stealth mode startup, Steve Jobs, the scientific method, Toyota Production System, transaction costs

These give rise to tuning variables that control a startup’s engine of growth. Each iteration of a startup is an attempt to rev this engine to see if it will turn. Once it is running, the process repeats, shifting into higher and higher gears. Once clear on these leap-of-faith assumptions, the first step is to enter the Build phase as quickly as possible with a minimum viable product (MVP). The MVP is that version of the product that enables a full turn of the Build-Measure-Learn loop with a minimum amount of effort and the least amount of development time. The minimum viable product lacks many features that may prove essential later on. However, in some ways, creating a MVP requires extra work: we must be able to measure its impact. For example, it is inadequate to build a prototype that is evaluated solely for internal quality by engineers and designers. We also need to get it in front of potential customers to gauge their reactions.

Drew recounted, “It drove hundreds of thousands of people to the website. Our beta waiting list went from 5,000 people to 75,000 people literally overnight. It totally blew us away.” Today, Dropbox is one of Silicon Valley’s hottest companies, rumored to be worth more than $1 billion.5 In this case, the video was the minimum viable product. The MVP validated Drew’s leap-of-faith assumption that customers wanted the product he was developing not because they said so in a focus group or because of a hopeful analogy to another business, but because they actually signed up. THE CONCIERGE MINIMUM VIABLE PRODUCT Consider another kind of MVP technique: the concierge MVP. To understand how this technique works, meet Manuel Rosso, the CEO of an Austin, Texas–based startup called Food on the Table. Food on the Table creates weekly meal plans and grocery lists that are based on food you and your family enjoy, then hooks into your local grocery stores to find the best deals on the ingredients.

Unknowingly, we had fallen into a classic startup trap. We had been so successful with our early efforts that we were ignoring the principles behind them. As a result, we missed the need to pivot even as it stared us in the face. We had built an organization that excelled at the kinds of activities described in earlier chapters: creating minimum viable products to test new ideas and running experiments to tune the engine of growth. Before we had begun to enjoy success, many people had advised against our “low-quality” minimum viable product and experimental approach, urging us to slow down. They wanted us to do things right and focus on quality instead of speed. We ignored that advice, mostly because we wanted to claim the advantages of speed. After our approach was vindicated, the advice we received changed. Now most of the advice we heard was that “you can’t argue with success,” urging us to stay the course.


pages: 179 words: 42,006

Startup Weekend: How to Take a Company From Concept to Creation in 54 Hours by Marc Nager, Clint Nelsen, Franck Nouyrigat

Amazon Web Services, barriers to entry, business climate, invention of the steam engine, James Watt: steam engine, Mark Zuckerberg, minimum viable product, pattern recognition, Silicon Valley, transaction costs, web application, Y Combinator

See Team building Pivoting Plane.ly Product/service differentiation Project management agile development lean methods scrum board traditional method waterfall method Proof of concept. See Minimum viable product (proof of concept) Protobakes Prototypes. See Minimum viable product (proof of concept) Quotify Reiser, Shane Relationship building Release early, release often concept Research on entrepreneurship Rethink Water Ries, Eric Ringwald, Alexis Risk and entrepreneurship low-risk setting of Startup Weekend and minimum viable product concept Risk capital Risk mitigation Rockwell, Dan Roman vote (thumbs-up/thumbs-down) Roqbot Rossi, Jon Scaling leap Schramm, Carl Scrum Scrum boards. See also Brainstorming Seguin, Nick Shurstedt, Jerry Siauw, Danielle Silicon Valley Sixty second pitch elements of example pain-point problem description rationale for solution summary team building Smallbone, David Social media Social networking South by Southwest (SXSW) Festival Sparkrelief Sprints Stamos, John Stanford University Star Trek Star Trek: The Next Generation Startup America Startup Cofounders Startup Drinks Startup Foundation Startup Labs Startup leap Startup process cofounder leap entrepreneurship leap external growth leap funded leap scaling leap speed of startup leap Startup revolution Startup Weekend action-based networking attendees backgrounds of attendees benefits of and community continuation of work after Core Team empowerment experiential education.

Then you'll have some clue about what people want and you won't even have to waste the energy and time and money on building it. This is what business theorists call a proof of concept. We encourage people to go one step further at Startup Weekend and build what's called a minimum viable product. Rather than just having a website that shows people what the product will do once it's built, go ahead and build a stripped down version of it. As one of the pioneers of this theory, Eric Ries, explained in an interview with Venture Hacks, “The idea of minimum viable product is useful because you can basically say: Our vision is to build a product that solves this core problem for customers . . . we think that . . . early adopters [of] this kind of solution will be the most forgiving. And they will fill in the features that aren't quite there in their minds if we give them the core, tent-pole features that point [in] the direction of where we're trying to go.”

And they will fill in the features that aren't quite there in their minds if we give them the core, tent-pole features that point [in] the direction of where we're trying to go.” Dan Rockwell, who has launched a number of startups and participated in a Startup Weekend in Columbus, Ohio, offers a concise way of thinking about minimum viable products: They should be products with the minimum value, the minimum desired experience, the minimum cash lost, the minimum BS to endure—and the maximum momentum to burn. Rockwell's company, Big Kitty Labs, produces something called Protobakes, which are “functional code examples” of something you want to make at the level of a minimum viable product. He sees these protobakes as a means of facilitating conversation between you and your team, as well as your customers and your investors. To think about a product's growth as a kind of conversation is to understand how quickly and nimbly its development is coming along.


pages: 406 words: 105,602

The Startup Way: Making Entrepreneurship a Fundamental Discipline of Every Enterprise by Eric Ries

activist fund / activist shareholder / activist investor, Affordable Care Act / Obamacare, Airbnb, autonomous vehicles, barriers to entry, basic income, Ben Horowitz, Black-Scholes formula, call centre, centralized clearinghouse, Clayton Christensen, cognitive dissonance, connected car, corporate governance, DevOps, Elon Musk, en.wikipedia.org, fault tolerance, Frederick Winslow Taylor, global supply chain, index card, Jeff Bezos, Kickstarter, Lean Startup, loss aversion, Marc Andreessen, Mark Zuckerberg, means of production, minimum viable product, moral hazard, move fast and break things, move fast and break things, obamacare, peer-to-peer, place-making, rent-seeking, Richard Florida, Sam Altman, Sand Hill Road, secular stagnation, shareholder value, Silicon Valley, Silicon Valley startup, six sigma, skunkworks, Steve Jobs, the scientific method, time value of money, Toyota Production System, Uber for X, universal basic income, web of trust, Y Combinator

As Mark Zuckerberg says in his famous manifesto (in Facebook’s S-1 filing): “Try to build the best services over the long term by quickly releasing and learning from smaller iterations rather than [by] trying to get everything right all at once….We have the words Done is better than perfect painted on our walls to remind ourselves to always keep shipping.”5 DETERMINING VALUE AND GROWTH HYPOTHESES 2. Minimum Viable Product (MVP) Once we’ve gathered predictions and assumptions and articulated value and growth hypotheses, the next step is to build an experiment called a minimum viable product or MVP. An MVP is an early version of a new product that allows a team to collect the maximum amount of validated learning (learning based on real data gathering rather than guesses about the future) about customers. Ideally, this learning will maximize the number of LOFAs tested while minimizing cost, time, and effort.

In that way, they were able to experiment with the product immediately, change it quickly, and test again. Most of us don’t leap to do work this way. It’s uncomfortable to put an imperfect, messy product out there, especially when we are enthralled with the big vision for our project, as most entrepreneurs are. “The thing about Minimum Viable Products is that while you decide what’s Minimum, the customer decides if it’s Viable,” writes David Bland, a consultant and early Lean Startup evangelist. “You’ll need to lead your team out of the trough of sorrow after they experience this despair for the first time. Minimum Viable Products are optimized for learning, not for scaling. This is one of the hardest things to convey to people who’ve spent their lives building to build, not building to learn.”7 TYPES OF MVPs MVPs come in all sizes and flavors. It all depends on what you’re trying to learn.

It won’t be dragged down by inane meetings and nosy middle managers. It will remain dynamic, scrappy, a perpetual startup. But how often is this ideal organization actually what they end up creating? Over the past several years, founders and CEOs who had been early adopters of the Lean Startup method began to get back in touch with me. In the early days, they had been excited about the parts of Lean Startup that are about getting started quickly, like minimum viable product and pivot. But they hadn’t been as focused on the parts that are, frankly, a little more boring: the science of management and the discipline of accounting. Now that their companies had scaled to hundreds, thousands, or, in some cases, tens of thousands of employees, they realized they had to find a way to hold on to their entrepreneurial way of working, even as they put traditional management tools in place, did more forecasting, and moved toward a traditional-looking org chart.


pages: 567 words: 122,311

Lean Analytics: Use Data to Build a Better Startup Faster by Alistair Croll, Benjamin Yoskovitz

Airbnb, Amazon Mechanical Turk, Amazon Web Services, Any sufficiently advanced technology is indistinguishable from magic, barriers to entry, Bay Area Rapid Transit, Ben Horowitz, bounce rate, business intelligence, call centre, cloud computing, cognitive bias, commoditize, constrained optimization, en.wikipedia.org, Firefox, Frederick Winslow Taylor, frictionless, frictionless market, game design, Google X / Alphabet X, Infrastructure as a Service, Internet of things, inventory management, Kickstarter, lateral thinking, Lean Startup, lifelogging, longitudinal study, Marshall McLuhan, minimum viable product, Network effects, pattern recognition, Paul Graham, performance metric, place-making, platform as a service, recommendation engine, ride hailing / ride sharing, rolodex, sentiment analysis, skunkworks, Skype, social graph, social software, software as a service, Steve Jobs, subscription business, telemarketer, transaction costs, two-sided market, Uber for X, web application, Y Combinator

It started with a hypothesis: “Hosts with professional photography will get more business. And hosts will sign up for professional photography as a service.” This is where the founders’ gut instincts came in: they had a sense that professional photography would help their business. But rather than implementing it outright, they built a Concierge Minimum Viable Product (MVP) to quickly test their hypothesis. What Is a Concierge MVP? The Minimum Viable Product is the smallest thing you can build that will create the value you’ve promised to your market. But nowhere in that definition does it say how much of that offering has to be real. If you’re considering building a ride-sharing service, for example, you can try to connect drivers and passengers the old-fashioned way: by hand. This is a concierge approach.

, Circle of Moms Explores Its Way to Success moving targets and, Correlated Versus Causal Metrics normal or ideal value for, Am I Good Enough? qualitative versus quantitative, What Makes a Good Metric?, What Makes a Good Metric? rules of thumb for, How to Keep Score vanity versus real/actionable, What Makes a Good Metric?, What Makes a Good Metric? Microsoft, Skunk Works for Intrapreneurs, Revenue Within the Ecosystem Mine That Data consultancy, Model One: E-commerce Minimum Viable Product (see MVP (Minimum Viable Product)) minimum viable vision, The Minimum Viable Vision MMO (massively multiplayer online) games, Eric Ries’s Engines of Growth, Model Three: Free Mobile App mobile apps model about, Model Three: Free Mobile App advertising in, Model Three: Free Mobile App, Visualizing the Mobile App Business DuProprio/Comfree case study, What DuProprio Watches key takeaways, Visualizing the Mobile App Business measuring metrics in, Model Three: Free Mobile App, Mobile Downloads monetization in, Model Three: Free Mobile App, Average Revenue Per User, Visualizing the Mobile App Business Sincerely Inc. case study, Mobile Customer Acquisition Cost stage comparisons in, Model + Stage Drives the Metric You Track user flow depicted through, Visualizing the Mobile App Business wrinkles in, Visualizing the Mobile App Business mobile download size metric, Mobile Download Size mobile downloads metric, Mobile Downloads mode (e-commerce model), What Mode of E-commerce Are You?

But that delusion can be their undoing if they start lying to themselves. This book is the antidote. Alistair and Ben have written a much-needed dose of reality, and entrepreneurs who ignore this data-driven approach do so at their peril.” —Brad Feld—Managing Director, Foundry Group; Co-founder, TechStars; and Creator, the Startup Revolution series of books “Lean Analytics will take you from Minimum Viable Product to Maximally Valuable Product. It’s as useful for product managers at today’s multi-billion dollar companies as it is for entrepreneurs who aspire to build those of tomorrow.” —John Stormer—Senior Director of New Products, Salesforce “The bad news is, there will always be people out there smarter than you. The good news is, Alistair and Ben are those guys. Using Lean Analytics will give you the edge you need.”


pages: 216 words: 61,061

Without Their Permission: How the 21st Century Will Be Made, Not Managed by Alexis Ohanian

Airbnb, barriers to entry, carbon-based life, cloud computing, crowdsourcing, en.wikipedia.org, Hans Rosling, hiring and firing, Internet Archive, Justin.tv, Kickstarter, Marc Andreessen, Mark Zuckerberg, means of production, Menlo Park, minimum viable product, Occupy movement, Paul Graham, Silicon Valley, Skype, slashdot, social web, software is eating the world, Startup school, Tony Hsieh, unpaid internship, Y Combinator

It was a rather unexciting list of search results, just like any other travel search engine you’ve ever used, except this one didn’t have any polish. I wasn’t too impressed. But Steve said they’d been noodling on some different ways to present the data that were going to be infinitely more user-friendly. I trusted him, but I went back to Brooklyn thinking he and Adam were a long way from that minimum viable product (or as the cool kids say, “MVP”). In my mind, searching for flights was already a solved problem. It worked well enough to allow me to sit at my laptop and, if I had enough tabs open, not bother my dad about finding me a good flight to San Francisco. But Adam knew it could be so much better. You see, Adam realized he had a problem booking flights back in college. He ended up memorizing airport codes from AAL to ZRH because the MIT debate team competed all over the globe, and Adam had the unenviable job of booking flights for everyone.

The similarity was unintentional—it came from my subconscious—but it just goes to show that we’re all standing on the shoulders of giants (or giant rodents). How to Win Deals and Influence Industry Titans Totally unlike reddit, hipmunk has zero user-generated content; the value of the site comes from how we display the content provided by airlines and hotels. Back then, we just needed flight information (remember, minimum viable product), but we couldn’t just scrape the data off airlines’ websites (scraping is essentially sending software to “read” and copy content from other websites). Most important, we wanted to get paid every time someone bought a flight that we helped him or her find on hipmunk. This was a great lesson: as the saying goes, we wanted to be “near our users’ wallets.” We were far from it with reddit, which made its money primarily through advertising, but we were totally there from launch day at hipmunk, thanks to some incredible hustle from Adam.

If you’re not willing to really understand the industry you’re aspiring to reinvent, don’t bother starting a startup. Having industry experience is not only invaluable for building a great product or service, it also shows investors the dedication a successful founder needs to have. Business First, Then Business Cards Once you’ve identified a real problem and done your research, start trying to solve it in the simplest way possible. Your first version should certainly embarrass you. “Minimum viable product” has become a startup cliché for good reason. Just build the simplest possible solution to a problem, and launch it. This probably won’t take as long as you might think. Each round of Y Combinator was designed to be three months long because Paul wanted it to be a summer program, so students could decide to take time off from school if their company was going well. This happened to also be a reasonable amount of time to go from idea to a live product.


pages: 244 words: 66,977

Subscribed: Why the Subscription Model Will Be Your Company's Future - and What to Do About It by Tien Tzuo, Gabe Weisert

3D printing, Airbnb, airport security, Amazon Web Services, augmented reality, autonomous vehicles, blockchain, Build a better mousetrap, business cycle, business intelligence, business process, call centre, cloud computing, cognitive dissonance, connected car, death of newspapers, digital twin, double entry bookkeeping, Elon Musk, factory automation, fiat currency, Internet of things, inventory management, iterative process, Jeff Bezos, Kevin Kelly, Lean Startup, Lyft, manufacturing employment, minimum viable product, natural language processing, Network effects, Nicholas Carr, nuclear winter, pets.com, profit maximization, race to the bottom, ride hailing / ride sharing, Sand Hill Road, shareholder value, Silicon Valley, skunkworks, smart meter, social graph, software as a service, spice trade, Steve Ballmer, Steve Jobs, subscription business, Tim Cook: Apple, transport as a service, Uber and Lyft, uber lyft, Y2K, Zipcar

And what if your listeners aren’t just members, but participants in the creative process? In 2016 Kanye West dropped a new album, sort of. It wasn’t actually finished—he kept publicly tweaking lyrics, rearranging the song order, and adding and subtracting material. As I’ll explain in greater detail later in the book, in the technology industry we would call The Life of Pablo a minimum viable product. That may sound like a pejorative term, but a minimum viable product is actually incredibly important. Only after it gets something out in the market can a business gather customer feedback and use this data to iterate and improve in a continuous deployment cycle. The MVP is a defining principle of cloud software development, and Kanye applied it to his music-writing process. What happens when a static product like an album turns into a fluid service like a music stream?

See Internet of Things (IOT) iPhone, 3 IT department, 129–30, 189–99 business insights and, 198 evolving IT architecture to meet subscription economy needs, 197–99 financials and, 192 legacy IT architecture, structure of and problems associated with, 189–97 pricing and packaging and, 190–91, 199 renewals and, 191 sales to different customer groups and, 191–92 subscribers/customer metrics and, 190, 198 “It Doesn’t Matter” (Carr), 83 Jankowski, Simona, 26, 27 Janzer, Anne, 130 Jaws (film), 38 JCPenney, 22 Jobs, Steve, 39, 47 Johnny Walker Blue Label, 107 Johnson, Kevin, 33 just in time inventory, 16 Kaplan, 117 Kaplan, Ethan, 30–31 Katzenberg, Jeffrey, 46 Kelly, Kevin, 111 Kern, Mac, 60–61 Kmart, 22 Komatsu, 98–99 Kramer, Kelly, 95–96 Kreisky, Peter, 78 Lah, Thomas, 85–86, 96 Lean Startup method, 48 leasing versus subscription model, for automobiles, 52–53 Lemonade, 118 Lessin, Jessica, 66, 68 Levie, Aaron, 167–68, 198–99 Life of Pablo, The (album), 48, 136–37 linear order-to-cash systems, 192–97 livestreaming, 42 LL Cool J, 101 LO3 Energy, 119 Loot Crate, 28 Lotto, Mark, 75 Lucas, George, 136 Lyft, 3, 54–55 Lynda.com, 31, 117 MacKenzie, Angus, 72 McGraw-Hill, 12–13 McKinsey, 11, 34, 98, 112–13, 165, 173, 218, 221 Macy’s, 14 Magellan Health, 115 Main, Andy, 121–22 malls, 17, 22, 34–35 Manifesto for Agile Software Development, 135–36 manufacturing industry, 100–101, 103–13 digital twins of physical machinery and, 104–6 focusing on outcomes instead of products, 106–11 future of, 111–13 margins, 15 marketing, 130–31, 143–55 experiences, communicating brand through, 145, 149 one-on-one marketing, 145–46 optimizing growth within service itself, 145 place (channels) and, 146, 147–48 pricing and packaging and, 146, 151–54 promotion and, 146, 149–51 subscriber IDs and, 146 Three Rooms mental model of storytelling and, 149–51 traditional role and techniques of, 143–44 Marketo, 190 MarketTools, 171 Marshall, John, 68 Martin-Flickinger, Gerri, 141 Mashable, 66 mass production, 37 media industry, 37–50 community, building, 43 content creation, investment in, 41 continuous innovation and, 136–37 Hollywood, historical business model of, 37–38 livestreaming, 42 mass production of movies in, 37 music industry, historical business model of, 38–39 music streaming services, 46–50 Netflix show, business model for, 41 portfolio effect and, 37, 41 streaming services and, 39–50 subscription video on demand (SVOD), 42–46 Meeker, Mary, 21 Membership Economy, The (Baxter), 29 Merry Christmas (album), 38 Metallica, 39 Metromile, 118 Microsoft, 56, 83, 89 minimum viable product, 48 ModCloth, 23 Moffett, Craig, 45 Molotov, 46 monetizing longtail content business model, 38 Money element, of PADRE operating model, 204 MOOCs (massive open online courses), 117 Mooney, Andy, 31–32 Motor Trend, 72–73, 79 MoviePass, 2 Mukherjee, Subrata, 74 multiple of three factors, for gauging reader engagement, 74 music streaming services, 46–50 BowieNet and, 47 minimum viable product and, 48 Prince’s NPG Music Club and, 47–48, 49–50 virtuous feedback loop, creating, 48–49 My Royal Canin, 118 Napster, 39 NCR, 13 negative option model, 28–30 Nest, 119 net account growth, 211–13 Netflix, 2, 3, 13, 18–19, 39, 40–41, 69, 139–40, 145, 161, 198 Newman, Nic, 69 New Relic, 166–67 newspaper industry, 65–79 ad-based business model, decline of, 66–70 digital subscribers, growth in, 65–66 enthusiast networks, 72–73 freemium model and, 76 multiple of three factors, for gauging reader engagement, 74 New York Times, subscription-first model of, 75–79 pricing agility and, 73–74 print versus digital myths, 70–71 reader’s wants and needs, prioritizing, 70–71 subscription/ad revenue mix, flipping, 75–76 New Yorker, The, 65, 66–67 New York Times, The, 65, 72–73, 75–79 Ngenic, 109–11 Nichols, Jim, 52 Nordstrom, 33 NPG Music Club, 47–48, 49–50 O’Brien, Mike, 51 Okta, 3 One Medical, 115 one-on-one marketing, 145–46 OnStar, 55–56, 148 Oracle, 4, 83, 190 Pacioli, Luca, 176–78 packaging.


pages: 231 words: 71,248

Shipping Greatness by Chris Vander Mey

corporate raider, don't be evil, en.wikipedia.org, fudge factor, Google Chrome, Google Hangouts, Gordon Gekko, Jeff Bezos, Kickstarter, Lean Startup, minimum viable product, performance metric, recommendation engine, Skype, slashdot, sorting algorithm, source of truth, Steve Jobs, Superbowl ad, web application

So you’re probably right, but the best way to prove you are is to give customers a product and see what they say. Serial software entrepreneur Eric Ries seems to agree with this approach, and makes a compelling case for building what he calls the minimum viable product in his book The Lean Startup (Crown Business). Ries defines the minimum viable product as the smallest fraction of your product that a sufficient number of customers will use in order to validate an assumption. You may only need a handful of customers to know you’re on the right track, and you may only need to validate one assumption at a time. Regardless of how big your minimum viable product is, you can still follow the product definition process. You will want to repeat it quickly to test assumptions and deliver great incremental progress to your customers. If your iterations are smaller and faster, you’ll spend less time guessing about what customers need and more time acting on what customers tell you—and that will lead to greatness.

I see them going through the same special torture that I underwent when I entered this industry—but I had the good fortune to have great teachers attendant at my hazing: Dartmouth, Amazon, Google, and my own mistaken ventures. My first teacher was my own company—I was arrogant enough to think that since I could write software I could do everything else required to ship it. You know, define the minimum viable product, manage the project, iterate, release, market, and so on. I learned many valuable lessons, hubris among them. I then joined another startup as the chief technology officer, and spent years trying to make it big. I learned (mostly) different lessons there, but repeated the class in hubris. Abashed, I went to Dartmouth, and studied at the Thayer School of Engineering and the Tuck School of Business, earning a master’s of engineering management degree.


pages: 284 words: 72,406

Scrum: The Art of Doing Twice the Work in Half the Time by Jeff Sutherland, Jj Sutherland

Baxter: Rethink Robotics, business cycle, call centre, clean water, death of newspapers, fundamental attribution error, knowledge worker, meta analysis, meta-analysis, Milgram experiment, minimum viable product, pets.com, RAND corporation, rent-seeking, Richard Feynman, Rodney Brooks, Shai Danziger, Silicon Valley, Tony Hsieh, Toyota Production System

I discuss how we organize projects around small teams—and why that is such an effective way to work. I explain how we prioritize projects, how we set up one-week to one-month “sprints” to gain momentum and hold everyone on the team accountable, how we conduct brief daily stand-ups to keep tabs on what has been done and on the challenges that have inevitably cropped up. And how Scrum incorporates the concepts of continuous improvement and minimum viable products to get immediate feedback from consumers, rather than waiting until a project is finished. As you’ll see in the pages that follow, we’ve used Scrum to build everything from affordable 100-mile-per-gallon cars to bringing the FBI database systems into the twenty-first century. Read on. I think you’ll see how Scrum can help transform how your company works, creates, plans, and thinks. I firmly believe that Scrum can help to revolutionize how business works in virtually every industry, just as it has revolutionized innovation and speed to market at a dazzling array of new companies and a breathtaking range of new products emerging out of Silicon Valley and the world of technology.

Team WIKISPEED, which I wrote about in chapter four, produces full prototypes of their car every week. And they sell those prototypes. These transactions don’t occur in a mass market—Team WIKISPEED isn’t ready for that yet—but there are early adopters who are willing to put down $25,000 for those early prototypes. When you’re thinking about building something, don’t assume you can’t deliver something of value until the very end. Instead, try to think about the minimum viable product. What is the absolute least I can build and still deliver some value to a customer? Videogames are another good example. Nowadays more and more developers are letting early adopters pay for early “alpha” access. That way the developers get feedback from their most dedicated fans before the game really works. This allows them to see how people actually react, rather than guess how they will react.

You know where 80 percent of the value lies. When do you deliver your product? Here is where Scrum can deliver value radically faster. Whenever you’re making something, you want to put it in the hands of those who are actually going to use it as fast as possible. You want to do this even before you make 20 percent of the features. You want to do this with something that delivers at least a tiny bit of value. I call this a “Minimum Viable Product,” or MVP. This should be the thing you show to the public for the first time. How effective does it have to be? Well, it should actually work, though to a person who has been working on it, it may seem kind of embarrassing. You need to get that product out to the public as early as is feasible! This will get you the feedback you need to power your decision loop and prioritization. This is Version 0.5.


pages: 461 words: 106,027

Zero to Sold: How to Start, Run, and Sell a Bootstrapped Business by Arvid Kahl

"side hustle", business process, centre right, Chuck Templeton: OpenTable:, continuous integration, coronavirus, COVID-19, Covid-19, crowdsourcing, domain-specific language, financial independence, Google Chrome, if you build it, they will come, information asymmetry, information retrieval, inventory management, Jeff Bezos, job automation, Kubernetes, minimum viable product, Network effects, performance metric, post-work, premature optimization, risk tolerance, Ruby on Rails, sentiment analysis, Silicon Valley, software as a service, source of truth, statistical model, subscription business, supply-chain management, trickle-down economics, web application

It will need to adapt to things within and without your control. Leverage the fact that it is easier than ever to deploy a new version of your product quickly and give your customers the best experience you can provide. The Do’s and Don’ts of the Minimum Viable Product Leonardo da Vinci said, "Art is never finished, only abandoned." This is definitely true for software as well. The only antidote to abandonment is to put your work in front of other people, even when it's not perfect yet. The startup industry uses the term MVP (Minimum Viable Product) to express this in-between state of being both a wonky prototype and a good-enough product for public consumption. If software can never be truly finished, any stage of it is your best guess at what it should be at the time it's created. As the MVP is the first version of your product that your audience will be exposed to, it is crucial to get it "right enough" while being okay with it not being "perfectly right" at the same time.

The Four Stages of a Bootstrapped Business The Preparation Stage The Preparation Stage and You From Idea to Product From Idea to Product You Probably Have It Backwards: Starting a Bootstrapped Business Step One: Your Audience Bootstrapping an Audience The Power of the Niche Deciding on a Market for Your Business Determining the Size of a Market Step Two: Their Problem Identifying a Critical Problem: Working on the Right Thing Identifying the Most Critical Problem in a Market Problem Validation: Talking to the Right Peoplle Step Three: Your Solution A Solutions Isn’t a Product… Yet Solution Validation Doesn’t Happen in a Vacuum: Talking to Your Future Customers Asking the Right Questions: Focus on Problems not Solutions Step Four: Your Product It’s Time to Get Your Hands Dirty The Myth of the Finished Product The Do’s and Don’ts of the Minimum Viable Product How to Release as a Bootstrapper: Often, Early, and Safely The Boring Truth of Successful Products that Survive Not in House: Reinventing the Wheel Making Tech Choices: Don’t Add Risk to a Risky Business From Product to Business A Well-Oiled Machine Forget Goals, Create Systems: Foundations of a Sustainable Business Your Initial Pricing Will Never Be Right, but Try Anyway Do You Need a Co-Founder?

This is the part that the technical expert in every entrepreneur finds most exciting: turning the idea into a real thing—manifesting the potential into a tangible product. Only by having spent a lot of time and energy on shaping the idea through the previous stages can you be sure that when you dive into building the product, you can create a sustainable bootstrapped business by selling it to customers who will pay for it. In the startup world, everyone is talking about the MVP, the Minimum Viable Product. There is an ongoing battle over what that means. To some, it's the first, very embarrassing version of the product that works. It's a prototype, the first version of many, a bundle of core features built with rudimentary aesthetics to quickly get the product out there. Their MVP will lack a lot of parts, and many things will still have to be done by hand. To others, it's something they can be proud of: a polished system, well-designed, and with a heavily tested user interface.


pages: 425 words: 112,220

The Messy Middle: Finding Your Way Through the Hardest and Most Crucial Part of Any Bold Venture by Scott Belsky

23andMe, 3D printing, Airbnb, Albert Einstein, Anne Wojcicki, augmented reality, autonomous vehicles, Ben Horowitz, bitcoin, blockchain, Chuck Templeton: OpenTable:, commoditize, correlation does not imply causation, cryptocurrency, delayed gratification, DevOps, Donald Trump, Elon Musk, endowment effect, hiring and firing, Inbox Zero, iterative process, Jeff Bezos, knowledge worker, Lean Startup, Lyft, Mark Zuckerberg, Marshall McLuhan, minimum viable product, move fast and break things, move fast and break things, NetJets, Network effects, new economy, old-boy network, pattern recognition, Paul Graham, ride hailing / ride sharing, Silicon Valley, slashdot, Snapchat, Steve Jobs, subscription business, TaskRabbit, the medium is the message, Travis Kalanick, Uber for X, uber lyft, Y Combinator, young professional

If you want to be the industry leader, sometimes you need to take the difficult path. Be wary of the path of least resistance. It may look compelling in the short term but often proves less differentiating and defensible in the long term. Shortcuts tend to be less gratifying over time. The long game is the most difficult one to play and the most bountiful one to win. Break the long game down into chapters. Most teams just focus on shipping a minimum viable product (MVP). But cofounder and CEO of Pinterest Ben Silberman has been comfortable being underestimated and flying under the radar in an industry where most people judge companies by their latest headlines, flashy keynotes, and the flaunting of their progress. When it came to activating the revenue-generating parts of his business, Ben was also exceptionally (and, for some investors, excruciatingly) patient in waiting for his product and team to be ready.

It might be your brand, a novel design or user experience you are applying that is remarkably different from others in your industry, or some new technology that provides a vastly better option for potential customers. Those aspects that differentiate your product are your chance to create something valuable and warrant a disproportionate amount of investment. You therefore shouldn’t take shortcuts, rush, or strip down the process of creation for these features. In the relentless effort to get a minimum viable product to market, many teams cut or compromise on the key attributes that are likely to differentiate it from their competitors. For example, I’ve watched a few mobile social networks over the years launch a very stripped-down “first version” of their product that lacked the features in which they expressed such pride during their initial pitch to me. When asked, they would explain this was “just their MVP.”

Whether you’re building a product, creating art, or writing a book, you need to remember that your customers or patrons make sweeping judgments in their first experience interacting with your creation—especially in the first 30 seconds. I call this the “first mile,” and it is the most critical yet underserved part of a product. You get only one chance to make a first impression. In a world of moving fast and pushing out a minimum viable product, the first mile of a user’s experience is almost always an afterthought. For physical products, that could be the packaging, the wording of the instructions, and the labels that help orientate a new customer. For digital products, it could be the onboarding process, the explanatory copy, and the default settings of your product. When we spend so much time focusing on making what’s behind a locked door so brilliant, we sometimes forget to give the user the key.


pages: 468 words: 124,573

How to Build a Billion Dollar App: Discover the Secrets of the Most Successful Entrepreneurs of Our Time by George Berkowski

Airbnb, Amazon Web Services, barriers to entry, Black Swan, business intelligence, call centre, crowdsourcing, disruptive innovation, en.wikipedia.org, game design, Google Glasses, Google Hangouts, Google X / Alphabet X, iterative process, Jeff Bezos, Jony Ive, Kickstarter, knowledge worker, Lean Startup, loose coupling, Marc Andreessen, Mark Zuckerberg, minimum viable product, MITM: man-in-the-middle, move fast and break things, move fast and break things, Network effects, Oculus Rift, Paul Graham, QR code, Ruby on Rails, self-driving car, Silicon Valley, Silicon Valley startup, Skype, Snapchat, social graph, software as a service, software is eating the world, Steve Jobs, Steven Levy, Travis Kalanick, ubercab, Y Combinator

Index Note: page numbers in bold refer to illustrations, page numbers in italics refer to information contained in tables. 99designs.com 111 500 Startups accelerator 136, 160 Accel Partners 3, 158, 261, 304, 321, 336, 383 accelerators 136, 159–60, 160 accountants 164, 316 accounting software 164 acquisition (of users) costs 148–9, 184, 236–7, 275–9, 282 and Facebook 271, 272, 273–4 for five hundred-million-dollar apps 327, 341–3 for hundred-million-dollar apps 252, 259, 266, 267–74, 275–84, 295–307 and incentive-based networks 270–1 international 295–307 for million dollar apps 136–7, 139, 140–51, 148–9, 153 and mobile social media channels 271–3, 272 and mobile user-acquisition channels 269–70 strategy 222–31 for ten-million-dollar apps 211–12, 213, 222–31, 236–7, 248–9 and traditional channels 268–9 and ‘viral’ growth 225, 278, 279–84 zero-user-acquisition cost 278 acquisitions 414–25 buying sustained growth 417–18 by non-tech corporations 418–20 initial public offerings 420–2 Waze 415–16 activation (user) 136, 137, 139, 153–4, 211–12, 213 Acton, Brian 54, 394 addiction, smartphone 30–1 Adler, Micah 269 administrators 409 AdMob 414–15 advertising 43 business model 67, 89–90 costs 140 and Facebook 271, 272, 273–4 mobile 148–9, 268–70, 272–3, 272 mobile social media 272–3, 272 mobile user-acquisition channels 269–70 outdoor 264 shunning of 42, 54–6 video ads 273 aesthetics 131 after product–market fit (APMF) 180 agencies 195–7, 264, 343 ‘agile coaches’ see scrum masters agile software development 192–3, 299, 315, 357, 377 Ahonen, Tomi 45 ‘aiming high’ 40–1 Airbnb 160, 301 alarm features 48 Albion 111 alerts 293 Alexa.com 146 Alibaba 227 ‘ALT tags’ 147 Amazon 7, 29, 131, 164, 227, 276, 366, 374–5, 401, 406 Amazon Web Services 374 American Express 347 Amobee 149 analytics 134–5, 149, 199, 205, 210, 212, 217–21, 294 and cohort analysis 287–8 Flurry 135, 149, 220 function 217–18 Google Analytics 135, 219–20, 345 limitations 284 Localytics 135, 221 and marketing 263 mistakes involving 218–19 Mixpanel.com tool 135, 217–18, 220–1, 287, 290–1, 345 Andreessen, Marc 180, 418–19 Andreessen Horowitz 72, 80, 180, 321, 383, 385, 418–19 Android (mobile operating system) 6, 23–4, 38, 415 advertising 274 audience size 119 beta testing 202 building apps for 116–22 and international apps 296 in Japan 306 scaling development and engineering 357–8 time spent on 26 and WhatsApp 55 Angel Capital Association 162 angel investors 154, 155–6, 323 AngelList 99, 131, 155, 159, 233 Angry Birds (game) 6, 42, 47, 57–8, 87, 89, 97 and application programming interface 36 delivering delight 207 design 131 funding 321 game in game 348–9 international growth 297–9 platform 117, 118 product extension 356 virality 282 annual offsites 379 annual revenue per user (ARPU) 215, 219, 232, 236 anonymity 43, 56–7 anti-poaching clauses 247 antidilution rights 245 API see application programming interface app descriptions 143 app development billion-dollar app 8, 389–425 CEO advice 406–13 getting acquired 414–25 people 395–405 process 390–1 five-hundred-million-dollar app 325–87 funding 328, 383–7 hiring staff 334–6, 337–40 killer product expansion 350–63 process 326–8 scaling 326, 330–6, 331–2 scaling marketing 341–9 scaling people 364–72, 377–9 scaling process 373–82 scaling product development 357–63 hundred-million-dollar app 251–324 international growth 295–307 process 252–4 product-market fit 255–6 retention of users 286–94 revenue engines 257–66, 275–85 user acquisition 267–74 million-dollar app 81–171 app Version 0.1 123–35 coding 133–4 design 129–33 feedback 127, 134–5 funding 152–60, 161–71, 176, 235–49 identity of the business 106–14 lean companies 115–22 metrics 136–9, 139 process 82–4 startup process 85–105 testing 126–8 user acquisition 140–51 ten-million-dollar app 173–249 growth engine 222–31, 235–49 metrics 211–21 new and improved Version 1.0 198–210 process 174–6 product–market fit 180–97 revenue engine 232–4 venture capital 235–49 app stores 22, 27–8, 33–4 see also Apple App Store; Google Play app-store optimisation (ASO) 142, 225 AppAnnie 205 Apple 19, 20, 31–2, 393 application programming interface 35–6 designers 129 Facetime app 46 iWatch 38–9 profit per employee 402–3 revenue per employee 401 visual voicemail 50 Worldwide Developers Conference (WWDC) 313 see also iPad; iPhone Apple App Store 22, 27, 32–3, 75, 88, 89, 117, 226 finding apps in 140, 141, 142–5 international apps 297–9 making submissions to 152–3 and profit per employee 403 ratings plus comments 204–5 Apple Enterprise Distribution 201–2 application programming interface (API) 35–6, 185, 360, 374 ARPU see annual revenue per user articles of incorporation 169 ASO see app-store optimisation Atari 20 Atomico 3, 261, 321, 383 attribution 227–31 for referrals 230–1 average transaction value (ATV) 214–15, 219, 232, 236, 387 Avis 95 backlinking to yourself 146 ‘bad leavers’ 247 Balsamiq.com 128 Banana Republic 352 bank accounts 164 banking 156–7 Bardin, Noam 43 Barr, Tom 338 Barra, Hugo 120, 306 Baseline Ventures 72 Baudu 226 beauty 131 BeeJiveIM 33 before product–market fit (BPMF) 180 ‘below the fold’ 143 Beluga Linguistics 297 Benchmark 75 benefits 398–400 beta testing 201–4 Betfair 358 Bezos, Jeff 366, 374 Bible apps 45 billion 9–10 Billion-Dollar Club 5 billionaires 9 Bing 226 ‘black-swan’ events 54 BlackBerry 23 Blank, Steve 257 Blogger 41 blood sugar monitoring devices 38 board seats 242, 243–4 board-member election consent 169 Bolt Peters 363 Booking.com 320 Bootstrap 145 Botha, Roelof 76, 77, 80 Box 7, 90, 276, 396–7, 411 brains 10 brainstorming 108 branding 111–13, 143, 263–4 Braun 129 Bregman, Jay xiii, 14–16, 95, 124, 209, 303 bridge loans 323 Brin, Sergey 366 Bring Your Own Infrastructure (BYOI) 17–18 Brougher, Francoise 340 Brown, Donald 44 Brown, Reggie 104–5 Bubble Witch 421 Buffet, Warren 4 build-measure-learn cycle 116 Burbn.com 72–4, 80 business advisors/coaches 103 business analysts 343 business culture 395–8 business goal setting 310–11 business models 67, 83, 87, 88–91, 175, 253, 259, 327, 351–2, 391, 400, 423–4 business success, engines of 183–4, 423–4 Business Wire 150 CAC see Customer Acquisition Cost Cagan, Marty 314 calendars 49 calorie measurement sensors 38 Cambridge Computer Scientists 160 camera feature 48 Camera+ app 48 Candy Crush Saga 6, 47, 87, 89, 131, 278–81, 318, 349, 421–2 card-readers 41–2 cash flow 164 CEOs see Chief Executive Officers CFOs see Chief Financial Officers channels incentive-based networks 270–1 mobile social-media 271–3, 272 mobile user-acquisition 269–70 source attribution 227–31 testing 224–7 traditional 268–9 viral 280–2 charging phones 49–50 Chartboost 149 chauffer hire see Uber app check-ins, location-based 72, 74 Chief Executive Officers (CEOs) 309, 380 advice from 406–13 and the long haul 68 and product centricity 185–6 role 337 Chief Financial Officers (CFOs) 316 Chief Operations Officers (COOs) 309, 326, 337–40, 380 Chief Technology Officers (CTOs) 186–7, 195 Chillingo 298 China 24–5, 146, 226, 306–7 Cisco 402 Clash of Clans (game) 6, 28, 36, 47, 87, 89, 97, 118, 227, 348–9, 398 Clements, Dave 120 Climate Corporation 412, 419 clock features 47 cloud-based software 67, 90 Clover 419 coding 133–4 cofounders 85, 91–105, 188, 191 chemistry 92–3 complementary skills 93 finding 96–9 level of control 94 passion 93–4 red flags 102–3 successful matches 104–5 testing out 100–2 cohort analysis 237, 287–8 Color.com (social photo-sharing) app 113, 255 colour schemes 111 Commodore 20 communication open 412–13 team 194 with users 208–9 Companiesmadesimple.com 163–4 computers 20–1, 29 conferences 97–8, 202, 312–13 confidentiality provisions 244 connectedness 30 ConnectU 105 consumer audience apps 233–4 content, fresh 147 contracts 165–6 convertible loans 163 Cook, Daren 112 cookies 228–9 Coors 348 COOs see Chief Operations Officers Cost Per Acquisition (CPA) 148–9 Cost Per Download (CPD) 148 Costolo, Dick 77–8, 79–80 costs, and user acquisition 148–9, 184, 236–7, 275–9, 282 Crash Bandicoot 33 crawlers 146–7 Cray-1 supercomputer 20 CRM see customer-relationship management CrunchBase 238 CTOs see Chief Technology Officers Customer Acquisition Cost (CAC) 148–9, 184, 236–7, 275–9 customer lifecycle 212–14 customer segments 346–7 customer-centric approach 344 customer-relationship management (CRM) 290–4, 343 customer-support 208–9 Cutright, Alyssa 369 daily active users (DAUs) 142 D’Angelo, Adam 75–6 data 284–5, 345–7 data engineers 284 dating, online 14, 87–8, 101–2, 263 decision making 379–82, 407–8 defining apps 31–4 delegation 407 delight, delivery 205–7 design 82, 129–33, 206–7 responsive 144 designers 132, 189–91, 363, 376 developer meetups 97 developers see engineers/developers development see app development; software development development agencies 196 ‘development sprint’ 192 Devine, Rory 358–9 Digital Sky Technologies 385 directors of finance 316–17 Distimo 205 DLD 97 Doerr, John 164, 310 Doll, Evan 42–3, 105 domain names 109–10 international 146 protection 145–6 Domainnamesoup.com 109 Dorsey, Jack 41, 58, 72, 75–7, 79–80, 104, 112, 215–16, 305, 312, 412–13 ‘double-trigger’ vesting 247 DoubleClick 414 Dow Jones VentureSource 64 down rounds 322–3 downloads, driving 150–1 drag along rights 245 Dribbble.com 132 Dropbox 7, 90, 131, 276 CEO 407, 410–11 funding 160 scaling 336 staff 399 Dunbar, Robin 364–5 Dunbar number 365 e-commerce/marketplace 28–9, 67, 89, 213–14 Chinese 306 Flipboard and 351–2 and revenue engines 232, 233–4, 276 social media generated 271–2 and user retention 288, 289 eBay 7, 28–9, 131, 180, 276 economic models 275 economies of scale 331–2, 331–2 eCourier 15, 95 education 68–9 edX 69 Ek, Daniel 357 Ellis, Sean 182 emails 291–3 emotion effects of smartphones on 29–30, 30 inspiring 223–4 employees see staff employment contracts 246–7 engagement 236, 278, 283 engineering VPs 337, 358–9 engineers/developers 190–1, 194–5, 361–2, 362, 370, 375–7, 405 enterprise 90, 233–4 Entrepreneur First programme 160 entrepreneurs 3–5, 7–8, 65, 262, 393–4, 409, 424 Ericsson 21 Etsy 107, 109, 110, 358 Euclid Analytics 149 Evernote 7, 90, 131, 399 ExactTarget 291 excitement 30 executive assistants 367 Exitround 419 experience 67–8, 264, 397 Fab.com 352 Facebook 7, 10, 26, 32, 48, 76, 226, 394, 422 and acquisition of users 271, 272, 273–4 acquisitions 416–18, 417 agile culture 375 alerts 293 and application programming interface 36 board 180 and business identity 114 and Candy Crush 280–1 Chief Executive Officer 406 cofounders 100–1 and Color 255–6 design 131, 206, 363 Developer Garage 97 driving downloads on 151 and e-commerce decisions 271, 272 and FreeMyApps.com 271 funding 419 and getting your app found 147 and the ‘hacker way’ 375 initial public offering 420–1 and Instagram 29, 51, 76–80, 90, 117 name 110 ‘No-Meeting Wednesday’ 376 product development 187 profit per employee 403 revenue per employee 401 scaling 336 and Snapchat 57 staff 339, 362, 363, 398, 401, 403 and virality 281 WhatsApp purchase 42, 54–6, 416–17, 417 zero-user-acquisition cost 278 and Zynga 279, 281 Facetime app 46 fanatical users 294 feedback 86, 127, 134–5, 182, 192–3, 198–201, 256, 396 loops 204, 211 qualitative 199 quantitative 199 see also analytics Feld, Brad 170, 241 Fenwick and West 168 Fiksu 264, 269–70 finance, VP of 317–18 finding apps 140–8, 148–9 FireEye 90 First Data 419 first impressions 107–10 Fitbit 38 fitness bracelets 38 flat rounds 322–3 Flipboard 6, 29, 42–3, 49, 51, 89–90 and application programming interface 36 Catalogs 351–2 cofounders 105 design 131, 207 funding 164 growth 351–2 platform choice 119 product innovation 351–2 user notifications 292 virality 281 zero-user-acquisition cost 278 Flurry 135, 149, 220 Fontana, Ash 233 Forbes magazine 40 Ford Motors 419 Founder Institute, The 168 founder vesting 166–7, 244 Foursquare 419 France Telecom 13 franchising 354 FreeMyApps.com 270–1 Friedberg, David 412 Froyo (Android mobile software) 7 Fujii, Kiyotaka 304 full service agencies 195–6 functionality 25–6, 45–50, 131 funding 72, 75–6, 84, 87–8, 152–60, 161–71, 179 accelerators 159–60 angel investors 154, 155–6, 323 for billion-dollar apps 391 convertible loans 163 core documents 169–70 for five-hundred-million-dollar apps 328, 383–7 founder vesting 166–7 for hundred-million-dollar apps 254, 258, 316–17, 318–24 incubators 159–60 legal aspects 163–4 and revenue engines 233–4 Series A 234, 238–40, 238, 240, 241, 242–6, 255, 319–21, 385 Series B 238, 241, 253, 260, 284, 319–21, 322, 384 Series C 384 signing a deal 167–8 for ten-million-dollar apps 152–60, 161–71, 176, 235–49 venture capital 72, 75, 156–8, 165–6, 235–49, 261–2, 383–5, 385, 418–19 game in game 348–9 gaming 42, 47, 318, 355 business model 67, 89 and revenue engines 232, 278–9 and user retention 288, 289 see also specific games Gandhi, Sameer 336 Gartner 271 Gates, Bill 4 general managers (GMs) 300–3 Gladwell, Malcolm 424 Glassdoor 361–2 Global Positioning System (GPS) 23 Gmail 72 GMs see general managers goal setting 40–1, 310–11 Goldberg, Dave 397 Goldman Sachs 385 ‘good leavers’ 247 Google 7, 19, 23, 27, 72, 88, 164, 226 acquisitions 43, 414–16, 418 application programming interface 35–6 beta testing 202 Chief Executive Officer 406–8 developer meetups 97 finding your app on 144, 147 Hangouts app 46 meetings 381–2 mission 404, 408–9 and the OKR framework 310 profit per employee 403, 405 revenue per employee 401, 405 scaling 332 and Snapchat 57 and source attribution 228–9 staff 339, 340, 361–2, 366, 401, 403, 404–5, 412 Thank God It’s Friday (TGIF) meetings 311–12 transparency 413 value 78 Waze app purchase 43 and WhatsApp 56 zero-user-acquisition cost 278 see also Android (mobile operating system) Google Ad Mob 149 Google AdSense 149 Google Analytics 135, 219–20, 345 Google Glass 38–9, 405 Google I/O conference 313 Google Maps 33, 35, 414, 416 Google Now 37 Google Play 88, 89, 117, 120, 226 and beta testing 202 finding apps in 141–5 profit per employee 403 ratings plus comments 204–5 Google Reader 72 Google Ventures 384 Google X 405 Google+ and business identity 114 and virality 281 Google.org 339 GPS see Global Positioning System Graham, Paul 184–5, 211 Graphical User Interface (GUI) 20 Greylock 321, 383 Gross, Bill 406–7, 409–10 Groupon 7, 51–2, 227, 344–5, 419 Grove, Andy 310 growth 267, 308–17 buying sustained 417–18 engines 184, 210, 222–31, 259, 265 and five-hundred-million-dollar apps 329–36 and Friday update meetings 311–12 and goal setting 310–11 and hiring staff 308–9, 411–12 and product and development teams 313–14 and staff conferences 312–13 targets 234, 260 see also acquisition (of users); international growth; scaling Growth Hackers 182 GUI see Graphical User Interface hackathons 99 Haig, Patrick 143 Hailo app xiii–xiv, 5, 36, 89, 386 big data 284–5 branding 112–13 cofounders 94–6 customer segments 346–7 customer-support 208–9 design 131, 132, 133, 206–7 development 123–7, 153–4 Friday update meetings 311 funding 162, 242 goal setting 310 growth 296–7, 299, 302–4, 308–11, 313, 315–17, 329–30, 334–6 hiring staff 308–9, 334–6, 338, 366–7 idea for 14–18 international growth 296, 297, 299, 302–4 market research 182 marketing 263, 264, 268, 270, 273, 341, 347–8 meetings 381 metrics 137–9, 216 name 107 organisational culture 396 platform choice 117, 120, 121 premises xiii–xiv, 177–8, 329–30, 371–2, 386 product development 189, 191, 196 retention 293–4 revenue engine 276 scaling development and engineering 357 scaling people 365–7 scaling process 377 team 258 testing 177–8, 201–4 and user emotionality 224 virality 280, 282 Hangouts app 46 Harris Interactive 31 HasOffers 149 Hay Day 47, 97 head of data 342 Heads Up Display (HUD) 38 heart rate measurement devices 37–8 Hed, Niklas 42 hiring staff 308–9, 334–6, 337–40, 365–70 history of apps 31–2 HMS President xiii–xiv, 177–9, 329, 371, 386 HockeyApp 202 HootSuite 151 Houston, Drew 407, 410–11 HP 180, 402 HTC smartphone 121 HUD see Heads Up Display human universals 44–5 Humedica 419 hyperlinks 147 hypertext markup language (HTML) 147 I/O conference 2013 202 IAd mobile advertising platform 149 IBM 20, 402 icons 143 ideas see ‘thinking big’ identity of the business 86 branding 111–13 identity crises 106–14 names 106–11 websites 113–14 image descriptions 147 in Mobi 149 in-app purchases 28 incentive-based networks 270–1 incorporation 163–4, 179 incubators 159–60 Index Ventures 3, 261 initial public offerings (IPOs) 64, 67–9, 78, 80, 246, 420–2 innovation 404–5 Instagram 6, 29, 48, 51, 67, 71–80, 88–90, 114, 117, 226, 278, 340, 417–18 cofounders 73–4 design 131 funding 75–6, 77–8 X-Pro II 75 zero-user-acquisition cost 278 instant messaging 46 Instantdomainsearch.com 109 integrators 410 Intel 310 intellectual property 165–6, 244, 247 international growth 295–307 Angry Birds 297–9 Hailo 296, 297, 299, 302–4 language tools 297 Square 295, 299, 304–6 strings files 296 Uber 299–302 International Space Station 13 Internet bubble 13 investment see funding iOS software (Apple operating system) 7, 23–4, 46, 75, 104 advertising 274 audience size 119 building apps for 116–22 and international apps 296 scaling development and engineering 357–8 time spent on 26 iPad 42–3, 118–20, 351 iPhone 6, 19, 22–3, 32, 38–9, 183, 351 advertising on 274 camera 48 designing apps for 117–18, 120 finding apps with 145 games 42, 47, 58 and Instagram 74–6 in Japan 306 and Square 104, 306 and Uber 301 user spend 117 and WhatsApp app 54–5 iPod 22 IPOs see initial public offerings Isaacson, Walter 32 iTunes app 22, 47, 88, 143 iTunes U app 69 Ive, Jony 129 iZettle 304 Jackson, Eric 40 Jain, Ankit 142 Japan 227, 304–6 Jawbone Up 38 Jelly Bean (Android mobile software) 7 Jobs, Steve 4, 22, 32, 323, 393, 425 journalists 150–1 Jun, Lei 306 Kalanick, Travis 299–300, 384, 422 Kayak 336 Keret, Samuel 43 Keyhole Inc. 414 keywords 143, 146 Kidd, Greg 104 King.com 349, 421–2 see also Candy Crush Saga KISSmetrics 291 KitKat (Android mobile software) 7 Klein Perkins Caulfield Byers (KPCB) 158, 261, 321, 383 Kontagent 135 Koolen, Kees 320, 339 Korea 30 Koum, Jan 42, 54, 55–6, 154, 321, 394, 416 Kreiger, Mike 73–6 language tools 297 Launchrock.com 113–14, 145, 202 Lawee, David 415 lawyers 103, 169, 170, 242 leadership 410–11 see also Chief Executive Officers; managers lean companies 69, 115–22, 154, 257, 320–1 Lee, Bob 340 legalities 163–70, 242–7, 301 letting go 406–7 Levie, Aaron 396–7, 411 Levinson, Art 32 LeWeb 97 Libin, Phil 399 licensing 356 life experience 67–8, 264 lifetime value (LTV) 184, 215, 219, 220–1, 232, 275–7, 279, 291, 342 Line app 46, 226 Lingo24 297 LinkedIn 97, 226, 406, 408–9 links 147 liquidation preference 242, 243, 245 non-participating 245 Livio 419 loans, convertible 163 Localytics 135, 221 locations 69 logos 111–14 LTV see lifetime value luck 412 Luckey, Palmer 39 LVMH 304 Lyons, Carl 263 Maiden 95 makers 375–7 see also designers; engineers/developers managers 189–90, 300–3, 375–7, 405 MapMyFitness 419 market research 115, 127, 182 marketing data 345–7 and Facebook 271, 272, 273–4 and incentive-based networks 270–1 marketing engineering team 344–5 and mobile social media channels 271–3, 272 and mobile user-acquisition channels 269–70 partner marketing 347–8 scaling 341–9 teams 262–6, 337, 342 and traditional channels 268–9 VPs 262–6, 337, 342 marketplace see e-commerce/marketplace MasterCard 347–8 Matrix Partners 283 McClure, Dave 136, 160, 211, 234 McCue, Mike 42–3, 105, 351 McKelvey, Jim 41, 104 ‘me-too’ products 181 Medium 41 Meebo 73 meetings 379–82, 412–13 annual offsite 379 daily check-ins 381 disruptive nature 376–7 Friday update 311–12 meaningful 381–2 monthly strategic 380 quarterly 380 weekly tactical 380 Meetup.com 98–9 Mendelsen, Jason 170 messaging platforms 226 time spent on 46 and user retention 288, 289 metrics 136–9, 139, 211–21 activation 136, 137, 139, 153–4, 211–12, 213 annual revenue per user (ARPU) 215, 219, 232, 236 average transaction value (ATV) 214–15, 219, 232, 236, 387 consensual 215–16 lifetime value (LTV) 184, 215, 219, 220–1, 232, 275–7, 279, 291, 342 and product-market fit 209–10 referral 137, 138, 139, 153, 154, 211–12, 213, 230–1 revenue 137, 138, 139, 154, 211–12, 213, 214–15, 219, 291 transparency regarding 312 see also acquisition (of users); retention (of users) mice 20 Microsoft application programming interface 35–6 revenue per employee 401 Windows 20, 22, 24 Millennial Media 149 minimum viable product (MVP) 123, 153 MirCorp 13–14 mission 261, 404, 408–9 Mitchell, Jason 51 Mitsui Sumitomo Bank 305 Mixpanel.com tool 135, 217–18, 220–1, 287, 290–1, 345 MMS see Multimedia Messaging Service Mobile Almanac 45 Mobile App Tracking 230, 231 mobile technology, rise of 19–39 MoMo app 306 Monsanto 419 moonshots 404–5 Moore, Jonathan 200 MoPub 149 Moqups.com 128 Mosaic 180 Motorola 21 Moz.com 143 Mullins, Jacob 419 Multimedia Messaging Service (MMS) 47 Murphy, Bobby 43, 104–5, 152–3 music player apps 47 MVP see Metrics into Action; minimum viable product names 106–11, 142 NameStation.com 108 Nanigans 273–4 National Venture Capital Association 64 native apps 33–4 NDA see Non Disclosure Agreement negotiation 265 Net Promoter Score (NPS) 206, 209 net-adding users 206 Netflix 400 Netscape 164, 180 New Enterprise Associates 385 New York Times news app 32–3, 256 news and alerts feature 48–9 Nextstop 72 Nguyen, Bill 255–6 NHN 227 Nike Fuelband 38 Nintendo Game Boy 47 Nokia 21, 35–6 Non Disclosure Agreement (NDA) 165 noncompetition/non-solicitation provision 244, 247 notifications 291–4 NPS see Net Promoter Score Oculus VR 39 OKR (‘objectives and key results’) framework 310–11, 380 OmniGraffle 128 open-source software 23, 34–5, 185 OpenCourseWare 68–9 operating systems 20–4 see also Android; iOS software operations VPs 337 org charts 258, 309 organisational culture 395–8 O’Tierney, Tristan 104 outsourcing 194–7 ownership and founder vesting 166–7 and funding 155, 156, 161–3, 318 oxygen saturation measurement devices 37–8 Paananen, Ilkka 118–19, 397–8 Page, Larry 4, 23, 382, 404, 407–8 Palantir 90 Palihapitiya, Chamath 187 Pandora 7, 47, 67, 131, 410 pay-before-you-download model 28 pay-per-download (PPD) 225 Payleven 304 payment systems 7, 33–4, 227, 304, 305 see also Square app PayPal 7, 227, 304, 305 Pepsi 196 Perka 419 perks 398–400 perseverance 67, 394, 410 personal computers (PCs) 29 perspiration measurement devices 38 Pet Rescue Saga 349, 421 Petrov, Alex 369 phablets 7 Pham, Peter 255 PhoneSaber 33 Photoshop 128 PIN technology 305 Pincus, Mark 311 Pinterest app 48, 226 and business identity 114 and e-commerce decisions 271, 272 and getting your app found 147 name 107 and virality 281 Pishevar, Shervin 300 pivoting 73–4 population, global 9–10 portfolio companies 261–2 PowerPoint 128 PPD see pay-per-download preferential return 243 premises 370–2 preparation 412 press kits 148, 150 press releases 150 Preuss, Dom 98 privacy issues 43, 56–7 private vehicle hire see Uber pro-rata rights 242, 243 producers 409 product chunks 360 product development scaling 357–63 scope 199 team building for 188–91 and team location 193–4 and vision 186–8, 191 see also app development; testing product expansion 350–63 product extension 354 product managers 189–90, 405 product-centricity 185–6, 314, 360 product-market fit 9, 180–97, 235–6, 248, 256–7 measurement 209–10, 212, 286–8 profit 267, 320, 342 profit margin 258–9, 318, 321 profit per employee 402–4, 403, 405 profitability 260, 277, 400 Project Loon 405 proms 12 proto.io tool 133 prototype apps 86, 174 app Version 0.1 123–35, 174 new and improved Version 1.0 198–210 rapid-design prototyping 132–3 PRWeb 150 PSP 47 psychological effects of smartphones 29–30, 30 pttrns.com 131 public-relations agencies 343 publicity 150–1, 225, 313 putting metrics into action 138–9 Puzzles and Dragons 47, 131 QlikView 221, 284–5 QQ 307 quality assurance (QA) 190–1, 196 Quora 76 QZone 307 Rabois, Keith 368, 369 Rakuten 227 Rams, Dieter 129 rapid-design prototyping 132–3 ratings plus comments 204–5 Red Bull 223 redemption codes 230 referrals (user) 137, 138, 139, 153, 154, 211–12, 213 attribution for referrals 230–1 referral codes 230 religious apps 45 remuneration 361–2, 362, 363 Renault 13 restated certification 169 retention (of users) 136–9, 153, 154 for five hundred-million-dollar apps 327, 341–3 for hundred-million-dollar apps 286–94, 288–9 measurement 286–8 for ten-million-dollar apps 206, 211–12, 213, 278 revenue 137–8, 139, 154, 211–12, 213, 214–15, 219, 236, 239–40, 267, 291, 331–2, 341–2, 354 revenue engines 184, 210, 232–4, 257–66, 265, 275–85 revenue per employee 400–2, 402, 405 revenue streams 27–9 Ries, Eric, The Lean Startup 115–16 Rockefeller, John D. 9 Rocket Internet 304 Rolando 33 Rosenberg, Jonathan 413 Rovio 58, 97, 118, 297–9, 318, 320–1, 336, 354, 409 see also Angry Birds Rowghani, Ali 77 Rubin, Andy 23 Runa 419 SaaS see software as a service Sacca, Chris 75–6 sacrifice 86–7 Safari Web browser 32 salaries 361–2, 362, 363 sales VPs 337 Salesforce 291 Samsung 23 Galaxy Gear smartwatch 38 smartphones 121 Sandberg, Sheryl 4, 100–1, 339, 397 SAP 304 scaling 259, 308, 312, 323–4, 326, 330–6, 331–2, 384–5 decision making 379–81 international growth 295–307 marketing 341–9 and organisational culture 396–8 people 338–9, 364–72 premature 334–5 process 373–82 product development and engineering 357–63 and product innovation 350–6 reasons for 333–4 skill set for 335–6 Schmidt, Eric 120 scope 199 screenshots 131, 144, 206 scrum masters (‘agile coaches’) 315, 359, 360 search functions 49 organic 141–2, 141, 145 search-engine optimisation (SEO) 142, 145–8, 225 Sedo.com 109 Seed Fund 136 Seedcamp 160 Sega Game Gear 47 segmentation 220, 287, 290, 346–7 self-empowered squads/units 360 SEO see search-engine optimisation Sequoia Capital 76, 77–80, 158, 255, 321, 383, 385 Series A funding 234, 238–40, 238, 240, 241, 242–6, 255, 261, 262, 319–21, 385 Series B funding 238, 241, 253, 260, 319–21, 322, 384 Series C funding 384 Series Seed documents 168 Sesar, Steven 263 sex, smartphone use during 31 Shabtai, Ehud 43 shares 156, 166–8, 244 ‘sharing big’ 51–2, 52 Shinar, Amir 43 Shopzilla 263 Short Message Service (SMS) 21, 46–7 Silicon Valley 71–4, 77, 79, 99, 162, 168, 180, 184, 255, 340, 361, 411, 422 Sina 227 sitemaps 146–7 skills sets complementary 93 diverse 409–10 for scaling 335–6 Skok, David 283 Skype app 7, 46, 111, 200–1, 226, 357, 419 Sleep Cycle app 48 Smartling 297 smartwatches 7, 38–9 SMS see Short Message Service Snapchat app 6, 43, 46, 56–7, 88, 89, 223, 226, 416, 418 cofounders 104–5 design 131 funding 152–3, 307, 320 name 107 platform 117 staff 340 valuations 333 virality 280, 283 zero-user-acquisition cost 278 social magazines 42–3 see also Flipboard social media 48 driving downloads through 151 and getting your app found 147 mobile channels 271–3, 272 and user retention 288, 289 Sofa 363 SoftBank 227 software development agile 192–3, 299, 315, 357, 377 outsourcing 194–5 see also app development software as a service (SaaS) 67, 90, 208, 214, 233, 276–7 Somerset House 329–30, 371 Sony 21, 47 SoundCloud 358 source attribution 227–31 space tourism 13–14 speech-to-text technology 50 speed 20 Spiegel, Evan 43, 56–7, 104–5, 152–3 Spinvox 50 Splunk 90 Spotify app 47, 357–8 SQL 284 Square app 6, 41–2, 58–9, 87, 89, 333, 350 branding 112 Chief Executive Officer 412–13 cofounders 104 design 131, 363 funding 320–1 international growth 295, 299, 304–6 marketing 348 metrics 215–16 name 107, 110 product–market fit 183 revenue engine 276 scaling people 367–8 scaling product innovation 352–3 staff 340, 367–8 transparency 312 virality 282 Square Cash 353 Square Market 353 Square Register 350, 352–3 Square Wallet 348, 350, 353 Squareup.com 144 staff at billion-dollar app scale 395–405, 423 attracting the best 91 benefits 398–400 conferences 312–13 conflict 334, 378 employee agreements 244 employee legals 246–7 employee option pool 244 employee-feedback systems 378 firing 370, 378 hiring 308–9, 334–6, 411–12 induction programmes 370 investment in 360 mistakes 369–70, 411–12 and premises 370–2 profit per employee 402–4, 403 revenue per employee 400–2, 402 reviews 370 scaling people 364–72, 377–9 scrum masters 315, 359, 360 training programmes 370 see also cofounders; specific job roles; teams Staples 419 Starbucks 338, 348 startup weekends 98 startups, technology difficulties of building 63–80 failure 63–5, 73–4 identity 106–14 lean 115–22, 154 process 82–4, 85–105 secrets of success 66–9 step sensors 38 stock markets 420–1 straplines 111 strings files 296 Stripe 160 style 111 subscriptions 90 success, engines of 183–4, 423–4 SumUp 304 Supercell 28, 47, 97, 118–19, 318, 336, 397–8, 401, 403 see also Clash of Clans; Hay Day SurveyMonkey 397 surveys 206, 209 synapses 10 Systrom, Kevin 71–80 tablets 7 Tableau Software 90 Taleb, Nicholas Nassim 54 Tamir, Diana 51 Tap Tap Revolution (game) 42 Target 419 taxation 164 taxi hailing apps see Hailo app TaxiLight 16 team builders 264 team building 188–91 teams 82, 174, 252, 390 complementary people 409–10 for five-hundred-million-dollar apps 326, 342–5, 357–63, 374, 386 growth 313–14, 326, 342–4 for hundred-million-dollar apps 258–61 located in one place 193–4 marketing 262–6, 342–4 marketing engineering 344–5 product development and engineering 357–63 ‘two-pizza’ 374 TechCrunch Disrupt 97, 99 technology conferences 97–8, 202, 312–13 Techstars 159, 160, 168 Tencent 307 Tencent QQ 226 term sheets 168, 169, 170, 243–4 testing 126–8, 177–8, 187–8, 192–3, 199–201 beta 201–4 channels 224–7 text messaging 21 unlimited packages 42 see also Short Message Service ‘thinking big’ 40–59, 82, 85 big problem solutions 41–3 disruptive ideas 53–9 human universals 44–5 sharing big 51–2, 52 smartphones uses 45–50 Thoughtworks 196 time, spent checking smartphones 25–6, 26, 45–50 Tito, Dennis 13 tone of voice 111 top-down approaches 311 traction 233, 252 traffic information apps 43 traffic trackers 146 translation 296–7 transparency 311–12, 412–13 Trilogy 13 Tumblr 110, 226, 399, 418 Twitter 41, 48, 54, 72, 226, 394 acquisitions 418 and application programming interface 36 and Bootstrap 145 and business identity 114 delivering delight 206 and e-commerce decisions 272 and FreeMyApps.com 271 funding 419, 421 and getting your app found 147 initial public offering 421 and Instagram 51, 76–7, 79–80 name 110 and virality 281 ‘two-pizza’ teams 374 Uber 6, 36, 87, 89, 333, 350 and attribution for referrals 231 design 131 funding 320, 384, 422 international growth 295, 299–302 name 107, 110 revenue engine 276 revenue per employee 401 scaling product innovation 355–6 staff 339, 399 user notifications 292 virality 280 Under Armour 419 Union Square Ventures (USV) 3, 158, 242, 261, 262, 288, 321, 323, 377, 383 unique propositions 198 UnitedHealth Group 419 URLs 110 ‘user experience’ (UX) experts 190 user journeys 127–8, 213–14 user notifications 291–4 user stories 193 users 83, 175, 252, 327, 390 activation 136, 137, 139, 153–4, 211–12, 213 annual revenue per user (ARPU) 215, 219, 232, 236 communication with 208–9 definition 137 emotional response of 223–4 fanatical 294 finding apps 140–8 lifetime value (LTV) 184, 215, 219, 220–1, 232, 275–7, 279, 291 metrics 136–9 net-adding of 206 ratings plus comments 204–5 referrals 137, 138, 139, 153, 154, 211–12, 213, 230–1 target 83, 115, 127 wants 180–97 see also acquisition (of users); retention (of users) Usertesting.com 200–1 USV see Union Square Ventures valuations 83, 161–3, 175, 237–8, 238, 253, 318, 319, 322, 327, 333, 391 venture capital 72, 75, 156–8, 165–6, 235–49, 261–2, 383–5, 385, 418–19 Viber app 6, 46, 1341 video calls 46, 47 viral coefficient 282–4 ‘viral’ growth 225, 278, 279–84 Communication virality 281 and cycle time 283–4 incentivised virality 280–1 inherent virality 280 measurement 282–4 social-network virality 281 word-of-mouth virality 281–2 virtual reality 39 vision 261, 393–4, 408–9, 414, 415 voice calls 46–7 voice-over-Internet protocol (VOIP) 46 voicemail 50 Wall Street Journal 43, 55 warranties 246 Waze app 6, 43, 97 acquisition 415–16 design 131 name 107 zero-user-acquisition cost 278 web browsing 49 Web Summit 97 websites 113–14, 144–8 WebTranslateIt (WTI) 297 WeChat app 46, 226, 306 Weibo 48 Weiner, Jeff 408–9 Wellington Partners 4 Weskamp, Marcos 207 Westergren, Tim 410 WhatsApp 6, 42, 46, 54–6, 87, 90, 226, 394 acquisition 42, 54–6, 416, 416–17, 417 cofounders 96 design 131, 144 funding 154, 320–1 platform 117–18 valuations 333 virality 280 White, Emily 340 Williams, Evan 41, 65 Williams, Rich 344 Wilson, Fred 110, 242, 288, 323, 377 Windows (Microsoft) 20–1, 22, 24, 24 Winklevoss twins 105 wireframes 127–8 Woolley, Caspar 15–16, 95, 124, 338 WooMe.com 14, 87–8, 101–2, 263 Workday 90 world population 9–10 Worldwide Developers Conference (WWDC) 313 wowing people 8–9 WTI see WebTranslateIt Xiaomi 306 Y Combinator 159–60, 184–5, 211, 407, 410–11 Yahoo!

Now you need to get your head around what you’re actually going to build. Everything starts with Version 0.1 – it’s the very first iteration, the prototype, of your app (Version 1.0 is reserved as the first version shipped to the public). In this version you want to focus on the most basic set of features that will make your app unique, useful and different. It’s often called the MVP (or the minimum viable product). At this point you want to focus on only the parts that are absolutely necessary to show why your app delivers something new and novel – something that wows your users. For Hailo it was focusing on how a user could see nearby taxis on a map, then hit the ‘Pick Me Up Here’ button and have a driver accept the hail. We also added in the ability to see the driver come towards you. That was enough to make people feel a wow moment.

They were straight out of college with zero experience. They hacked together their app and submitted it to Apple’s App Store. At best it was average-looking; someone harsher might have called it ugly. It was certainly not very complex. But it did have a basic user registration function, allowed you to add friends, and also allowed you to send messages to those friends that disappeared after 10 seconds. The app was very much an MVP, a minimum viable product. They invited a bunch of college and high school students to use it, and they invited their friends. Their user-acquisition metric was self-sustaining (because of the inherent network effect of users inviting their friends). Their user activation (effectively creating an account) converted at close to 100 per cent because it was a super-simple registration (just a user name and password).


pages: 332 words: 97,325

The Launch Pad: Inside Y Combinator, Silicon Valley's Most Exclusive School for Startups by Randall Stross

affirmative action, Airbnb, AltaVista, always be closing, Amazon Mechanical Turk, Amazon Web Services, barriers to entry, Ben Horowitz, Burning Man, business cycle, California gold rush, call centre, cloud computing, crowdsourcing, don't be evil, Elon Musk, high net worth, index fund, inventory management, John Markoff, Justin.tv, Lean Startup, Marc Andreessen, Mark Zuckerberg, medical residency, Menlo Park, Minecraft, minimum viable product, Paul Buchheit, Paul Graham, Peter Thiel, QR code, Richard Feynman, Richard Florida, ride hailing / ride sharing, Sam Altman, Sand Hill Road, side project, Silicon Valley, Silicon Valley startup, Skype, social graph, software is eating the world, South of Market, San Francisco, speech recognition, Stanford marshmallow experiment, Startup school, stealth mode startup, Steve Jobs, Steve Wozniak, Steven Levy, TaskRabbit, transaction costs, Y Combinator

Only by getting a product into the hands of customers, even if the product is only a prototype, is it possible to know what customers want.1 Launching fast is how to make something people want. Judging by the advice that they are given, startup founders are not naturally inclined to launch fast. Startup gurus have devised different ways of saying the same thing: launch the product even when it is in a bare-bones state. Eric Ries speaks of the urgent need to introduce a “minimum viable product,” or MVP.2 Steve Blank speaks of a “minimum feature set”—as soon as that set of features is operational, the product is ready to be tested in the market.3 Graham has his own term but it is a clunker: a “quantum of utility,” which means, in his words, a product that would make the world “one incremental bit better.” The most widely circulated version of the idea is Reid Hoffman’s, who is credited with saying, “If you’re not embarrassed by the first version of the product you’ve launched, you’ve launched too late.”4 The first companies funded by Y Combinator, back in summer 2005, began with nothing other than their ideas, and they all received the same advice: finish a prototype as quickly as possible; launch; get feedback from users; improve the product and release again, iterating and gaining more users while keeping a constant eye on the calendar as Demo Day approaches.

If their site were ready to be launched, it would be stuck in the “YC-funded” crowd trying to get attention on TechCrunch. It’s Thursday, August 18, the day after Rehearsal Day, and their site is not close to being ready. They have cobbled together only a single course, an introduction to JavaScript with eight micro-lessons. It’s painfully rudimentary and might fall short of even a low bar for minimum viable product. Before releasing it, however, they need to get some feedback without launching. Hacker News seems like a good place to quietly invite hackers to pay a visit to the site and critique what Codecademy has so far. Midmorning, Sims posts a notice on Hacker News, “Show HN: Code cademy.com—The Easiest Way to Learn to Code,” and he and Bubinski head out to get bagels for lunch.2 In the car, they decide it would be a wonderful thing if they manage to get fifty concurrent users on the site.

But when PG wrote “The 18 Mistakes That Kill Startups” in October 2006, he said that “launching too slowly has probably killed a hundred times more startups than launching too fast.” He advised founders to trust that early adopters will be fairly tolerant of incomplete products. They “don’t expect a newly launched product to do everything; it just has to do something.” 2. Eric Ries, “Building the Minimum Viable Product,” Entrepreneurial Thought Leader Lecture Series, Entrepreneurship Corner, Stanford University, September 30, 2009, http://ecorner.stanford.edu/authorMaterialInfo.html?mid=2295. 3. Steve Blank, “Perfection by Subtraction—The Minimum Feature Set,” Steve Blank blog, March 4, 2010, http://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/. 4. Reid Hoffman, remarks at the Churchill Club’s “Startup Success 2006,” August 17, 2006, http://video.google.com/videoplay?


pages: 157 words: 35,874

Building Web Applications With Flask by Italo Maia

continuous integration, create, read, update, delete, Debian, en.wikipedia.org, Firefox, full stack developer, minimum viable product, MVC pattern, premature optimization, web application

With small project budgets (nowadays, also the big ones), a robust solution called server virtualization was created where expensive, high-RAS physical servers have their resources (memory, CPU, hard-drive, and so on) virtualized into virtual machines (VM), which act just like smaller (and cheaper) versions of the real hardware. Companies such as DigitalOcean (https://digitalocean.com/), Linode (https://www.linode.com/), and RamNode (https://www.ramnode.com/) have whole businesses focused in providing cheap, reliable virtual machines to the public. Now, given that we have our web application ready (I mean, our Minimum Viable Product is ready), we must run the code somewhere accessible to our target audience. This usually means we need a web server. Pick two cheap virtual machines from one of the companies mentioned in the preceding paragraph, set up with Ubuntu, and let's begin! Setting up your database With respect to databases, one of the most basic things you should know during deployment is that it is a good practice to have your database and web application running on different (virtual) machines.

You're now capable of building full-featured Flask applications with secure forms, database integration, tests, and making use of extensions, which allow you to create robust software in no time. I'm so proud! Now, go tell your friends how awesome you are. See you around! Postscript As a personal challenge, take that project you have always dreamed of coding, but never had the spirit to do it, and make an MVP (minimum viable product) of it. Create a very simple implementation of your idea and publish it (http://bit.ly/1I0ehDB) to the world to see; then, leave me a message about it. I'd love to take a look at your work! Index A application deploymentabout / You deploy better than my ex code, placing in server / Placing your code in a server database, setting up / Setting up your database web server, setting up / Setting up the web server assertionsassert_context() / Extra assertions assert_redirects() / Extra assertions assert_template_used() / Extra assertions assert404() / Extra assertions auto-escapingabout / What can you do with Jinja2?


Super Thinking: The Big Book of Mental Models by Gabriel Weinberg, Lauren McCann

affirmative action, Affordable Care Act / Obamacare, Airbnb, Albert Einstein, anti-pattern, Anton Chekhov, autonomous vehicles, bank run, barriers to entry, Bayesian statistics, Bernie Madoff, Bernie Sanders, Black Swan, Broken windows theory, business process, butterfly effect, Cal Newport, Clayton Christensen, cognitive dissonance, commoditize, correlation does not imply causation, crowdsourcing, Daniel Kahneman / Amos Tversky, David Attenborough, delayed gratification, deliberate practice, discounted cash flows, disruptive innovation, Donald Trump, Douglas Hofstadter, Edward Lorenz: Chaos theory, Edward Snowden, effective altruism, Elon Musk, en.wikipedia.org, experimental subject, fear of failure, feminist movement, Filter Bubble, framing effect, friendly fire, fundamental attribution error, Gödel, Escher, Bach, hindsight bias, housing crisis, Ignaz Semmelweis: hand washing, illegal immigration, income inequality, information asymmetry, Isaac Newton, Jeff Bezos, John Nash: game theory, lateral thinking, loss aversion, Louis Pasteur, Lyft, mail merge, Mark Zuckerberg, meta analysis, meta-analysis, Metcalfe’s law, Milgram experiment, minimum viable product, moral hazard, mutually assured destruction, Nash equilibrium, Network effects, nuclear winter, offshore financial centre, p-value, Parkinson's law, Paul Graham, peak oil, Peter Thiel, phenotype, Pierre-Simon Laplace, placebo effect, Potemkin village, prediction markets, premature optimization, price anchoring, principal–agent problem, publication bias, recommendation engine, remote working, replication crisis, Richard Feynman, Richard Feynman: Challenger O-ring, Richard Thaler, ride hailing / ride sharing, Robert Metcalfe, Ronald Coase, Ronald Reagan, school choice, Schrödinger's Cat, selection bias, Shai Danziger, side project, Silicon Valley, Silicon Valley startup, speech recognition, statistical model, Steve Jobs, Steve Wozniak, Steven Pinker, survivorship bias, The Present Situation in Quantum Mechanics, the scientific method, The Wisdom of Crowds, Thomas Kuhn: the structure of scientific revolutions, transaction costs, uber lyft, ultimatum game, uranium enrichment, urban planning, Vilfredo Pareto, wikimedia commons

If your assumptions turn out to be wrong, you’re going to have to throw out all that work, rendering it ultimately a waste of time. It’s as if you booked an entire vacation assuming your family could join you, only to finally ask them and they say they can’t come. Then you have to go back and change everything, but all this work could have been avoided by a simple communication up front. Back in startup land, there is another mental model to help you test your assumptions, called minimum viable product, or MVP. The MVP is the product you are developing with just enough features, the minimum amount, to be feasibly, or viably, tested by real people. The MVP keeps you from working by yourself for too long. LinkedIn cofounder Reid Hoffman put it like this: “If you’re not embarrassed by the first version of your product, you’ve launched too late.” As with many useful mental models, you will frequently be reminded of the MVP now that you are familiar with it.

While it is the best starting point you have right now, you must revise it often based on the real-world feedback you receive. And we recommend doing as little work as possible before getting that real-world feedback. As with de-risking, you can extend the MVP model to fit many other contexts: minimum viable organization, minimum viable communication, minimum viable strategy, minimum viable experiment. Since we have so many mental models to get to, we’re trying to do minimum viable explanations! Minimum Viable Product Vision MVP 2.0 The MVP forces you to evaluate your assumptions quickly. One way you can be wrong with your assumptions is by coming up with too many or too complicated assumptions up front when there are clearly simpler sets you can start with. Ockham’s razor helps here. It advises that the simplest explanation is most likely to be true.

., 91 Kodak, 302–3, 308–10, 312 Koenigswald, Gustav Heinrich Ralph von, 50 Kohl’s, 15 Kopelman, Josh, 301 Korea, 229, 231, 235, 238 Kristof, Nicholas, 254 Krokodil, 49 Kruger, Justin, 269 Kuhn, Thomas, 24 Kutcher, Ashton, 121 labor market, 283–84 laggards, 116–17 landlords, 178, 179, 182, 188 Laplace, Pierre-Simon, 132 large numbers, law of, 143–44 Latané, Bibb, 259 late majority, 116–17 lateral thinking, 201 law of diminishing returns, 81–83 law of diminishing utility, 81–82 law of inertia, 102–3, 105–8, 110, 112, 113, 119, 120, 129, 290, 296 law of large numbers, 143–44 law of small numbers, 143, 144 Lawson, Jerry, 289 lawsuits, 231 leadership, 248, 255, 260, 265, 271, 275, 276, 278–80 learned helplessness, 22–23 learning, 262, 269, 295 from past events, 271–72 learning curve, 269 Le Chatelier, Henri-Louis, 193 Le Chatelier’s principle, 193–94 left to their own devices, 275 Leibniz, Gottfried, 291 lemons into lemonade, 121 Lernaean Hydra, 51 Levav, Jonathan, 63 lever, 78 leverage, 78–80, 83, 115 high-leverage activities, 79–81, 83, 107, 113 leveraged buyout, 79 leveraging up, 78–79 Levitt, Steven, 44–45 Levitt, Theodore, 296 Lewis, Michael, 289 Lichtenstein, Sarah, 17 lightning, 145 liking, 216–17, 220 Lincoln, Abraham, 97 Lindy effect, 105, 106, 112 line in the sand, 238 LinkedIn, 7 littering, 41, 42 Lloyd, William, 37 loans, 180, 182–83 lobbyists, 216, 306 local optimum, 195–96 lock-in, 305 lock in your gains, 90 long-term negative scenarios, 60 loose versus tight, in organizational culture, 274 Lorenz, Edward, 121 loss, 91 loss aversion, 90–91 loss leader strategy, 236–37 lost at sea, 68 lottery, 85–86, 126, 145 low-context communication, 273–74 low-hanging fruit, 81 loyalists versus mercenaries, 276–77 luck, 128 making your own, 122 luck surface area, 122, 124, 128 Luft, Joseph, 196 LuLaRoe, 217 lung cancer, 133–34, 173 Lyautey, Hubert, 276 Lyft, ix, 288 Madoff, Bernie, 232 magnetic resonance imaging (MRI), 291 magnets, 194 maker’s schedule versus manager’s schedule, 277–78 Making of Economic Society, The (Heilbroner), 49 mammograms, 160–61 management debt, 56 manager’s schedule versus maker’s schedule, 277–78 managing to the person, 255 Manhattan Project, 195 Man in the High Castle, The (Dick), 201 manipulative insincerity, 264 man-month, 279 Mansfield, Peter, 291 manufacturer’s suggested retail price (MSRP), 15 margin of error, 154 markets, 42–43, 46–47, 106 failure in, 47–49 labor, 283–84 market norms versus social norms, 222–24 market power, 283–85, 312 product/market fit, 292–96, 302 secondary, 281–82 winner-take-most, 308 marriage: divorce, 231, 305 same-sex, 117, 118 Maslow, Abraham, 177, 270–71 Maslow’s hammer, xi, 177, 255, 297, 317 Maslow’s hierarchy of needs, 270–71 mathematics, ix–x, 3, 4, 132, 178 Singapore math, 23–24 matrices, 2 × 2, 125–26 consensus-contrarian, 285–86, 290 consequence-conviction, 265–66 Eisenhower Decision Matrix, 72–74, 89, 124, 125 of knowns and unknowns, 197–98 payoff, 212–15, 238 radical candor, 263–64 scatter plot on top of, 126 McCain, John, 241 mean, 146, 149, 151 regression to, 146, 286 standard deviation from, 149, 150–51, 154 variance from, 149 measles, 39, 40 measurable target, 49–50 median, 147 Medicare, 54–55 meetings, 113 weekly one-on-one, 262–63 Megginson, Leon, 101 mental models, vii–xii, 2, 3, 31, 35, 65, 131, 289, 315–17 mentorship, 23, 260, 262, 264, 265 mercenaries versus loyalists, 276–77 Merck, 283 merry-go-round, 108 meta-analysis, 172–73 Metcalfe, Robert, 118 Metcalfe’s law, 118 #MeToo movement, 113 metrics, 137 proxy, 139 Michaels, 15 Microsoft, 241 mid-mortems, 92 Miklaszewski, Jim, 196 Milgram, Stanley, 219, 220 military, 141, 229, 279, 294, 300 milkshakes, 297 Miller, Reggie, 246 Mills, Alan, 58 Mindset: The New Psychology of Success (Dweck), 266 mindset, fixed, 266–67, 272 mindset, growth, 266–67 minimum viable product (MVP), 7–8, 81, 294 mirroring, 217 mission, 276 mission statement, 68 MIT, 53, 85 moats, 302–5, 307–8, 310, 312 mode, 147 Moltke, Helmuth von, 7 momentum, 107–10, 119, 129 Monday morning quarterbacking, 271 Moneyball (Lewis), 289 monopolies, 283, 285 Monte Carlo fallacy, 144 Monte Carlo simulation, 195 Moore, Geoffrey, 311 moral hazard, 43–45, 47 most respectful interpretation (MRI), 19–20 moths, 99–101 Mountain Dew, 35 moving target, 136 multiple discovery, 291–92 multiplication, ix, xi multitasking, 70–72, 74, 76, 110 Munger, Charlie, viii, x–xi, 30, 286, 318 Murphy, Edward, 65 Murphy’s law, 64–65, 132 Musk, Elon, 5, 302 mutually assured destruction (MAD), 231 MVP (minimum viable product), 7–8, 81, 294 Mylan, 283 mythical man-month, 279 name-calling, 226 NASA, 4, 32, 33 Nash, John, 213 Nash equilibrium, 213–14, 226, 235 National Football League (NFL), 225–26 National Institutes of Health, 36 National Security Agency, 52 natural selection, 99–100, 102, 291, 295 nature versus nurture, 249–50 negative compounding, 85 negative externalities, 41–43, 47 negative returns, 82–83, 93 negotiations, 127–28 net benefit, 181–82, 184 Netflix, 69, 95, 203 net present value (NPV), 86, 181 network effects, 117–20, 308 neuroticism, 250 New Orleans, La., 41 Newport, Cal, 72 news headlines, 12–13, 221 newspapers, 106 Newsweek, 290 Newton, Isaac, 102, 291 New York Times, 27, 220, 254 Nielsen Holdings, 217 ninety-ninety rule, 89 Nintendo, 296 Nobel Prize, 32, 42, 220, 291, 306 nocebo effect, 137 nodes, 118, 119 No Fly List, 53–54 noise and signal, 311 nonresponse bias, 140, 142, 143 normal distribution (bell curve), 150–52, 153, 163–66, 191 North Korea, 229, 231, 238 north star, 68–70, 275 nothing in excess, 60 not ready for prime time, 242 “now what” questions, 291 NPR, 239 nuclear chain reaction, viii, 114, 120 nuclear industry, 305–6 nuclear option, 238 Nuclear Regulatory Commission (NRC), 305–6 nuclear weapons, 114, 118, 195, 209, 230–31, 233, 238 nudging, 13–14 null hypothesis, 163, 164 numbers, 130, 146 large, law of, 143–44 small, law of, 143, 144 see also data; statistics nurses, 284 Oakland Athletics, 289 Obama, Barack, 64, 241 objective versus subjective, in organizational culture, 274 obnoxious aggression, 264 observe, orient, decide, act (OODA), 294–95 observer effect, 52, 54 observer-expectancy bias, 136, 139 Ockham’s razor, 8–10 Odum, William E., 38 oil, 105–6 Olympics, 209, 246–48, 285 O’Neal, Shaquille, 246 one-hundred-year floods, 192 Onion, 211–12 On the Origin of Species by Means of Natural Selection (Darwin), 100 OODA loop, 294–95 openness to experience, 250 Operation Ceasefire, 232 opinion, diversity of, 205, 206 opioids, 36 opportunity cost, 76–77, 80, 83, 179, 182, 188, 305 of capital, 77, 179, 182 optimistic probability bias, 33 optimization, premature, 7 optimums, local and global, 195–96 optionality, preserving, 58–59 Oracle, 231, 291, 299 order, 124 balance between chaos and, 128 organizations: culture in, 107–8, 113, 273–80, 293 size and growth of, 278–79 teams in, see teams ostrich with its head in the sand, 55 out-group bias, 127 outliers, 148 Outliers (Gladwell), 261 overfitting, 10–11 overwork, 82 Paine, Thomas, 221–22 pain relievers, 36, 137 Pampered Chef, 217 Pangea, 24–25 paradigm shift, 24, 289 paradox of choice, 62–63 parallel processing, 96 paranoia, 308, 309, 311 Pareto, Vilfredo, 80 Pareto principle, 80–81 Pariser, Eli, 17 Parkinson, Cyril, 74–75, 89 Parkinson’s law, 89 Parkinson’s Law (Parkinson), 74–75 Parkinson’s law of triviality, 74, 89 passwords, 94, 97 past, 201, 271–72, 309–10 Pasteur, Louis, 26 path dependence, 57–59, 194 path of least resistance, 88 Patton, Bruce, 19 Pauling, Linus, 220 payoff matrix, 212–15, 238 PayPal, 72, 291, 296 peak, 105, 106, 112 peak oil, 105 Penny, Jonathon, 52 pent-up energy, 112 perfect, 89–90 as enemy of the good, 61, 89–90 personality traits, 249–50 person-month, 279 perspective, 11 persuasion, see influence models perverse incentives, 50–51, 54 Peter, Laurence, 256 Peter principle, 256, 257 Peterson, Tom, 108–9 Petrified Forest National Park, 217–18 Pew Research, 53 p-hacking, 169, 172 phishing, 97 phones, 116–17, 290 photography, 302–3, 308–10 physics, x, 114, 194, 293 quantum, 200–201 pick your battles, 238 Pinker, Steven, 144 Pirahã, x Pitbull, 36 pivoting, 295–96, 298–301, 308, 311, 312 placebo, 137 placebo effect, 137 Planck, Max, 24 Playskool, 111 Podesta, John, 97 point of no return, 244 Polaris, 67–68 polarity, 125–26 police, in organizations and projects, 253–54 politics, 70, 104 ads and statements in, 225–26 elections, 206, 218, 233, 241, 271, 293, 299 failure and, 47 influence in, 216 predictions in, 206 polls and surveys, 142–43, 152–54, 160 approval ratings, 152–54, 158 employee engagement, 140, 142 postmortems, 32, 92 Potemkin village, 228–29 potential energy, 112 power, 162 power drills, 296 power law distribution, 80–81 power vacuum, 259–60 practice, deliberate, 260–62, 264, 266 precautionary principle, 59–60 Predictably Irrational (Ariely), 14, 222–23 predictions and forecasts, 132, 173 market for, 205–7 superforecasters and, 206–7 PredictIt, 206 premature optimization, 7 premises, see principles pre-mortems, 92 present bias, 85, 87, 93, 113 preserving optionality, 58–59 pressure point, 112 prices, 188, 231, 299 arbitrage and, 282–83 bait and switch and, 228, 229 inflation in, 179–80, 182–83 loss leader strategy and, 236–37 manufacturer’s suggested retail, 15 monopolies and, 283 principal, 44–45 principal-agent problem, 44–45 principles (premises), 207 first, 4–7, 31, 207 prior, 159 prioritizing, 68 prisoners, 63, 232 prisoner’s dilemma, 212–14, 226, 234–35, 244 privacy, 55 probability, 132, 173, 194 bias, optimistic, 33 conditional, 156 probability distributions, 150, 151 bell curve (normal), 150–52, 153, 163–66, 191 Bernoulli, 152 central limit theorem and, 152–53, 163 fat-tailed, 191 power law, 80–81 sample, 152–53 pro-con lists, 175–78, 185, 189 procrastination, 83–85, 87, 89 product development, 294 product/market fit, 292–96, 302 promotions, 256, 275 proximate cause, 31, 117 proxy endpoint, 137 proxy metric, 139 psychology, 168 Psychology of Science, The (Maslow), 177 Ptolemy, Claudius, 8 publication bias, 170, 173 public goods, 39 punching above your weight, 242 p-values, 164, 165, 167–69, 172 Pygmalion effect, 267–68 Pyrrhus, King, 239 Qualcomm, 231 quantum physics, 200–201 quarantine, 234 questions: now what, 291 what if, 122, 201 why, 32, 33 why now, 291 quick and dirty, 234 quid pro quo, 215 Rabois, Keith, 72, 265 Rachleff, Andy, 285–86, 292–93 radical candor, 263–64 Radical Candor (Scott), 263 radiology, 291 randomized controlled experiment, 136 randomness, 201 rats, 51 Rawls, John, 21 Regan, Ronald, 183 real estate agents, 44–45 recessions, 121–22 reciprocity, 215–16, 220, 222, 229, 289 recommendations, 217 red line, 238 referrals, 217 reframe the problem, 96–97 refugee asylum cases, 144 regression to the mean, 146, 286 regret, 87 regulations, 183–84, 231–32 regulatory capture, 305–7 reinventing the wheel, 92 relationships, 53, 55, 63, 91, 111, 124, 159, 271, 296, 298 being locked into, 305 dating, 8–10, 95 replication crisis, 168–72 Republican Party, 104 reputation, 215 research: meta-analysis of, 172–73 publication bias and, 170, 173 systematic reviews of, 172, 173 see also experiments resonance, 293–94 response bias, 142, 143 responsibility, diffusion of, 259 restaurants, 297 menus at, 14, 62 RetailMeNot, 281 retaliation, 238 returns: diminishing, 81–83 negative, 82–83, 93 reversible decisions, 61–62 revolving door, 306 rewards, 275 Riccio, Jim, 306 rise to the occasion, 268 risk, 43, 46, 90, 288 cost-benefit analysis and, 180 de-risking, 6–7, 10, 294 moral hazard and, 43–45, 47 Road Ahead, The (Gates), 69 Roberts, Jason, 122 Roberts, John, 27 Rogers, Everett, 116 Rogers, William, 31 Rogers Commission Report, 31–33 roles, 256–58, 260, 271, 293 roly-poly toy, 111–12 root cause, 31–33, 234 roulette, 144 Rubicon River, 244 ruinous empathy, 264 Rumsfeld, Donald, 196–97, 247 Rumsfeld’s Rule, 247 Russia, 218, 241 Germany and, 70, 238–39 see also Soviet Union Sacred Heart University (SHU), 217, 218 sacrifice play, 239 Sagan, Carl, 220 sales, 81, 216–17 Salesforce, 299 same-sex marriage, 117, 118 Sample, Steven, 28 sample distribution, 152–53 sample size, 143, 160, 162, 163, 165–68, 172 Sánchez, Ricardo, 234 sanctions and fines, 232 Sanders, Bernie, 70, 182, 293 Sayre, Wallace, 74 Sayre’s law, 74 scarcity, 219, 220 scatter plot, 126 scenario analysis (scenario planning), 198–99, 201–3, 207 schools, see education and schools Schrödinger, Erwin, 200 Schrödinger’s cat, 200 Schultz, Howard, 296 Schwartz, Barry, 62–63 science, 133, 220 cargo cult, 315–16 Scientific Autobiography and other Papers (Planck), 24 scientific evidence, 139 scientific experiments, see experiments scientific method, 101–2, 294 scorched-earth tactics, 243 Scott, Kim, 263 S curves, 117, 120 secondary markets, 281–82 second law of thermodynamics, 124 secrets, 288–90, 292 Securities and Exchange Commission, U.S., 228 security, false sense of, 44 security services, 229 selection, adverse, 46–47 selection bias, 139–40, 143, 170 self-control, 87 self-fulfilling prophecies, 267 self-serving bias, 21, 272 Seligman, Martin, 22 Semmelweis, Ignaz, 25–26 Semmelweis reflex, 26 Seneca, Marcus, 60 sensitivity analysis, 181–82, 185, 188 dynamic, 195 Sequoia Capital, 291 Sessions, Roger, 8 sexual predators, 113 Shakespeare, William, 105 Sheets Energy Strips, 36 Shermer, Michael, 133 Shirky, Clay, 104 Shirky principle, 104, 112 Short History of Nearly Everything, A (Bryson), 50 short-termism, 55–56, 58, 60, 68, 85 side effects, 137 signal and noise, 311 significance, 167 statistical, 164–67, 170 Silicon Valley, 288, 289 simulations, 193–95 simultaneous invention, 291–92 Singapore math, 23–24 Sir David Attenborough, RSS, 35 Skeptics Society, 133 sleep meditation app, 162–68 slippery slope argument, 235 slow (high-concentration) thinking, 30, 33, 70–71 small numbers, law of, 143, 144 smartphones, 117, 290, 309, 310 smoking, 41, 42, 133–34, 139, 173 Snap, 299 Snowden, Edward, 52, 53 social engineering, 97 social equality, 117 social media, 81, 94, 113, 217–19, 241 Facebook, 18, 36, 94, 119, 219, 233, 247, 305, 308 Instagram, 220, 247, 291, 310 YouTube, 220, 291 social networks, 117 Dunbar’s number and, 278 social norms versus market norms, 222–24 social proof, 217–20, 229 societal change, 100–101 software, 56, 57 simulations, 192–94 solitaire, 195 solution space, 97 Somalia, 243 sophomore slump, 145–46 South Korea, 229, 231, 238 Soviet Union: Germany and, 70, 238–39 Gosplan in, 49 in Cold War, 209, 235 space exploration, 209 spacing effect, 262 Spain, 243–44 spam, 37, 161, 192–93, 234 specialists, 252–53 species, 120 spending, 38, 74–75 federal, 75–76 spillover effects, 41, 43 sports, 82–83 baseball, 83, 145–46, 289 football, 226, 243 Olympics, 209, 246–48, 285 Spotify, 299 spreadsheets, 179, 180, 182, 299 Srinivasan, Balaji, 301 standard deviation, 149, 150–51, 154 standard error, 154 standards, 93 Stanford Law School, x Starbucks, 296 startup business idea, 6–7 statistics, 130–32, 146, 173, 289, 297 base rate in, 157, 159, 160 base rate fallacy in, 157, 158, 170 Bayesian, 157–60 confidence intervals in, 154–56, 159 confidence level in, 154, 155, 161 frequentist, 158–60 p-hacking in, 169, 172 p-values in, 164, 165, 167–69, 172 standard deviation in, 149, 150–51, 154 standard error in, 154 statistical significance, 164–67, 170 summary, 146, 147 see also data; experiments; probability distributions Staubach, Roger, 243 Sternberg, Robert, 290 stock and flow diagrams, 192 Stone, Douglas, 19 stop the bleeding, 234 strategy, 107–8 exit, 242–43 loss leader, 236–37 pivoting and, 295–96, 298–301, 308, 311, 312 tactics versus, 256–57 strategy tax, 103–4, 112 Stiglitz, Joseph, 306 straw man, 225–26 Streisand, Barbra, 51 Streisand effect, 51, 52 Stroll, Cliff, 290 Structure of Scientific Revolutions, The (Kuhn), 24 subjective versus objective, in organizational culture, 274 suicide, 218 summary statistics, 146, 147 sunk-cost fallacy, 91 superforecasters, 206–7 Superforecasting (Tetlock), 206–7 super models, viii–xii super thinking, viii–ix, 3, 316, 318 surface area, 122 luck, 122, 124, 128 surgery, 136–37 Surowiecki, James, 203–5 surrogate endpoint, 137 surveys, see polls and surveys survivorship bias, 140–43, 170, 272 sustainable competitive advantage, 283, 285 switching costs, 305 systematic review, 172, 173 systems thinking, 192, 195, 198 tactics, 256–57 Tajfel, Henri, 127 take a step back, 298 Taleb, Nassim Nicholas, 2, 105 talk past each other, 225 Target, 236, 252 target, measurable, 49–50 taxes, 39, 40, 56, 104, 193–94 T cells, 194 teams, 246–48, 275 roles in, 256–58, 260 size of, 278 10x, 248, 249, 255, 260, 273, 280, 294 Tech, 83 technical debt, 56, 57 technologies, 289–90, 295 adoption curves of, 115 adoption life cycles of, 116–17, 129, 289, 290, 311–12 disruptive, 308, 310–11 telephone, 118–19 temperature: body, 146–50 thermostats and, 194 tennis, 2 10,000-Hour Rule, 261 10x individuals, 247–48 10x teams, 248, 249, 255, 260, 273, 280, 294 terrorism, 52, 234 Tesla, Inc., 300–301 testing culture, 50 Tetlock, Philip E., 206–7 Texas sharpshooter fallacy, 136 textbooks, 262 Thaler, Richard, 87 Theranos, 228 thermodynamics, 124 thermostats, 194 Thiel, Peter, 72, 288, 289 thinking: black-and-white, 126–28, 168, 272 convergent, 203 counterfactual, 201, 272, 309–10 critical, 201 divergent, 203 fast (low-concentration), 30, 70–71 gray, 28 inverse, 1–2, 291 lateral, 201 outside the box, 201 slow (high-concentration), 30, 33, 70–71 super, viii–ix, 3, 316, 318 systems, 192, 195, 198 writing and, 316 Thinking, Fast and Slow (Kahneman), 30 third story, 19, 92 thought experiment, 199–201 throwing good money after bad, 91 throwing more money at the problem, 94 tight versus loose, in organizational culture, 274 timeboxing, 75 time: management of, 38 as money, 77 work and, 89 tipping point, 115, 117, 119, 120 tit-for-tat, 214–15 Tōgō Heihachirō, 241 tolerance, 117 tools, 95 too much of a good thing, 60 top idea in your mind, 71, 72 toxic culture, 275 Toys “R” Us, 281 trade-offs, 77–78 traditions, 275 tragedy of the commons, 37–40, 43, 47, 49 transparency, 307 tribalism, 28 Trojan horse, 228 Truman Show, The, 229 Trump, Donald, 15, 206, 293 Trump: The Art of the Deal (Trump and Schwartz), 15 trust, 20, 124, 215, 217 trying too hard, 82 Tsushima, Battle of, 241 Tupperware, 217 TurboTax, 104 Turner, John, 127 turn lemons into lemonade, 121 Tversky, Amos, 9, 90 Twain, Mark, 106 Twitter, 233, 234, 296 two-front wars, 70 type I error, 161 type II error, 161 tyranny of small decisions, 38, 55 Tyson, Mike, 7 Uber, 231, 275, 288, 290 Ulam, Stanislaw, 195 ultimatum game, 224, 244 uncertainty, 2, 132, 173, 180, 182, 185 unforced error, 2, 10, 33 unicorn candidate, 257–58 unintended consequences, 35–36, 53–55, 57, 64–65, 192, 232 Union of Concerned Scientists (UCS), 306 unique value proposition, 211 University of Chicago, 144 unknown knowns, 198, 203 unknowns: known, 197–98 unknown, 196–98, 203 urgency, false, 74 used car market, 46–47 U.S.


pages: 410 words: 114,005

Black Box Thinking: Why Most People Never Learn From Their Mistakes--But Some Do by Matthew Syed

Airbus A320, Alfred Russel Wallace, Arthur Eddington, Atul Gawande, Black Swan, British Empire, call centre, Captain Sullenberger Hudson, Checklist Manifesto, cognitive bias, cognitive dissonance, conceptual framework, corporate governance, creative destruction, credit crunch, crew resource management, deliberate practice, double helix, epigenetics, fear of failure, fundamental attribution error, Henri Poincaré, hindsight bias, Isaac Newton, iterative process, James Dyson, James Hargreaves, James Watt: steam engine, Johannes Kepler, Joseph Schumpeter, Kickstarter, Lean Startup, mandatory minimum, meta analysis, meta-analysis, minimum viable product, publication bias, quantitative easing, randomized controlled trial, selection bias, Shai Danziger, Silicon Valley, six sigma, spinning jenny, Steve Jobs, the scientific method, Thomas Kuhn: the structure of scientific revolutions, too big to fail, Toyota Production System, US Airways Flight 1549, Wall-E, Yom Kippur War

This approach contains a great deal of jargon, but is based upon a simple insight: the value of testing and adapting. High-tech entrepreneurs are often brilliant theorists. They can perform complex mathematics in their sleep. But the lean start-up approach forces them to fuse these skills with what they can discover from failure. How does it work? Instead of designing a product from scratch, techies attempt to create a “minimum viable product” or MVP. This is a prototype with sufficient features in common with the proposed final product that it can be tested on early adopters (the kind of consumers who buy products early in the life cycle and who influence other people in the market). These tests answer two vital questions. The first is the fundamental one of, Will people buy our product? If the MVP sufficiently resembles the proposed final product, but none of the early adopters have any interest in it, then you can be pretty sure that the entire business plan is worth ripping up.

.* And this is why, as we noted in chapter 1, bloodletting survived as a recognized treatment until the nineteenth century. Bloodletting with a control group. So far in this book we have examined cases of unambiguous error. When a plane crashes you know the procedures were defective. When DNA evidence shows that an innocent man is convicted, you know the trial or investigation was flawed. When a minimum viable product is rejected by early adopters, you can be sure the final product will bomb. When a nozzle is clogging up, you know it will cost you money. These examples gave us a chance to examine failure in the raw. Much real-world failure is not like this. Often, failure is clouded in ambiguity. What looks like success may really be failure and vice versa. And this, in turn, represents a serious obstacle to progress.

At the level of individuals the question is more open. Do individual organizations progress faster when they iterate their way to success or when they come up with bold ideas and stick to them doggedly? In high tech, as we have seen, the world is moving so fast that entrepreneurs have found it necessary to adopt rapid iteration. They may have bold ideas, but they give them a chance to fail early through the minimum viable product (MVP). And if the idea survives the verdict of early adopters, it is iterated into better shape by harnessing the feedback of end users. In other words, competition has favored entrepreneurs that take bottom-up learning seriously rather than those that do not. And that is a powerful operating assumption in a rapidly changing world. If valid learning can be achieved through iteration at a fast pace and low cost, it is crazy to pass up the opportunity.


pages: 185 words: 43,609

Zero to One: Notes on Startups, or How to Build the Future by Peter Thiel, Blake Masters

Airbnb, Albert Einstein, Andrew Wiles, Andy Kessler, Berlin Wall, cleantech, cloud computing, crony capitalism, discounted cash flows, diversified portfolio, don't be evil, Elon Musk, eurozone crisis, income inequality, Jeff Bezos, Lean Startup, life extension, lone genius, Long Term Capital Management, Lyft, Marc Andreessen, Mark Zuckerberg, minimum viable product, Nate Silver, Network effects, new economy, paypal mafia, Peter Thiel, pets.com, profit motive, Ralph Waldo Emerson, Ray Kurzweil, self-driving car, shareholder value, Silicon Valley, Silicon Valley startup, Singularitarianism, software is eating the world, Steve Jobs, strong AI, Ted Kaczynski, Tesla Model S, uber lyft, Vilfredo Pareto, working poor

Hence all the headlines like “Digital Darwinism,” “Dot-com Darwinism,” and “Survival of the Clickiest.” Even in engineering-driven Silicon Valley, the buzzwords of the moment call for building a “lean startup” that can “adapt” and “evolve” to an ever-changing environment. Would-be entrepreneurs are told that nothing can be known in advance: we’re supposed to listen to what customers say they want, make nothing more than a “minimum viable product,” and iterate our way to success. But leanness is a methodology, not a goal. Making small changes to things that already exist might lead you to a local maximum, but it won’t help you find the global maximum. You could build the best version of an app that lets people order toilet paper from their iPhone. But iteration without a bold plan won’t take you from 0 to 1. A company is the strangest place of all for an indefinite optimist: why should you expect your own business to succeed without a plan to make it happen?

Anyone who has held an iDevice or a smoothly machined MacBook has felt the result of Steve Jobs’s obsession with visual and experiential perfection. But the most important lesson to learn from Jobs has nothing to do with aesthetics. The greatest thing Jobs designed was his business. Apple imagined and executed definite multi-year plans to create new products and distribute them effectively. Forget “minimum viable products”—ever since he started Apple in 1976, Jobs saw that you can change the world through careful planning, not by listening to focus group feedback or copying others’ successes. Long-term planning is often undervalued by our indefinite short-term world. When the first iPod was released in October 2001, industry analysts couldn’t see much more than “a nice feature for Macintosh users” that “doesn’t make any difference” to the rest of the world.


pages: 245 words: 83,272

Artificial Unintelligence: How Computers Misunderstand the World by Meredith Broussard

1960s counterculture, A Declaration of the Independence of Cyberspace, Ada Lovelace, AI winter, Airbnb, Amazon Web Services, autonomous vehicles, availability heuristic, barriers to entry, Bernie Sanders, bitcoin, Buckminster Fuller, Chris Urmson, Clayton Christensen, cloud computing, cognitive bias, complexity theory, computer vision, crowdsourcing, Danny Hillis, DARPA: Urban Challenge, digital map, disruptive innovation, Donald Trump, Douglas Engelbart, easy for humans, difficult for computers, Electric Kool-Aid Acid Test, Elon Musk, Firefox, gig economy, global supply chain, Google Glasses, Google X / Alphabet X, Hacker Ethic, Jaron Lanier, Jeff Bezos, John von Neumann, Joi Ito, Joseph-Marie Jacquard, life extension, Lyft, Mark Zuckerberg, mass incarceration, Minecraft, minimum viable product, Mother of all demos, move fast and break things, move fast and break things, Nate Silver, natural language processing, PageRank, payday loans, paypal mafia, performance metric, Peter Thiel, price discrimination, Ray Kurzweil, ride hailing / ride sharing, Ross Ulbricht, Saturday Night Live, school choice, self-driving car, Silicon Valley, speech recognition, statistical model, Steve Jobs, Steven Levy, Stewart Brand, Tesla Model S, the High Line, The Signal and the Noise by Nate Silver, theory of mind, Travis Kalanick, Turing test, Uber for X, uber lyft, Watson beat the top human players on Jeopardy!, Whole Earth Catalog, women in the workforce

I explained that it wasn’t a machine that spit out story ideas, that it was subtler, and I talked about automation. Most people’s eyes glazed over at that point. So, for the second Story Discovery Engine, I decided I would try to make an actual machine that spit out story ideas. Figure 11.5 shows what the feature looks like. Figure 11.5 Story idea page. I should specify that unlike other features, the story ideas feature is a minimum viable product (MVP). It works, and you can see an actual result—but only for one case, not for all the cases that we planned. We say this very specifically in the documentation. It works well enough for me to feel confident claiming that it works; from my perspective as a developer, it’s a solved problem. But in software, things can work without really working well. It’s not a binary situation. A person can’t be a little bit pregnant, but a software program can be a little bit functional.

., 83 Lessig, Lawrence, 194 Levandowski, Anthony, 139–140 Levy, Steven, 70 Lexus, 123, 140 Libertarianism, 82–83, 138, 159–160 Libraries, 96–97 Lightoller, Charles, 116 Lincoln, Abraham, 78 LinkedIn, 158 Linux, 24–25 Lipton, Zachary, 114 Literacy, technological, 21 Long, Milton, 117–118 Long Now Foundation, 73 Lord, Walter, 117–119 Loughner, Jared Lee, 19 Lovelace, Ada, 76 LSD, 81 Lucas, George, 70 Machine intelligence, determining, 37–38 Machine language, 24 Machine learning algorithms in, 94 defined, 11, 89, 91–92 doing DataCamp Titanic tutorial, 96–119 datasets in, 94–96 intelligence in, 92–93 in journalism, 52 limitations, 119 linguistic confusion, 89 reinforcement, 93 social decision making and, 115–116, 119 supervised, 93 training data in, 93–94 unsupervised, 93 Machines, intelligence in, 33 Mahfouz, Christl, 186 Mapping, digital, 131 Masch, Michael, 57 Mathematical lookup tables, 77 Mathematics cult of genius, worship of, 75 developing machines for, 75–79 gender gap, 84–85 gender stereotypes associated with, 84 social culture of, 75 women in, 77–78 May, Patrick, 158 McCarthy, John, 70, 71 McCutcheon v. FEC, 180 McIntyre, Tim, 170 McNamee, Roger, 138 Mercedes, 144 Merideth, Willie, 68 Meyer, Philip, 43 Microsoft, 25, 157 Minimum viable product (MVP), 189–190 Minsky, Margaret, 79 Minsky, Marvin, 69–75, 79–80, 81, 84, 89, 129, 132, 145, 193 MIT Artificial Intelligence Lab, 70 Mitchell, Tom M., 92 MIT Media Lab, 70, 72, 195 MIT Tech Model Railroad Club (TMRC), 69–70 Models, mathematical, 94 Monty Python, 89 Moore School of Engineering, 196–198 Morais, Betsy, 167 Mortensen, Dennis, 132 Motor vehicle traffic-related injury mortality, 137–138 Mullainathan, Sendhil, 155–156 Munro, Randall, 87 Murdoch, William, 116 Musk, Elon, 142, 143–144 Naming problem, 88–89 Natanson, Hannah, 84 National Highway Traffic Safety Association (NHTSA), 133–134 Natural resources homework, 51–52 Navy, U.S., 137 Neumann, John von, 71 Neural networks, 33 Neville-Neil, George V., 92–93 New Communalism movement, 5 Newman, Barry, 152 Newspapers, 152 New York Times, 152 NeXt cube, 5 NICAR conference, 196 Nineteenth Amendment, 78 Northpointe, 155–156 Norvig, Peter, 93, 118 Nutter, Michael, 53 NVIDIA, 140–141 Obama Administration, 147, 194 Object, 97 O’Neil, Cathy, 94 One Laptop Per Child (OLPC) initiative, 65 oN-Line System (NLS), 25 OpenBazaar, 159 Operating systems, 24–25 Opioid crisis, 158–160 O’Reilly, Tim, 81 OSX, 25 Otto, 142 Overview Project, 52 Page, Carl Victor, Sr., 72–73 Page, Larry, 72–73, 131, 151 PageRank, 72, 151–152 Palantir, 83 Panama Papers, 196 Pandas library, 97 Paperclip theory, 89–90 Papert, Seymour, 72, 73 Pasquale, Frank, 115 Pattis, Richard, 129 PayPal, 83, 159 Pearson, 53–54 Penn and Teller, 70 Pennsylvania System of School Assessment (PSSA), 52, 53–54 Pereira, Fernando, 118 Personal computer revolution, 5, 24 Philadelphia School District, 53–60, 65–66 Physicians, sexual abuse by, 42–43 PillyPod, 173 Pinker, Stephen, 90 Pinkerton, Emma, 164 Pizzafy, 165, 168–174 Policing quantitative methods to enhance, 155 racial disparities found by Stanford Open Policing Project, 43 speeding, 43 PolitiFact, 45–46 Popular vs. good, 149–152, 160 Poverty and differential pricing, 116 Prater, Vernon, 155 Predictive analytics, 33 Price discrimination, 46 Price optimization, 114–115 Privacy, right to, 68, 195 Programmers accountability for, 154 bias, 155–158 competence, developing, 169–170, 174 drug use, 158–159 ethical training, 145 income, 170–171 safety, attitudes toward, 73–74 social conventions, 74–75 Programming.

See also Cars, self-driving Robot reporting, 9–10 Robots, 3–4, 87–88, 129 Rogers, Edwin, 164–165, 167, 172, 173 Roomba, 88 Royal, Cindy, 47 Rudisch, Gloria, 79 Russell, Stuart, 93 Safari, 25, 26 Science fiction, 71–72 Scikit-learn, 92, 96 Screet, 172 Sculley, John, 72 Searle, John, 38 Selfies, 149 SendGrid, 168 Seneca Falls Convention, 78 Sentience computer, 17, 129 in self-driving cars, 132 Sexual abuse, 42–43, 45 Sexual harassment, culture of, 74 Shar.ed, 171–172 Sharkey, Pat, 115 Shaw, Jennifer, 164–165, 167, 170–171, 173 Sheivachman, Andrew, 187 Shell programming language, 15 Siegelmann, Hava, 133 Silicon Valley, 166 Silk Road, 159 Silver, Nate, 47 Singh, Santokh, 137 Singularity theory, 89–90 Siri, 28, 29, 72 Slavery, 78 Slovic, Paul, 83 Smart games format (SGF), 35 Smith, Dre, 167, 172 Smith, Edward John, 117 Snowden documents, 196 Social decision making, 115–116, 119 Social media, 158 Society, impact of algorithmic accountability reporting, 65–66 Society-in-the-loop machine learning, 195 Software. See also Programming autonomous systems, 187 in the cloud, 25–26 defined, 19, 22 development process problems, 190 human-in-the-loop systems, 177, 179, 187, 195 lifespan, 193 minimum viable product, 190 naming, 182 scope creep, 61 technical debt, 193 Somerville, Heather, 158 Space elevator, 71–72 SPACES, 172–173 Speechnow.org v. FEC, 180 Spence, Stephen, 58–59 Standardized testing, 52–55 Stanford Racing Team (Junior), 124, 130–131 Stanford Racing Team (Stanley), 123–124, 127 Staples, 46, 115 Star Trek: The Next Generation, 31 Startup Bus, 163–174 Startup House, 166 Steiger, Paul, 45 STEM fields, 5, 83–85, 158 Step reckoner, 76 Stewart, Alex, 122, 125–126 Story Discovery Engine (Broussard), 178–180, 187, 188–191 Survivor (television), 164 Sweeney, Latanya, 195 Tacocopter, 29–30 Taplin, Jonathan, 83 Tay Twitter bot, 69 Teachers, underground economy, 57 TechCrunch Disrupt hackathon, 166–167 Tech culture drug use in, 158–160 misogyny in, 167 money in, 171 Tech Model Railroad Club (TMRC), 69–70 Technochauvinism assumptions from, 156 beliefs accompanying, 8 blaming drivers, 136 defined, 7–8 disruptive innovation and, 163 hallmarks of, 69 magical thinking of, 122 philosophical basis of, 75 Technolibertarianism, 82–83 Technology breakage, 63, 156–157, 193 digital, uses for, 194 equality, creating, 87 gender gap, 158 human-centered design, 177 inclusive, need for, 154 inequality and, 83, 115, 156 libertarianism and, 82–83 limitations, 6–7, 176–177 mathematical, development of, 75–79 promises of, questioning the, 6 social consequences, negative, 67–69 white male bias in, 72, 79 Terminal, 14–15 Tesla, 121, 136, 139, 140–144 Textbooks, 53–60, 63–65 Texting while driving, 146–147 Thayer, Jack, 117–118 Thiel, Peter, 83, 159 Thirteenth Amendment, 78 Thrun, Sebastian, 124, 131, 135, 138 Tic-tac-toe, 33–34 Tilden Middle School, 59–60 Titanic (disaster), 95–119 Titanic (movie), 95 Torvalds, Linus, 24 Toyota, 140 Trolley problem, 144, 147 Trump, Donald, 83, 184–187, 194 Tufte, Edward, 169 Turing, Alan, 33, 74–75, 82, 83, 193 Turing test, 33, 37–38 Turner, Fred, 5, 81 Twitter, 69 2001: A Space Odyssey (film), 31, 71, 198 Uber, 74, 121, 138, 139–140, 142, 168 Udacity, 135, 138 Ukpeaġvik Iñupiat Corporation, 137 Ulbricht, Ross, 159 Unix, 24 Unmanned autonomous systems (UAS), 137 Urmson, Chris, 135 Usher, Nikki, 47 Vaporware, 166 Vehicles, SAE definitions for automated, 134–135.


pages: 372 words: 89,876

The Connected Company by Dave Gray, Thomas Vander Wal

A Pattern Language, Albert Einstein, Amazon Mechanical Turk, Amazon Web Services, Atul Gawande, Berlin Wall, business cycle, business process, call centre, Clayton Christensen, commoditize, complexity theory, creative destruction, David Heinemeier Hansson, disruptive innovation, en.wikipedia.org, factory automation, Googley, index card, industrial cluster, interchangeable parts, inventory management, Jeff Bezos, John Markoff, Kevin Kelly, loose coupling, low cost airline, market design, minimum viable product, more computing power than Apollo, profit maximization, Richard Florida, Ruby on Rails, self-driving car, shareholder value, side project, Silicon Valley, skunkworks, software as a service, South of Market, San Francisco, Steve Jobs, Steven Levy, Stewart Brand, The Wealth of Nations by Adam Smith, Tony Hsieh, Toyota Production System, Vanguard fund, web application, WikiLeaks, Zipcar

These approaches function like complex adaptive systems, where the parts of the system can learn, adapt, and coevolve like a biological community. Agile Development As early as the 1950s, IBM programmers were working on software for things like submarine-control systems and missile-tracking systems, which were so complex that they could not be conceived of and built in one go. Programmers had to evolve them over time, like cities, starting with a simple working system that could be tested by users (sometimes called the minimum viable product or MVP), and then gradually adding more function and detail in iterative cycles that took one to six months to complete. In a 1969 IBM internal report called simply, “The Programming Process,” IBM computer scientist M.M. Lehman described the approach: The design process is…seeded by a formal definition of the system, which provides a first, executable, functional model. It is tested and further expanded through a sequence of models, that develop an increasing amount of function and an increasing amount of detail as to how that function is to be executed.

., Freedom to Experiment, The Nordstrom Way McDonald’s (company), Reducing Variety–Absorbing Variety, Reducing Variety, Absorbing Variety, Support–Balancing the Needs of Constituents, Balancing the Needs of Constituents reducing variety, Reducing Variety–Absorbing Variety, Reducing Variety, Absorbing Variety support structure, Support–Balancing the Needs of Constituents, Balancing the Needs of Constituents McIntyre, Tim, Cascading Effects Can be Initiated by Employees McKelvey, Bill, The Red Queen Race, Adaptive Tensions Microsoft Corporation, What is a Platform? minimum viable product (MVP, Agile Development Mintzberg, Henry, Let a Thousand Flowers Bloom–A Portfolio of Experiments, Let a Thousand Flowers Bloom, A Portfolio of Experiments Moments of Truth (Carlzon), Moments of Truth Moore, Karl, Let a Thousand Flowers Bloom Moore’s Law, Demands on Companies are Increasing in Volume, Velocity, Variety, How Kodak Faded Away moral authority, Three Types of Strategy, Influence—Give Meaning and Moral Authority to the Purpose, Moral Authority, Principles Trump Processes, It Takes Trust to Build Relationships moral leverage, Moral Authority moral warfare, Three Types of Strategy Morita, Akio, Purpose Sets the Context for Organizations to Learn Morning Star (company), Morning Star’s Self-Organizing Marketplace–The Nordstrom Way, Morning Star’s Self-Organizing Marketplace, The Nordstrom Way Mosser, Fred, Adaptive Moves Can be Competitive—and Cooperative Mullikin, Harry, The Nordstrom Way Multidivisional organizations, The Podular Organization–The Podular Organization, The Podular Organization MVP (minimum viable product), Agile Development MySpace service, The Platform MyStarbucksIdea.com site, Permeability N Napier, Lanham, Principles Trump Processes National car rentals, Serious Netflix service, Adaptive Moves Can Create Opportunities for Others, Coevolutionary Relationships Can be Very Complex, Netflix, a City of Services, Netflix, a City of Services, Netflix, a City of Services network weaving, Network Weaving networks, Power in the Network, Power in the Network, Power in the Network, A Process is Not a Service, Small Worlds, Small Worlds, Scale-free Networks–Power in Networks, Power and Control in Networks, Power in Networks, Control–Exercising Power in Networks, Control, Exercising Power in Networks–Three Principles of Network Power, Exercising Power in Networks, Influence, The Platform, The Platform, Three Principles of Network Power, Three Principles of Network Power about, Small Worlds control in, Control–Exercising Power in Networks, Control, Exercising Power in Networks exercising power in, Exercising Power in Networks–Three Principles of Network Power, The Platform, Three Principles of Network Power, Three Principles of Network Power influence in, Influence platforms in, The Platform power in, Power in the Network, Power in the Network, Power in the Network, Power and Control in Networks scale-free, Scale-free Networks–Power in Networks, Power in Networks service, A Process is Not a Service small-world, Small Worlds New York Times, Failure of Purpose Newell, Gabe, Strategy by Discovery Nielsen study, Power in the Network Nordstrom (company), When in Doubt, Get in Touch with Your Customers, Building Long-Term Relationships with Customers, Absorbing Variety, Self-Organizing Teams at Rational Software customer service, When in Doubt, Get in Touch with Your Customers, Building Long-Term Relationships with Customers, Absorbing Variety self-organization teams, Self-Organizing Teams at Rational Software NPR videotape, Cascading Effects Can be Initiated by Enemies or Competitors NPS (Net Promoter Score), The Net Promoter Score, Net Promoter at Apple–Net Promoter at Apple, Net Promoter at Apple, Net Promoter at Apple, Net Promoter at Logitech–Net Promoter at Logitech, Net Promoter at Logitech, Principles Trump Processes about, The Net Promoter Score Apple, Net Promoter at Apple–Net Promoter at Apple, Net Promoter at Apple, Net Promoter at Apple Logitech, Net Promoter at Logitech–Net Promoter at Logitech, Net Promoter at Logitech Rackspace, Principles Trump Processes Nupedia site, What is a Platform?

minimum viable product (MVP, Agile Development Mintzberg, Henry, Let a Thousand Flowers Bloom–A Portfolio of Experiments, Let a Thousand Flowers Bloom, A Portfolio of Experiments Moments of Truth (Carlzon), Moments of Truth Moore, Karl, Let a Thousand Flowers Bloom Moore’s Law, Demands on Companies are Increasing in Volume, Velocity, Variety, How Kodak Faded Away moral authority, Three Types of Strategy, Influence—Give Meaning and Moral Authority to the Purpose, Moral Authority, Principles Trump Processes, It Takes Trust to Build Relationships moral leverage, Moral Authority moral warfare, Three Types of Strategy Morita, Akio, Purpose Sets the Context for Organizations to Learn Morning Star (company), Morning Star’s Self-Organizing Marketplace–The Nordstrom Way, Morning Star’s Self-Organizing Marketplace, The Nordstrom Way Mosser, Fred, Adaptive Moves Can be Competitive—and Cooperative Mullikin, Harry, The Nordstrom Way Multidivisional organizations, The Podular Organization–The Podular Organization, The Podular Organization MVP (minimum viable product), Agile Development MySpace service, The Platform MyStarbucksIdea.com site, Permeability N Napier, Lanham, Principles Trump Processes National car rentals, Serious Netflix service, Adaptive Moves Can Create Opportunities for Others, Coevolutionary Relationships Can be Very Complex, Netflix, a City of Services, Netflix, a City of Services, Netflix, a City of Services network weaving, Network Weaving networks, Power in the Network, Power in the Network, Power in the Network, A Process is Not a Service, Small Worlds, Small Worlds, Scale-free Networks–Power in Networks, Power and Control in Networks, Power in Networks, Control–Exercising Power in Networks, Control, Exercising Power in Networks–Three Principles of Network Power, Exercising Power in Networks, Influence, The Platform, The Platform, Three Principles of Network Power, Three Principles of Network Power about, Small Worlds control in, Control–Exercising Power in Networks, Control, Exercising Power in Networks exercising power in, Exercising Power in Networks–Three Principles of Network Power, The Platform, Three Principles of Network Power, Three Principles of Network Power influence in, Influence platforms in, The Platform power in, Power in the Network, Power in the Network, Power in the Network, Power and Control in Networks scale-free, Scale-free Networks–Power in Networks, Power in Networks service, A Process is Not a Service small-world, Small Worlds New York Times, Failure of Purpose Newell, Gabe, Strategy by Discovery Nielsen study, Power in the Network Nordstrom (company), When in Doubt, Get in Touch with Your Customers, Building Long-Term Relationships with Customers, Absorbing Variety, Self-Organizing Teams at Rational Software customer service, When in Doubt, Get in Touch with Your Customers, Building Long-Term Relationships with Customers, Absorbing Variety self-organization teams, Self-Organizing Teams at Rational Software NPR videotape, Cascading Effects Can be Initiated by Enemies or Competitors NPS (Net Promoter Score), The Net Promoter Score, Net Promoter at Apple–Net Promoter at Apple, Net Promoter at Apple, Net Promoter at Apple, Net Promoter at Logitech–Net Promoter at Logitech, Net Promoter at Logitech, Principles Trump Processes about, The Net Promoter Score Apple, Net Promoter at Apple–Net Promoter at Apple, Net Promoter at Apple, Net Promoter at Apple Logitech, Net Promoter at Logitech–Net Promoter at Logitech, Net Promoter at Logitech Rackspace, Principles Trump Processes Nupedia site, What is a Platform?


pages: 165 words: 50,798

Intertwingled: Information Changes Everything by Peter Morville

A Pattern Language, Airbnb, Albert Einstein, Arthur Eddington, augmented reality, Bernie Madoff, Black Swan, business process, Cass Sunstein, cognitive dissonance, collective bargaining, disruptive innovation, index card, information retrieval, Internet of things, Isaac Newton, iterative process, Jane Jacobs, John Markoff, Lean Startup, Lyft, minimum viable product, Mother of all demos, Nelson Mandela, Paul Graham, peer-to-peer, RFID, Richard Thaler, ride hailing / ride sharing, Schrödinger's Cat, self-driving car, semantic web, sharing economy, Silicon Valley, Silicon Valley startup, source of truth, Steve Jobs, Stewart Brand, Ted Nelson, The Death and Life of Great American Cities, the scientific method, The Wisdom of Crowds, theory of mind, uber lyft, urban planning, urban sprawl, Vannevar Bush, zero-sum game

In short, managers gave workers and suppliers an unprecedented level of information and responsibility, so they could contribute to continuous, incremental improvement. And it worked. Quality soared, and Toyota became the largest, most consistently successful industrial enterprise in the world. In recent years, Eric Ries famously adapted Lean to solve the wicked problem of software startups: what if we build something nobody wants? He advocates use of a minimum viable product (“MVP”) as the hub of a Build-Measure-Learn loop that allows for the least expensive experiment. By selling an early version of a product or feature, we can get invaluable feedback from customers, not just about how it’s designed, but about what the market actually wants. It’s a holistic approach that recognizes the risks of vanity metrics such as total number of users. As Eric explains “that which optimizes one part of the system necessarily undermines the system as a whole.” xvi This is a lesson from Lean we can all learn from.

In the words of Jeff Hawkins, “Prediction is not just one of the things your brain does. It is the primary function of the neocortex and the foundation of intelligence.”lxxvi It’s impossible not to predict the future, yet we get it wrong all the time. We use our “theory of mind” to anticipate the actions and reactions of colleagues and customers, but people are full of surprises. Experiments help, but induction has its limits. Even minimum viable products can’t predict the long now at scale. Inevitably we must move forward, often at a fast clip, but it pays to be aware of error even as we race along. Often our mistakes are small, obvious, and easy to fix. It’s the big ones we must look out for. They’re not only hard to correct but amazingly hard to see. Chris Argyris, a pioneer in organizational learning, had it right when he advocated double-loop learning, a concept he introduces by analogy.


pages: 328 words: 96,141

Rocket Billionaires: Elon Musk, Jeff Bezos, and the New Space Race by Tim Fernholz

Amazon Web Services, autonomous vehicles, business climate, Charles Lindbergh, Clayton Christensen, cloud computing, Colonization of Mars, corporate governance, corporate social responsibility, disruptive innovation, Donald Trump, Elon Musk, high net worth, Iridium satellite, Jeff Bezos, Kickstarter, low earth orbit, Marc Andreessen, Mark Zuckerberg, minimum viable product, multiplanetary species, mutually assured destruction, new economy, nuclear paranoia, paypal mafia, Peter H. Diamandis: Planetary Resources, Peter Thiel, pets.com, planetary scale, private space industry, profit maximization, RAND corporation, Richard Feynman, Richard Feynman: Challenger O-ring, Ronald Reagan, shareholder value, Silicon Valley, skunkworks, sovereign wealth fund, Stephen Hawking, Steve Jobs, trade route, undersea cable, We wanted flying cars, instead we got 140 characters, X Prize, Y2K

Instead, the team could ask, “What are the smart things that we want to do to make this vehicle highly reliable but still low-cost?” More often than not, the space program had focused on enormous projects like the space shuttle that were designed to satisfy every possible user, from the military to the science community to satellite companies. But the first SpaceX rocket was designed to be what a tech start-up would call a “minimum viable product”—basically, the cheapest thing you could build that would attract paying customers. From there, the company could iterate and expand its offerings. Their minimum viable product would be called the Falcon 1. Yes, it’s a reference to the Millennium Falcon of Star Wars fame. Space pop culture helped animate SpaceX and make it unique. It didn’t name its rockets after Greek gods, like Titan or Apollo, or using bureaucrat-speak, like the Space Transportation System, as the space shuttle was officially known.

See also CRS-7 rocket; Dragon spacecraft; Falcon 9; Grasshopper; Merlin rocket; Raptor engine Air Force contract, 179–80 astronauts to ISS, 252 Big Falcon Rocket, 244–45, 251 Big Fucking Test Stand (BFTS), 88 Blue Origin competition, 160, 246–47 Cassiope satellite, 180 CCDEV competition and funding, 159–60, 162–64 company development and financing, 66–67, 70, 210, 227–28 floating launch pads, 201–2 funding for development, 39, 78, 82–84, 130–33 government relations, 80, 82 launch vehicle development, 63 Martian colonization plan, 49, 233 minimum viable product, 81 Musk investment, 43 and NASA, 13, 156, 209–10 NASA space taxi program, 113–14, 117, 130, 137 Obama visit to Kennedy Space Center, 146 “Rapid Unscheduled Disassembly” (RUD), 201–2 recruiting top engineers, 39, 117 retropropulsion and reusability, 196–202 satellite network proposal, 231–34 servicing the ISS, 41 SES-8, 180 small rocket, business plan for, 60–62, 171 small rocket schedule, 79 and Space Launch Center 39-A (SLC-39A), 169–70 success of, 174–76, 219–20 and ULA, 37–38 unveiling, 8 and US Air Force, 9, 176, 193 Stafford, Thomas, 96 Starbuck, Randy, 28 Star Wars.


pages: 202 words: 62,199

Essentialism: The Disciplined Pursuit of Less by Greg McKeown

Albert Einstein, Clayton Christensen, Daniel Kahneman / Amos Tversky, deliberate practice, double helix, en.wikipedia.org, endowment effect, Isaac Newton, iterative process, Jeff Bezos, Lao Tzu, lateral thinking, loss aversion, low cost airline, Mahatma Gandhi, microcredit, minimum viable product, Nelson Mandela, North Sea oil, Peter Thiel, Ralph Waldo Emerson, Richard Thaler, Rosa Parks, Shai Danziger, side project, Silicon Valley, Silicon Valley startup, sovereign wealth fund, Stanford prison experiment, Steve Jobs, Vilfredo Pareto

Eyring, February 6, 1998. http://www.lds.org/manual/teaching-seminary-preservice-readings-religion-370-471-and-475/the-lord-will-multiply-the-harvest?lang=eng. 7. Ibid., “Can we reverse the Stanford Prison Experiment?” 8. See his website, http://heroicimagination.org/. 9. We got this idea from Glenn I. Latham’s The Power of Positive Parenting (North Logan, UT: P&T Ink, 1994). 10. Seen on the wall at Facebook. 11. Popularized by Eric Ries in an interview at Venture Hacks, March 23, 2009, “What Is the Minimum Viable Product?” http://venturehacks.com/articles/minimum-viable-product. 12. Peter Sims, “Pixar’s Motto: Going from Suck to Nonsuck,” Fast Company, March 25, 2011, www.fastcompany.com/1742431/pixars-motto-going-suck-nonsuck. 18. FLOW 1. Michael Phelps and Alan Abrahamson, No Limits: The Will to Succeed (New York: Free Press, 2008). 2. Charles Duhigg, The Power of Habit: Why We Do What We Do in Life and Business (New York: Random House, 2012). 3.


pages: 265 words: 70,788

The Wide Lens: What Successful Innovators See That Others Miss by Ron Adner

barriers to entry, call centre, Clayton Christensen, inventory management, iterative process, Jeff Bezos, Lean Startup, M-Pesa, minimum viable product, mobile money, new economy, RAND corporation, RFID, smart grid, smart meter, spectrum auction, Steve Ballmer, Steve Jobs, Steven Levy, supply-chain management, Tim Cook: Apple, transaction costs

However, this also doubled the price: the Roadster battery alone costs an estimated $36,000 (the base MSRP for the 2011 Roadster is $109,000), undermining its economic attractiveness to the mainstream. * Read the epilogue to the Better Place case on p. 235. * In the world of product development, a recent movement has been toward “lean start-up,” a key technique of which is the minimum viable product (also referred to as the minimum feature set). The minimum viable product approach espouses market testing with bare-bones prototypes that allows for maximum learning from test customer feedback with the least amount of product development. This enables cheaper and faster iterations in the product development cycle. It contrasts with the philosophy of presenting (relatively) feature-rich prototypes that will allow test customers to offer more complete reactions.


pages: 482 words: 121,173

Tools and Weapons: The Promise and the Peril of the Digital Age by Brad Smith, Carol Ann Browne

Affordable Care Act / Obamacare, AI winter, airport security, Albert Einstein, augmented reality, autonomous vehicles, barriers to entry, Berlin Wall, Boeing 737 MAX, business process, call centre, Celtic Tiger, chief data officer, cloud computing, computer vision, corporate social responsibility, Donald Trump, Edward Snowden, en.wikipedia.org, immigration reform, income inequality, Internet of things, invention of movable type, invention of the telephone, Jeff Bezos, Mark Zuckerberg, minimum viable product, national security letter, natural language processing, Network effects, new economy, pattern recognition, precision agriculture, race to the bottom, ransomware, Ronald Reagan, Rubik’s Cube, school vouchers, self-driving car, Shoshana Zuboff, Silicon Valley, Skype, speech recognition, Steve Ballmer, Steve Jobs, The Rise and Fall of American Growth, Tim Cook: Apple, WikiLeaks, women in the workforce

We knew we didn’t have answers for every potential question, but we believed there were enough answers for good initial legislation in this area that would enable the technology to continue to advance while protecting the public interest. We thought it was important for governments to keep pace with this technology, and an incremental approach would enable faster and better learning across the public sector. In essence, we borrowed from a concept that has been championed for start-up companies and software development, referred to as a “minimum viable product.” As defined by entrepreneur and author Eric Ries, it advocates creating “an early version of a new product that allows a team to collect the maximum amount of validated learning (learning based on real data gathering rather than guesses about the future) about customers.”16 In other words, don’t wait until you have the perfect answer to every conceivable question. If you are confident that you have reliable answers to critical questions, act on them, build your product, and get it into the market so you can learn from real-world feedback.

But there are some important lessons worth applying. For one, there’s a strong case for governments to innovate in the regulatory space in a way that’s like innovation in the tech sector itself. Instead of waiting for every issue to mature, governments can act more quickly and incrementally with limited initial regulatory steps—and then learn and take stock from the resulting experience. In other words, take the concept of a “minimum viable product” and consider the type of approach we advocated for AI and facial recognition, described in chapter twelve. We readily recognized that just as for a new business or software product, the first regulatory step would not be the last, but we believed it was wiser for governments to take a series of more limited steps more quickly. Is this an approach that can work in certain areas for technology regulation?

., 152, 157 Kirkpatrick, David, 192 Kissinger, Henry, 250, 259 Kistler-Ritso, Olga, 90–92, 317n2 Klobuchar, Amy, 176 Klynge, Casper, 109, 112, 123, 127, 128, 130 Kollar-Kotelly, Colleen, 335n7 Koontz, Elbert, 152–55, 167 Kubrick, Stanley, 328n12 Kushner, Jared, 173, 280 L Lagarde, Christine, 97 landmines, 127, 320n21 language translation, 197, 236, 239–40, 261 Law Enforcement and National Security (LENS), 24–26 Lay-Flurrie, Jenny, 334–35n1 Lazowska, Ed, 178, 325n11 LEADS Act (Law Enforcement Access to Data Stored Abroad), 314n9 League of Nations, 129 Lee, Kai-Fu, 269–70, 272, 273, 276 legal work, impact of technology on, 236, 237 Leibowitz, Jon, 29 LENS (Law Enforcement and National Security), 24–26 Leopard, HMS, 313n5 libraries, ancient, xiii, 309n1 Liddell, Chris, 173 Lincoln, Abraham, 10 LinkedIn, 100, 103, 126, 181, 325n18 Linux, 277 Long, Ronald, 43 LTE, 158, 162 M Macron, Emmanuel, 81, 123–24, 127 Mactaggart, Alastair, 144–49 Madison, James, 7 Maersk, 70–71 Mahabharata, The, 205 malware, 63, 68 see also cyberattacks Mamer, Louisan, 164–66 Manhattan Project, 171 Map to Prosperity, 157 Marino, Tom, 314n9 Markle Foundation, 325n18 Martin, “Smokey Joe,” 231 Martinon, David, 123 Mattis, James, 67 May, Theresa, 132, 238–39 Mayer, Marissa, 18 McCaskill, Claire, 83 McFaul, Michael, 117 McGuinness, Paddy, 56 McKinsey Global Institute, 241 Mercedes-Benz, 240, 326n31 Merck, 70 Meri, Lennart, 91 Merkel, Angela, 239 Mexico, 124 Microsoft: AccountGuard program of, 84, 85 AI ethics issues and, 199–201, 205, 218, 222, 223, 229–30, 294 AI for Earth team of, 288 antitrust cases against, xx, 12, 29, 96, 143, 148, 175–77, 291, 310n6, 335n7 Azure, 126, 140 Bing, 100, 104, 126, 140 board of directors of, 335n7 Brazil and, 48–49, 53 China and, 65, 250–52, 254–55, 259–61 Christchurch Call to Action and, 125–27 cloud commitments of, 30, 33, 292 Code.org and, 179 Cyber Defense Operations Center of, 111 Cybersecurity Tech Accord and, 119–21 data centers of, xiv–xix, 5, 14–15, 29–30, 34, 42–46, 48–56 Digital Crimes Unit (DCU) of, 78–81, 85, 111, 112, 316n2 ElectionGuard system of, 87 engineering structure at, 142 facial-recognition technology of, 213–15, 222–24, 226–27, 229–30 and FBI’s request for customer data, 31 Friday meetings of, 62 General Data Protection Regulation and, 140–43, 146–47, 294 Giant Company Software and, xviii GitHub, 100, 277 Google and, 12 government sued by, 12–13, 15, 16, 18–19, 33, 35–37, 83 housing initiative of, 186–90, 327n40 Immigration and Customs Enforcement and, 214–15 Ireland and, 42–45, 49–56 Law Enforcement and National Security (LENS) team of, 24–26 LinkedIn, 100, 103, 126, 181, 325n18 Muslim travel ban and, 173 NSA and, 1–4, 8, 13–14 Office, 84, 140, 253, 254 OneDrive, 126 open-source code and, 277–78 Patch Tuesdays of, 74 Philanthropies, 178–80 privacy legislation advocated by, 132, 146–48, 321n3 Research (MSR), 170–71, 194–95, 197, 237, 275, 328n12 Research Asia (MSRA), 255 Rural Airband Initiative of, 160–62, 166–67 Russia’s message to, 86 school voucher program of, 177 security feature development in, 111 Senior Leadership Team (SLT), 15, 62, 141, 221, 274, 307 Strontium and, 78–81, 84–85 Tay, 255–56 TechFest, 170–71 Technology Education and Literacy in Schools (TEALS) program of, 178–79 TechSpark program of, 233, 331n8 Threat Intelligence Center (MSTIC) of, 63, 78–79, 84 Windows, xx, 12, 29, 63–65, 203, 212, 253, 270 Word, 50, 264 Xbox, 72, 100, 126, 140, 160 military weapons, 117–18, 127, 202–6, 264, 329n29 artificial intelligence in, 202–6, 215, 216 nuclear, 116–17, 210 minimum viable product, 225–26, 296 Minority Report, 211–12 missiles, 66–67 MLATs (mutual legal assistance treaties), 47–49, 52 Mobility Fund, 158, 323n17 Moglen, Eben, 314n8 Mook, Robby, 279 Morrow, Frank, 125 MSTIC (Microsoft Threat Intelligence Center), 63, 78–79, 84 Munich Security Conference, 96–97, 208 Muslims, 288, 335n2 Christchurch mosque shootings, 99–100, 102, 125–26 travel ban on, 173 Myerson, Terry, 65 Myhrvold, Nathan, 194–95 Mylett, Steve, 187 N Nadella, Satya, 28–29, 62, 65, 66, 73, 115, 126–27, 141–43, 172–74, 186–88, 199, 200, 204–5, 218, 219, 221, 239–40, 252, 274, 276, 277, 289, 292 National Australia Bank, 213 National Federation for the Blind, 334n1 National Geographic Society, 161 National Health Service, 62 National Human Genome Research Institute, 213 National Institute of Standards and Technology, 221–22 nationalism, 112, 300–301 National Press Club, 29 national security: cybersecurity and, 110–11 individual freedoms vs., 9–10 National Security Council, 26 NATO, 82, 124, 204 Cooperative Cyber Defense Centre of Excellence, 92, 320n19 Nazi Germany, 39, 41, 61, 90, 129 negotiations, 175 Netflix, 16, 335n7 network effects, 270 neural networks, 196–97 New Deal, 164 NewsGuard, 104–5 New York, N.Y., 245 fire horses in, 231–32, 245, 247 New York Times, 63, 65–67, 99, 118, 219–20 New York University, 333n16 New Zealand, 75, 124, 125–27, 130 Christchurch mosque shootings in, 99–100, 102, 125–26 NGOs (nongovernmental organizations), 127, 128, 208, 302, 303 Nimitz, USS, 203 9/11 terrorist attacks, 8–9, 71, 72 1984 (Orwell), 227 Nisbett, Richard, 258, 261–62 North Korea, 63, 64, 67–69, 71–74 missile launch of, 67 Noski, Chuck, 335n7 NotPetya, 69–72 NSA (National Security Agency), 3, 8–9, 13, 15, 73 Google and, 2, 4, 13 Microsoft and, 1–4, 8, 13–14 PRISM program of, 1–4, 8, 9, 310–11n4 Snowden and, 4–5, 8, 9, 13–14, 17–19, 25, 41 Verizon and, 2–3 WannaCry and, 63–69, 71–74 and White House meeting with tech leaders, 16–19 nuclear power, 143–44 nuclear weapons, 116–17, 210 O Obama, Barack, 15–16, 26, 53, 83, 131, 174, 179–80, 278, 279, 284 meeting with tech leaders called by, 16–19 Office, 84, 140, 253, 254 Office of Personnel, US (OPM), 251, 263 O’Mara, Margaret, 297, 335n9 OneDrive, 126 Open Data Initiative, 285 Oracle, 120 Orwell, George, 227 O’Sullivan, Kate, 119–20 Otis, James, Jr., 6–7, 311nn14–15 Ottawa Convention, 320n21 Oxford University, 95 P Paglia, Vincenzo, 208–9 Pai, Ajit, 153–54 Pakistan, 21–22 Palais des Nations, 129 Paltalk, 2 Panke, Helmut, 335n7 paralegals, 236 Paris, terrorist attacks in, 26–28 Paris Call for Trust and Security in Cyberspace, 123–25, 127, 128, 300, 301 Paris Peace Forum, 123 Parscale, Brad, 280, 281 Partnership on AI, 200–201 Partovi, Hadi, 179 PAWS (Protection Assistant for Wildlife Security), 288 PBS NewsHour, 85–86 Pearl, Daniel, 21–22 Pearl Harbor attack, 10 Pelosi, Nancy, 57 Penn, Mark, 312–13n12 Pettet, Zellmer, 242–44 Petya, 69 Pew Research Center, 155–56, 323n9 phishing, 79, 83 Pickard, Vincent, 101 Pincus, Mark, 17–18 poachers, 288 Posner, Michael, 333n16 post office, 7, 192 Prague Spring, 40–41 presidential election of 2016, 81, 82, 139, 144, 157, 172, 189, 278–82, 331n8 Preska, Loretta, 314n10 Priebus, Reince, 279–80, 282 Princeton University, 13, 174, 218, 288, 314n10, 335n2 printing press, xiii, 209 PRISM (Planning Tool for Resource Integration, Synchronization, and Management), 1–4, 8, 9, 310–11n4 Pritzker, Penny, 136, 137, 250 privacy, 5–6, 21, 22, 30, 39–59, 131–49, 193, 229, 289, 300, 301 artificial intelligence and, 171, 199–200, 207 California Consumer Privacy Act, 147–48 data sharing and, 282–84 differential privacy, 282–83 Facebook and, 135, 144 facial recognition and, see facial recognition Fourth Amendment and, 7–8, 14, 15, 26 General Data Protection Regulation and, 131–32, 139–43, 146–49 legislation on, 132, 146–48, 321n3 Privacy Shield and, 137–38, 300 public attitudes about, 143 public safety and, 21–37, 222 reasonable expectation of, 7–8, 34 right to, 330n24 Safe Harbor and, 133–34 search warrants and, see search warrants social media and, 145 Wilkes and, 5–6, 23 see also surveillance Privacy Shield, 137–38, 300 Private AI, 171 Progressive movement, 245 ProPublica, 197–98 Proposition 13, 146 Purdy, Abraham, 232 Q Quincy, Wash., xiv–xv, 5, 34, 42 R racial minorities, 184–85 radio, 95, 100–102, 106, 159 Radio Free Europe, 107 radiologists, 236–37 railroads, 110, 299–300 Railroads and American Law (Ely), 110 ransomware, 68 WannaCry, 63–69, 71–74, 122, 294, 300, 301 Rashid, Rick, 237, 238 Reagan, Nancy, 116 Reagan, Ronald, 23, 116, 146 Red Cross, 113, 118, 127, 320n16 Reddit, 99 Redmond, Wash., 187 Reform Government Surveillance, 16–17 regulation, 102, 143, 144, 192, 206–7, 219, 224, 266, 295–98, 300, 301, 303 of artificial intelligence, 192, 296 China and, 258 of facial recognition, 221–22, 224, 225, 228, 296 of governments, 301–2 of railroads, 299 of social media, 98, 100, 102–4, 144 Republic, Wash., 151–52, 155, 167 Republican National Committee (RNC), 279–82 Republicans, 82, 106, 172, 278–80 International Republican Institute, 84 Republic Brewing Company, 167 restaurants, fast-food, 235, 241 Ries, Eric, 225 Riley v.


pages: 52 words: 14,333

Growth Hacker Marketing: A Primer on the Future of PR, Marketing, and Advertising by Ryan Holiday

Airbnb, iterative process, Kickstarter, Lean Startup, Marc Andreessen, market design, minimum viable product, Paul Graham, pets.com, post-work, Silicon Valley, slashdot, Steve Wozniak, Travis Kalanick

Within eighteen months, the founders sold Instagram for $1 billion. Both of these companies spent a long time trying new iterations until they had achieved what growth hackers call Product Market Fit (PMF). That is, the product and its customers are in perfect sync with each other. Eric Ries, author of The Lean Startup, explains that the best way to get to Product Market Fit is by starting with a “minimum viable product” and improving it based on feedback—as opposed to what most of us do, which is to try to launch with what we think is our final product. Today, it is the marketer’s job as much as anyone else’s to make sure Product Market Fit happens. Rather than waiting for it to happen magically, marketers need to contribute to this process. Isolating who your customers are, figuring out their needs, designing a product that will blow their minds—these are marketing decisions, not just development and design choices.


pages: 252 words: 78,780

Lab Rats: How Silicon Valley Made Work Miserable for the Rest of Us by Dan Lyons

Airbnb, Amazon Web Services, Apple II, augmented reality, autonomous vehicles, basic income, bitcoin, blockchain, business process, call centre, Clayton Christensen, clean water, collective bargaining, corporate governance, corporate social responsibility, creative destruction, cryptocurrency, David Heinemeier Hansson, Donald Trump, Elon Musk, Ethereum, ethereum blockchain, full employment, future of work, gig economy, Gordon Gekko, greed is good, hiring and firing, housing crisis, income inequality, informal economy, Jeff Bezos, job automation, job satisfaction, job-hopping, John Gruber, Joseph Schumpeter, Kevin Kelly, knowledge worker, Lean Startup, loose coupling, Lyft, Marc Andreessen, Mark Zuckerberg, McMansion, Menlo Park, Milgram experiment, minimum viable product, Mitch Kapor, move fast and break things, move fast and break things, new economy, Panopticon Jeremy Bentham, Paul Graham, paypal mafia, Peter Thiel, plutocrats, Plutocrats, precariat, RAND corporation, remote working, RFID, ride hailing / ride sharing, Ronald Reagan, Rubik’s Cube, Ruby on Rails, Sam Altman, Sand Hill Road, self-driving car, shareholder value, Silicon Valley, Silicon Valley startup, six sigma, Skype, Social Responsibility of Business Is to Increase Its Profits, software is eating the world, Stanford prison experiment, stem cell, Steve Jobs, Steve Wozniak, Stewart Brand, TaskRabbit, telemarketer, Tesla Model S, Thomas Davenport, Tony Hsieh, Toyota Production System, traveling salesman, Travis Kalanick, tulip mania, Uber and Lyft, Uber for X, uber lyft, universal basic income, web application, Whole Earth Catalog, Y Combinator, young professional

These served as the basis of his 2011 book, The Lean Startup, which became a huge bestseller. The second Internet boom, also known as Web 2.0, was starting to take off, and suddenly people were launching start-ups all over the place. But most of these people had never run companies before. Some had never even had jobs before. They had no idea what they were doing. Ries provided them with a road map. Like Agile, Lean Startup has its own lingo and acronyms, like “minimum viable product” (MVP), “leap of faith assumptions” (LOFA), and a process called “Build-Measure-Learn.” Just as Agile evolved from being a few ideas about how to write software into a magical methodology that can be used for almost anything, including transforming entire organizational cultures, so Lean Startup has been embraced by disciples who have imbued the methodology with near-supernatural powers.

For half a century, bankers and venture capitalists have been told that they are the only ones who matter, that companies exist solely to deliver the biggest possible return to them. That’s the gospel of shareholder capitalism, the doctrine created by Milton Friedman. In the second dotcom boom that doctrine has been pushed to new extremes by companies that have adopted a grow-at-all-costs, investors-take-all business model. It has been great for VCs and oligarchs, but everyone else gets shortchanged: CUSTOMERS get “minimum viable products” (translation: shoddy stuff) from companies whose mantra is “move fast and break things.” Internet companies spy on customers, invade their privacy, and sell their data. For companies like Facebook, the users are the product. We exist only to be packaged up and sold to advertisers. COMMUNITIES should benefit when they are home to the headquarters of wealthy corporations, but instead communities get shortchanged as tech giants dodge taxes, finding ways to stash their enormous profits overseas in offshore accounts.


pages: 292 words: 85,151

Exponential Organizations: Why New Organizations Are Ten Times Better, Faster, and Cheaper Than Yours (And What to Do About It) by Salim Ismail, Yuri van Geest

23andMe, 3D printing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, Ben Horowitz, bioinformatics, bitcoin, Black Swan, blockchain, Burning Man, business intelligence, business process, call centre, chief data officer, Chris Wanstrath, Clayton Christensen, clean water, cloud computing, cognitive bias, collaborative consumption, collaborative economy, commoditize, corporate social responsibility, cross-subsidies, crowdsourcing, cryptocurrency, dark matter, Dean Kamen, dematerialisation, discounted cash flows, disruptive innovation, distributed ledger, Edward Snowden, Elon Musk, en.wikipedia.org, Ethereum, ethereum blockchain, game design, Google Glasses, Google Hangouts, Google X / Alphabet X, gravity well, hiring and firing, Hyperloop, industrial robot, Innovator's Dilemma, intangible asset, Internet of things, Iridium satellite, Isaac Newton, Jeff Bezos, Joi Ito, Kevin Kelly, Kickstarter, knowledge worker, Kodak vs Instagram, Law of Accelerating Returns, Lean Startup, life extension, lifelogging, loose coupling, loss aversion, low earth orbit, Lyft, Marc Andreessen, Mark Zuckerberg, market design, means of production, minimum viable product, natural language processing, Netflix Prize, NetJets, Network effects, new economy, Oculus Rift, offshore financial centre, PageRank, pattern recognition, Paul Graham, paypal mafia, peer-to-peer, peer-to-peer model, Peter H. Diamandis: Planetary Resources, Peter Thiel, prediction markets, profit motive, publish or perish, Ray Kurzweil, recommendation engine, RFID, ride hailing / ride sharing, risk tolerance, Ronald Coase, Second Machine Age, self-driving car, sharing economy, Silicon Valley, skunkworks, Skype, smart contracts, Snapchat, social software, software is eating the world, speech recognition, stealth mode startup, Stephen Hawking, Steve Jobs, subscription business, supply-chain management, TaskRabbit, telepresence, telepresence robot, Tony Hsieh, transaction costs, Travis Kalanick, Tyler Cowen: Great Stagnation, uber lyft, urban planning, WikiLeaks, winner-take-all economy, X Prize, Y Combinator, zero-sum game

These new business models have, potentially, eight new value drivers to generate revenues, differentiate them from competitors, and allow for a long-term strategy to align with adjacent ExOs in a particular industry to fully disrupt incumbents, rather than just one individual good or service offered. Talk about a powerful double-disruption scenario. Step 7: Build the MVP A key output of the Business Model Canvas is what’s called the Minimum Viable Product, or MVP. The MVP is a kind of applied experiment to determine the simplest product that will allow the team to go to market and see how users respond (as well as help find investors for the next round of development). Feedback loops can then rapidly iterate the product to optimize it and drive the feature roadmap of its development. Learning, testing assumptions, pivoting and iterating are key in this step.

As David Butler, Coke’s vice president of innovation and entrepreneurship, said recently, “That has become our vision—to make it easier for starters to be scalers and scalers to be starters.” To deliver on this startup philosophy, Coca-Cola is working with Steve Blank and Eric Ries to implement their Lean Startup philosophy across the entire corporation [Experimentation]. Multiple small efforts, each with an MVP (Minimum Viable Product) will iterate assumptions and make this approach available to anyone in the company via an initiative called Open Entrepreneurship. The effects of Experimentation have been immediate: Butler reports that due to the initiative, Coke’s sustainability goals have already improved by 20 percent. Coca-Cola also has become a founding member of Singularity University Labs, where disruptive teams can, away from the mother ship [Autonomy, Leveraged Assets], work with startups on next-generation products and services.


We Are the Nerds: The Birth and Tumultuous Life of Reddit, the Internet's Culture Laboratory by Christine Lagorio-Chafkin

4chan, Airbnb, Amazon Web Services, Bernie Sanders, big-box store, bitcoin, blockchain, Brewster Kahle, Burning Man, crowdsourcing, cryptocurrency, David Heinemeier Hansson, Donald Trump, East Village, game design, Golden Gate Park, hiring and firing, Internet Archive, Jacob Appelbaum, Jeff Bezos, jimmy wales, Joi Ito, Justin.tv, Kickstarter, Lean Startup, Lyft, Marc Andreessen, Mark Zuckerberg, medical residency, minimum viable product, natural language processing, Paul Buchheit, Paul Graham, paypal mafia, Peter Thiel, plutocrats, Plutocrats, QR code, recommendation engine, RFID, rolodex, Ruby on Rails, Sam Altman, Sand Hill Road, Saturday Night Live, self-driving car, semantic web, side project, Silicon Valley, Silicon Valley ideology, Silicon Valley startup, slashdot, Snapchat, social web, South of Market, San Francisco, Startup school, Stephen Hawking, Steve Jobs, Steve Wozniak, technoutopianism, uber lyft, web application, WikiLeaks, Y Combinator

It entails using existing technologies to iterate fast, initially ignoring certain “best practices” commonly associated with running a functional company, such as scalability, internationalization, and heavy-duty security. He advised the founders, instead of being thorough, to release early versions of their work that were lightweight enough to evolve. Graham later wrote on his blog that “best practices…interfere with the primary function of software in a startup: to be a vehicle for experimenting with its own design.” Later, he would clarify this idea of what would soon become known as “minimum viable product.” He said, “The sooner you get it out there, users can start telling you what they want instead of you guessing. If you sit down and think of the perfect implementation, the problem is you’re thinking of the perfect implementation of the wrong thing.” Graham’s philosophy is counterintuitive for perfectionists, compliance junkies, or straight-A types who thrive within rigorous institutions.

Sure enough, when Graham typed www.reddit.com into his browser, he found an actual website with a blue toolbar at the top that read “Reddit” in white, alongside four navigation links, which read “profile,” “browse,” “submit,” and “help.” A handful of headlines and hotlinks dribbled down the white page below. It was simple, programmed to display just a default sans serif font, which materialized as Verdana on most browsers. There were no flourishes. To Graham, that was perfect, a truly minimum viable product, live, online. Graham was satisfied to know Huffman and Ohanian could do it. It was immediately apparent that they hadn’t committed the other sin he’d mentioned, waiting to be perfect. The links were just hyperlinked headlines, though each provided some context: They displayed the user who’d submitted them—at this point either Ohanian or Huffman. More important, perhaps, was that the site had an intangible vibrancy to it; built in were several visual cues to recent activity that had happened on the site, including time of posting, a ranking system, and small “hotness” meters below each link.

For Huffman, this was both a rush and a chore. The site crashed frequently, and the maintenance of posting new articles and rebooting the server exhausted a lot of his day-to-day energy. Reddit had been built and launched quickly—so quickly that both Huffman and Graham knew the site would soon outgrow some of its original programming infrastructure. This fact, now daunting, had been by design: Launch fast, with a minimum viable product—and save perfection and scalability for later. In startup vernacular, this is known as incurring “technical debt.” And Reddit’s hulking loan was coming due. Graham urged Huffman and Ohanian to have dinner with Chris Slowe, their batchmate from Y Combinator. Slowe spent his days writing software and attempting to freeze light, and looked the part, with his T-shirts tucked into his high-waisted, belted light-wash jeans.


pages: 374 words: 89,725

A More Beautiful Question: The Power of Inquiry to Spark Breakthrough Ideas by Warren Berger

Airbnb, carbon footprint, Clayton Christensen, clean water, disruptive innovation, fear of failure, Google X / Alphabet X, Isaac Newton, Jeff Bezos, jimmy wales, Joi Ito, Kickstarter, late fees, Lean Startup, Mark Zuckerberg, minimum viable product, new economy, Paul Graham, Peter Thiel, Ray Kurzweil, self-driving car, sharing economy, side project, Silicon Valley, Silicon Valley startup, Stanford marshmallow experiment, Stephen Hawking, Steve Jobs, Steven Levy, Thomas L Friedman, Toyota Production System, Watson beat the top human players on Jeopardy!, Y Combinator, Zipcar

The rapid test-and-learn approach has caught on throughout the entrepreneurial world, fueled in part by Eric Ries’s Lean Startup phenomenon. Ries maintains that entrepreneurs, existing companies—or anyone trying to create something new and innovative—must find ways to constantly experiment and quickly put new ideas out into the world for public consumption, rather than devoting extensive resources and time to trying to perfect ideas behind closed doors. Ries urges businesses to focus on developing what he calls “minimum viable products”—in effect, quick, imperfect test versions of ideas that can be put out into the marketplace in order to learn what works and what doesn’t. But this is more than a business strategy. The basic principles of the test-and-learn approach apply in almost any situation where people are trying to solve problems in dynamic, uncertain conditions. How do you make a hard-boiled egg’s shell disappear?

Ries says you start with the acknowledgment that “we are operating amid all this uncertainty—and that the purpose of building a product or doing any other activity is to create an experiment to reduce that uncertainty.” This means that instead of asking What will we do? or What will we build? the emphasis should be on What will we learn? “And then you work backwards to the simplest possible thing—the minimum viable product—that can get you the learning,” he says. What is your tennis ball? (and other entrepreneurial questions)20 Drew Houston, founder of the online storage service Dropbox, thinks all would-be entrepreneurs should try to answer the above question. “The most successful people are obsessed with solving an important problem, something that matters to them,” according to Houston. “They remind me of a dog chasing a tennis ball.”


pages: 330 words: 91,805

Peers Inc: How People and Platforms Are Inventing the Collaborative Economy and Reinventing Capitalism by Robin Chase

Airbnb, Amazon Web Services, Andy Kessler, banking crisis, barriers to entry, basic income, Benevolent Dictator For Life (BDFL), bitcoin, blockchain, Burning Man, business climate, call centre, car-free, cloud computing, collaborative consumption, collaborative economy, collective bargaining, commoditize, congestion charging, creative destruction, crowdsourcing, cryptocurrency, decarbonisation, different worldview, do-ocracy, don't be evil, Elon Musk, en.wikipedia.org, Ethereum, ethereum blockchain, Ferguson, Missouri, Firefox, frictionless, Gini coefficient, hive mind, income inequality, index fund, informal economy, Intergovernmental Panel on Climate Change (IPCC), Internet of things, Jane Jacobs, Jeff Bezos, jimmy wales, job satisfaction, Kickstarter, Lean Startup, Lyft, means of production, megacity, Minecraft, minimum viable product, Network effects, new economy, Oculus Rift, openstreetmap, optical character recognition, pattern recognition, peer-to-peer, peer-to-peer lending, peer-to-peer model, Richard Stallman, ride hailing / ride sharing, Ronald Coase, Ronald Reagan, Satoshi Nakamoto, Search for Extraterrestrial Intelligence, self-driving car, shareholder value, sharing economy, Silicon Valley, six sigma, Skype, smart cities, smart grid, Snapchat, sovereign wealth fund, Steve Crocker, Steve Jobs, Steven Levy, TaskRabbit, The Death and Life of Great American Cities, The Future of Employment, The Nature of the Firm, transaction costs, Turing test, turn-by-turn navigation, Uber and Lyft, uber lyft, Zipcar

Nor did they want to put in street addresses (even though the auto-complete made it so easy). They just wanted to put in the city. Nor would they put in a specific time (such as 3:30 p.m.), or be willing to tell us how many seats they had in their car. How the heck did people expect to offer a ride or find a ride with so little information? My engineers spent the next months undoing what we had just done—simplifying, simplifying, simplifying. Today we talk about building a minimum viable product. And with Zipcar, this is what we had effectively done because of our lack of money, time, and knowledge of the sector. With GoLoco, I was better financed and knew what I was doing—or so I thought. Wrong! It’s hard not to overbuild your starting platform. You’ve given it so much thought! You’ve spent so much time doing surveys and focus groups! And even when you are trying to build what in your heart you believe is the absolute bare minimum to reach your audience, it is highly likely that you are still overbuilding.

This is when we start up the steep-growth part of the curve. And here I leave the narrative of the failed U.S.-based GoLoco and begin telling the story of Frédéric Mazzella, my friend and founder of the successful French ridesharing company BlaBlaCar, who drove competently through phase two. Four long years passed between Fred’s first vision and the development of a platform that could finally sing. He personally programmed the initial minimum viable product but knew that he would soon need to hire professional engineers. He too worked through the reality of sloppy peer production and learned how to improve the quality of peer-to-peer offerings. He experimented with several business models. And he had some very good luck (French rail strikes in 2007, and the 2010 eruption of the Icelandic volcano Eyjafjallajökull that shut down European air transport for eight days, stranding millions of passengers) just when he needed it; he was also well prepared to take advantage of that and make the service known.


pages: 561 words: 157,589

WTF?: What's the Future and Why It's Up to Us by Tim O'Reilly

4chan, Affordable Care Act / Obamacare, Airbnb, Alvin Roth, Amazon Mechanical Turk, Amazon Web Services, artificial general intelligence, augmented reality, autonomous vehicles, barriers to entry, basic income, Bernie Madoff, Bernie Sanders, Bill Joy: nanobots, bitcoin, blockchain, Bretton Woods, Brewster Kahle, British Empire, business process, call centre, Capital in the Twenty-First Century by Thomas Piketty, Captain Sullenberger Hudson, Chuck Templeton: OpenTable:, Clayton Christensen, clean water, cloud computing, cognitive dissonance, collateralized debt obligation, commoditize, computer vision, corporate governance, corporate raider, creative destruction, crowdsourcing, Danny Hillis, data acquisition, deskilling, DevOps, Donald Davies, Donald Trump, Elon Musk, en.wikipedia.org, Erik Brynjolfsson, Filter Bubble, Firefox, Flash crash, full employment, future of work, George Akerlof, gig economy, glass ceiling, Google Glasses, Gordon Gekko, gravity well, greed is good, Guido van Rossum, High speed trading, hiring and firing, Home mortgage interest deduction, Hyperloop, income inequality, index fund, informal economy, information asymmetry, Internet Archive, Internet of things, invention of movable type, invisible hand, iterative process, Jaron Lanier, Jeff Bezos, jitney, job automation, job satisfaction, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Kevin Kelly, Khan Academy, Kickstarter, knowledge worker, Kodak vs Instagram, Lao Tzu, Larry Wall, Lean Startup, Leonard Kleinrock, Lyft, Marc Andreessen, Mark Zuckerberg, market fundamentalism, Marshall McLuhan, McMansion, microbiome, microservices, minimum viable product, mortgage tax deduction, move fast and break things, move fast and break things, Network effects, new economy, Nicholas Carr, obamacare, Oculus Rift, packet switching, PageRank, pattern recognition, Paul Buchheit, peer-to-peer, peer-to-peer model, Ponzi scheme, race to the bottom, Ralph Nader, randomized controlled trial, RFC: Request For Comment, Richard Feynman, Richard Stallman, ride hailing / ride sharing, Robert Gordon, Robert Metcalfe, Ronald Coase, Sam Altman, school choice, Second Machine Age, secular stagnation, self-driving car, SETI@home, shareholder value, Silicon Valley, Silicon Valley startup, skunkworks, Skype, smart contracts, Snapchat, Social Responsibility of Business Is to Increase Its Profits, social web, software as a service, software patent, spectrum auction, speech recognition, Stephen Hawking, Steve Ballmer, Steve Jobs, Steven Levy, Stewart Brand, strong AI, TaskRabbit, telepresence, the built environment, The Future of Employment, the map is not the territory, The Nature of the Firm, The Rise and Fall of American Growth, The Wealth of Nations by Adam Smith, Thomas Davenport, transaction costs, transcontinental railway, transportation-network company, Travis Kalanick, trickle-down economics, Uber and Lyft, Uber for X, uber lyft, ubercab, universal basic income, US Airways Flight 1549, VA Linux, Watson beat the top human players on Jeopardy!, We are the 99%, web application, Whole Earth Catalog, winner-take-all economy, women in the workforce, Y Combinator, yellow journalism, zero-sum game, Zipcar

Bart Custers, Toon Calders, Bart Schermer, and Tal Zarsky (New York: Springer, 2012), 306. 182 a perfect marketplace: Adam Cohen, “‘The Perfect Store,’” New York Times, June 16, 2002, http://www.nytimes.com/2002/06/16/books/chapters/the-perfect-store.html. 182 nothing was known about the sellers: Paul Resnick and Richard Zeckhauser, “Trust Among Strangers in Internet Transactions: Empirical Analysis of eBay’s Reputation System,” draft of February 5, 2001, version for review by NBER workshop participants, http://www.presnick. people.si.umich.edu/papers/ebay NBER/RZNBERBodegaBay.pdf. 183 “the apps and algorithms provide a filter”: David Lang, “The Life-Changing Magic of Small Amounts of Money,” Medium, unpublished post retrieved April 5, 2017, https://medium.com/@davidtlang/cacb7277ee9f. 184 “the multitude and promiscuous use of coaches”: Steven Hill, “Our Streets as a Public Utility: How UBER Could Be Part of the Solution,” Medium, September 2, 2015, https://medium.com/the-wtf-economy/our-streets-as-a-public-utility-how-uber-could-be-part-of-the-solution-65772bdf5dcf. 184 “cried out for public control over the taxi industry”: Steven Hill, “Rethinking the Uber vs. Taxi Battle,” Globalist, September 27, 2015, https://www.theglobalist.com/uber-taxi-battle-commercial-transport/. 185 “The entire transaction”: Varian, “Beyond Big Data,” 9. 186 “maximum amount of validated learning about customers”: Eric Ries, “Minimum Viable Product: A Guide,” Startup Lessons Learned, August 3, 2009, http://www.startuplessonslearned.com/2009 /08/minimum-viable-product-guide.html. 186 Feedback loops are tight: For an excellent account of this process, see Chris Anderson, “Closing the Loop,” Edge, retrieved March 31, 2017, https://www.edge.org/conversation/chris_anderson-closing-the-loop. 187 “500 pages of untested assumptions”: Tom Loosemore, “Government as a Platform: How New Foundations Can Support Natively Digital Public Services,” presented at the Code for America Summit in San Francisco, September 30–October 2, 2015, https://www.youtube.com/watch?

In Silicon Valley, every new app or service starts out as an experiment. From the very first day a company is funded by venture capitalists, or launches without funding, its success is dependent on achieving key metrics such as user adoption, usage, or engagement. Because the service is online, this feedback comes in near-real time. In the language of Eric Ries’s popular Lean Startup methodology, the first version is referred to as “minimum viable product (MVP),” defined as “that version of a new product which allows a team to collect the maximum amount of validated learning about customers with the least effort.” The goal of every entrepreneur is to grow that MVP incrementally till it finds “product-market fit,” resulting in explosive growth. This mindset is taught to every entrepreneur. Once an app or service is launched, new features are added and tested incrementally.


pages: 359 words: 96,019

How to Turn Down a Billion Dollars: The Snapchat Story by Billy Gallagher

Airbnb, Albert Einstein, Amazon Web Services, Apple's 1984 Super Bowl advert, augmented reality, Bernie Sanders, Black Swan, citizen journalism, Clayton Christensen, computer vision, disruptive innovation, Donald Trump, El Camino Real, Elon Musk, Frank Gehry, Google Glasses, Hyperloop, information asymmetry, Jeff Bezos, Justin.tv, Lean Startup, Long Term Capital Management, Mark Zuckerberg, Menlo Park, minimum viable product, Nelson Mandela, Oculus Rift, paypal mafia, Peter Thiel, QR code, Sand Hill Road, Saturday Night Live, side project, Silicon Valley, Silicon Valley startup, Snapchat, social graph, sorting algorithm, speech recognition, stealth mode startup, Steve Jobs, too big to fail, Y Combinator, young professional

Lucas never wanted to talk to users or customers—he felt he should decide what was best for users and deliver them an amazing, innovative product that was a massive improvement over their current wallets. But hyping Clinkle to the press was one of Lucas’s fatal errors, as he put inordinate pressure on the young company. Evan and Bobby shipped a minimum viable product in Picaboo—that is, the lowest-quality product that’s still acceptable to early users, who will provide feedback to improve the product. It took Evan and Bobby years to add in all the features they wanted beyond the initial disappearing picture-sharing app only for iPhones. They were able to see how people used the app and iterate quickly. More than anything, what killed Clinkle was Lucas’s refusal to ship a minimum viable product. Lucas killed Clinkle as much as Evan birthed Snapchat. Clinkle got bogged down working through regulations and trying to bring a banking partner on board to legally process users’ money.


pages: 344 words: 96,020

Hacking Growth: How Today's Fastest-Growing Companies Drive Breakout Success by Sean Ellis, Morgan Brown

Airbnb, Amazon Web Services, barriers to entry, Ben Horowitz, bounce rate, business intelligence, business process, correlation does not imply causation, crowdsourcing, DevOps, disruptive innovation, Elon Musk, game design, Google Glasses, Internet of things, inventory management, iterative process, Jeff Bezos, Khan Academy, Kickstarter, Lean Startup, Lyft, Mark Zuckerberg, market design, minimum viable product, Network effects, Paul Graham, Peter Thiel, Ponzi scheme, recommendation engine, ride hailing / ride sharing, side project, Silicon Valley, Silicon Valley startup, Skype, Snapchat, software as a service, Steve Jobs, subscription business, Travis Kalanick, Uber and Lyft, Uber for X, uber lyft, working poor, Y Combinator, young professional

Building on these methods was natural for Sean and other start-up teams, because the companies that Sean advised and others that developed the method were stacked with great engineering talent familiar with the methods, and because the founders were inclined to apply a similar approach to customer growth as the engineers applied to their software and product development. Central to agile development is increasing the speed of development, working in short “sprints” of coding, and regularly testing and iterating on the product over time. The Lean Startup adopted the practice of rapid development and frequent testing, and added the practice of getting a minimum viable product out on the market and into the hands of actual users as soon as possible, to get real user feedback and establish a viable business. Growth hacking adopted the continuous cycle of improvement and the rapid iterative approach of both methods and applied them to customer and revenue growth. In the process, the growth hacking method broke down the traditional walls between marketing and engineering in order to discover novel methods of marketing that are built into the product itself, and can only be tapped with more technical know-how.

To my Mom, thank you for being an unfailing champion, even in times when I probably didn’t deserve it. Your never-ending love is a true gift. To my Dad, who has always driven me to expect more of myself and do the best I could, I am grateful to have your standard to live up to. And to my brother, Graeme, my best friend, thanks for a lifetime of friendship and memories. I love you all. —Morgan INTRODUCTION 1. Eric Ries, “How Dropbox Started as a Minimum Viable Product,” TechCrunch, October 19, 2011, techcrunch.com/2011/10/19/dropbox-minimal-viable-product/. 2. I’d then moved over to work on growth at LogMeIn, a service started by the Uproar founder that allowed users to access their files, email, and software from any computer in the world. We managed to turn the company into the market leader despite a massive marketing campaign waged by its main competitor, GoToMyPC.


pages: 410 words: 101,260

Originals: How Non-Conformists Move the World by Adam Grant

Albert Einstein, Apple's 1984 Super Bowl advert, availability heuristic, barriers to entry, business process, business process outsourcing, Cass Sunstein, clean water, cognitive dissonance, creative destruction, cuban missile crisis, Daniel Kahneman / Amos Tversky, Dean Kamen, double helix, Elon Musk, fear of failure, Firefox, George Santayana, Ignaz Semmelweis: hand washing, Jeff Bezos, job satisfaction, job-hopping, Joseph Schumpeter, Kickstarter, Lean Startup, Louis Pasteur, Mahatma Gandhi, Mark Zuckerberg, meta analysis, meta-analysis, minimum viable product, Nelson Mandela, Network effects, pattern recognition, Paul Graham, Peter Thiel, Ralph Waldo Emerson, random walk, risk tolerance, Rosa Parks, Saturday Night Live, Silicon Valley, Skype, Steve Jobs, Steve Wozniak, Steven Pinker, The Wisdom of Crowds, women in the workforce

creative careers were closed to women: Dean Keith Simonton, “Leaders of American Psychology, 1879–1967: Career Development, Creative Output, and Professional Achievement,” Journal of Personality and Social Psychology 62 (1992): 5–17. first ideas are often the most conventional: Brian J. Lucas and Loran F. Nordgren, “People Underestimate the Value of Persistence for Creative Performance,” Journal of Personality and Social Psychology 109 (2015): 232–43. Daily Show cocreator Lizz Winstead: Personal interview with Lizz Winstead, February 8, 2015. minimum viable product: Eric Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses (New York: Crown, 2011). false negatives are common: Charalampos Mainemelis, “Stealing Fire: Creative Deviance in the Evolution of New Ideas,” Academy of Management Review 35 (2010): 558–78; Aren Wilborn, “5 Hilarious Reasons Publishers Rejected Classic Best-Sellers,” Cracked, February 13, 2013, www.cracked.com/article_20285_5-hilarious-reasons-publishers-rejected-classic-best-sellers.html; Berg, “Balancing on the Creative High-Wire.”

Berg finds that on average, women make better creative forecasts than men: They’re more open to novel ideas, which leaves them less prone to false negatives. * The lesson here isn’t to ask customers what they want. As the famous line often attributed to Henry Ford goes: “If I had asked my customers what they wanted, they would have said a faster horse.” Instead, creators ought to build a car and see if customers will drive it. That means identifying a potential need, designing what The Lean Startup author Eric Ries calls a minimum viable product, testing different versions, and gathering feedback. * One category of circus acts was universally disliked by managers, test audiences, and creators: clowns. It’s not a coincidence that one Seinfeld episode revolves around clowns striking fear into the hearts of adults as well as children. * The personality trait most associated with an interest in the arts is called openness, the tendency to seek out novelty and variety in intellectual, aesthetic, and emotional pursuits.


pages: 559 words: 155,372

Chaos Monkeys: Obscene Fortune and Random Failure in Silicon Valley by Antonio Garcia Martinez

Airbnb, airport security, always be closing, Amazon Web Services, Burning Man, Celtic Tiger, centralized clearinghouse, cognitive dissonance, collective bargaining, corporate governance, Credit Default Swap, crowdsourcing, death of newspapers, disruptive innovation, drone strike, El Camino Real, Elon Musk, Emanuel Derman, financial independence, global supply chain, Goldman Sachs: Vampire Squid, hive mind, income inequality, information asymmetry, interest rate swap, intermodal, Jeff Bezos, Kickstarter, Malcom McLean invented shipping containers, Marc Andreessen, Mark Zuckerberg, Maui Hawaii, means of production, Menlo Park, minimum viable product, MITM: man-in-the-middle, move fast and break things, move fast and break things, Network effects, orbital mechanics / astrodynamics, Paul Graham, performance metric, Peter Thiel, Ponzi scheme, pre–internet, Ralph Waldo Emerson, random walk, Ruby on Rails, Sam Altman, Sand Hill Road, Scientific racism, second-price auction, self-driving car, Silicon Valley, Silicon Valley startup, Skype, Snapchat, social graph, social web, Socratic dialogue, source of truth, Steve Jobs, telemarketer, undersea cable, urban renewal, Y Combinator, zero-sum game, éminence grise

Somerset, 200 Mayer, Marissa, 78 Mayfield Capital, 154, 156, 159, 162–63 McAfee, 382 McCorvie, Ryan, 16–17 McDonald’s, 82, 450 McEachen, Matthew (“MRM”), 41, 46, 62–63 call to, 123 CEO position, 249 chaos monkey suggestion, 103 codebase and, 66, 73, 184, 234 coding, 146 comrade-in-arms, 91 as daredevil, 136–37 deal details and, 251–52 earnestness, 68 Facebook and, 223, 225 family, 135, 205 getting to know, 88 irritation, 102–3 lost with, 109 paying off mortgage, 494 as resourceful savior, 100–101 as steadfast, 67 McGarraugh, Charlie, 14–15 McLean, Malcom, 447 media publishers, 387 MediaMath, 390 Menlo Park, 84 bedroom community, 338 conferences, 119 headquarters, 469 moving to, 337 schools, 306 meritocracy, 74 Merkle, 384 mesothelioma, 81 Miami drug trade, 304 Michelangelo, 334 Microsoft Adchemy and, 153–54, 161–62 Atlas, 383, 453–55 calendar, 340 dogfooding, 43 monopolist, 286 program managers, 272 middle managers, 359 Miller, Arthur, 104 Miller, Frank, 434 Milton, John, 475 minimum viable product (MVP), 434 miracles, 51 misleading, offensive, or sexually inappropriate (MOSI), 310 Mixpanel, 62 mobile commerce, 484–89 mobile data, 382, 477, 484, 486 Mobile Marketing Association (MMA), 448 monetary value, 317–19 monetization bet, 4 data-per-pixel, 274 digital, 184 Facebook, 5, 209, 275, 278, 298, 318, 425, 444 folly, 361–72 Google, 186 growth, 141 influences, 9 savvy, 486–89 tug-of-war, 379 Twitter, 190 zero-sum game, 319 money fuck-you money, 102, 415–16 investors, 74 outside, 155 pre-money valuation, 212 seed, 96 of VCs, 174 Moore’s law, 25 MoPub, 476–77, 479–81 morality, 226, 256, 284 Morgenstern, Jared, 218 Morishige, Sara, 183 Morris, Robert Tappan, 60–61 Mortal Kombat 3, 178 Moscone, George, 181 Moskovitz, Dustin, 284 Motwani, Rajeev, 138 Museum of Natural History, 366 My Life as a Quant (Derman), 16 MySpace, 283–84 N00b, 269 Nanigans, 480–81 Narasin, Ben, 128–31, 143–44 NASDAQ, 405, 410 National Socialism, 356 native ad formats, 448–49 Neko, 482 Netflix, 83, 103, 328 Netscape Navigator, 286 Neustar, 384, 386 New Rich, 357 New York Times, 448, 486 New Zealand, 318 News Feed addictive, 482 ads, 482–84, 488, 492 click-through rates, 487 content, 309 creation, 2 distribution, 364 as magic real estate, 362 spamming users, 372 versions, 444 newspaper advertising, 36–37 Nielsen, 385 1984 (Orwell), 433 noncash valuation, 212 no-shop contract, 201 Nukala, Murthy crossing paths, 167–68 ego, 42–43 greed, 44 hazing by, 71 immigrant worker, 72 lecture from, 65–66 manipulative rage, 136 pep rally, 36 saying good-bye to, 73 self-preservation and, 162–63 tantrums, 45 as tyrant, 158 vindictiveness, 134 wooing by, 154 Obama, Barack, 299–300 obscenity, 268 OkCupid, 54 Olivan, Javier, 410 Omnicom, 437, 443 on-boarding, 260–67, 271 one shot, one kill motto, 298 one-on-one, 434, 457, 469 online dating, 54–55 Opel, John, 148 Open Graph, 280, 364 optimization, 276, 302 Oracle investors, 111 job at, 193 logo, 124 product shindigs, 181 recruiting, 70 Orkut, 379 Orrick, Herrington & Sutcliffe, 193, 203, 253 Orwell, George, 433 outside money, 155 Ovid, 316 Oxford English Dictionary, 80 Page, Larry, 112, 428, 431 Pahl, Sebastien, 119 Palantir, 272 Palihapitiya, Chamath, 265–66 Palo Alto bosom of, 116 climate, 123 downtown, 333, 338 East, 404 hub, 109 old, 112, 158 posh, 84 shuttles, 289, 339 Stanford grads, 63 Pamplona running of bulls, 106–7 Pan-Arabism, 356 Pansari, Ambar, 210 Paper, 283 Parse, 155 Patel, Satya, 249–50 Patton, 369 Payne, Jim, 476 PayPal, 78, 124 personal wealth, 415 personally identifiable information (PII), 395 photo sharing, 286, 490–91, 493 photo-comparison software, 310 Pickens, Slim, 102 Piepgrass, Brian, 374 pings, 188, 327, 422 PMMess, 347–51, 407, 409 poker playing, 396–97 polyandry, 483 Polybius, 172, 316, 336 Pong, 150 Ponzi scheme, 16 pornography, 167, 262, 268, 312, 314, 315 post-valuation, 212 pregnancy, 58–59 pre-money valuation, 212 La Presse, 37 privacy Facebook and, 316–29 Irish Data Privacy Audit, 278, 320–23 PRIZM Segments, 385 product development, 47, 94, 191, 220, 334, 370, 389 product managers (PMs) as Afghan warlords, 273 earning money, 302 everyday work, 294 Facebook, 4, 6–7, 10, 91, 97, 202, 210, 271–79 Google, 192 habitat, 341 high-value, 246 ideal, 219 information and, 295 internal and external forces and, 316–17 last on buck-passing chain, 327 managing, 276 stupidity, 313 tech companies, 272 tiebreaker role, 292 product marketing manager (PMM), 277, 366 product navigators, 272 production, 94 product-market fit, 175 programmatic media-buying technology, 38 Project Chorizo, 296 pseudorandomness, 75 publishers, 37, 39 Putnam, Chris, 284 Qualcomm, 70 quants, 16–18, 24, 29, 141, 207 Quick and Dirty Operating System (QDOS), 149 Rabkin, Mark, 3, 312, 389, 398, 435 Rajaram, Gokul, 8, 10 accepting offer from, 248 banter with, 472–73 as boss, 3 bribery, 471 FBX and, 435 go big or go home ethos, 300 in great debate, 459 influence, 202 insubordination toward, 465 interview with, 221–22 leadership, 309 loss of trust, 468 lot with, 373 management of, 434 middle manager, 463–64 one-on-one and, 469 as product leader, 276–77 riding by, 346 stripping of duties, 452 word of, 252 Ralston, Geoff, 93 Rapportive, 96–97, 106 real-time bidding (RTB), 40–41 real-time data synchronization, 38 Red Rock Coffee, 84 RedLaser, 51 Reesman, Ben, 308, 389, 399–400, 475, 477 relativity, 25 replicating portfolio, 247–48 retargeting, 9, 381, 395, 438, 461 return of advertising spend (ROAS), 81 revenue dashboards, 274–75, 295–96 Right Media, 37–38 The Road Warrior, 134 Roetter, Alex, 185, 190, 493–94 romantic liaisons, 55–56 Romper Stomper, 202 Rosenblum, Rich, 21–22 Rosenn, Itamar, 368 Rosenthal, Brian, 389, 390 Ross, Blake, 444 Rossetti, Dante Gabriel, 303 rounds, 156 routing system, 324 Rubinstein, Dan, 312–13 Ruby on Rails, 155 Russia, 375–76 Sacca, Chris, 128, 141, 143 acquisition advice, 187–88, 212–13, 245–47 on deals, 205–7 ignoring inquiries, 201 pseudoangel, 113, 117–19 wisdom, 202 Safari, 484 safe sex, 58 safeguarding role, 315 sailboat living, 307, 332, 337–38 salaries, 358 San Francisco Museum of Modern Art (SFMOMA), 181 Sandberg, Sheryl, 2, 10 data joining and, 465 gatekeeper, 4–5 intimates, 3–4 leadership, 410 managerial prowess, 311–13 meetings, 371, 382, 459 PowerPoint and, 7 recommendations to, 462 schmoozing, 367 wiles of, 408 Sarna, Chander, 67–68, 71, 72 sausage grinder, 296 scale, 300 Scalps@Facebook, 314 scavenging foray, 116 schadenfreude, 16–17 Schopenhauer, Arthur, 282 Schrage, Elliot, 3–4, 410 Schreier, Bryan, 123–25 Schrock, Nick, 400 Schroepfer, Mike, 2 Schultz, Alex, 374 scientific racism, 122 Scoble, Robert, 100 Scott, George C., 24, 369 security, 314–15 seed money, 96 Sequoia, 122–25, 130, 159 severance package, 470–71 severity-level-one bug (SEV1), 323 sexual molestation, 17 Shaffer, Justin, 219–21, 444 Shakespeare, William, 120, 427, 456 Shapiro, Scott, 378, 459 Shelly, Percy Bysshe, 337 Shockley, William, 122 shuttles, 289, 339 Siegelman, Russell, 146, 201, 213, 397 angel investor, 110–13 commitment, 141–43 negotiations, 116–17 Silicon Valley.

They also helped the other company navigate Facebook’s Byzantine internal politics to achieve some mutually beneficial goal. These ambassadors got to know their foreign powers very well, some even going a bit native (as diplomats too long in a foreign country do), empathizing with their charges’ agenda as much as with Facebook’s. * Most products in tech, at least on the Internet side, launch half-baked, as what’s called an MVP, or “minimum viable product.” This is the minimum level of functionality you can provide and still sanely call your creation a product. In FBX’s case, this meant the real-time auction worked with the basic ads-buying protocol we had designed, but we had none of the monitoring tools, debugging tools, or error notifications we’d need to properly manage this beast, nor the more advanced functionality, such as cross-browser identity matching, that we’d dreamed up.


pages: 169 words: 56,250

Startup Communities: Building an Entrepreneurial Ecosystem in Your City by Brad Feld

barriers to entry, cleantech, cloud computing, corporate social responsibility, G4S, Grace Hopper, job satisfaction, Kickstarter, Lean Startup, minimum viable product, Network effects, paypal mafia, Peter Thiel, place-making, pre–internet, Richard Florida, Ruby on Rails, Silicon Valley, Silicon Valley startup, smart cities, software as a service, Steve Jobs, text mining, Y Combinator, zero-sum game, Zipcar

They were each younger than 25 years old and called their company CLARA. They wanted to build a software-as-a-service company that helped gaming companies understand their communities. I was startled. These kids were not worried about the ISK or the government or the global financial crisis or anything. They were building something and wanted to sell it to create value. I was impressed. I found out that they needed capital to get their minimum viable product onto the market. There was a slight problem, as I had no money, so I reached out to my family and friends, convinced them to invest in Iceland and this young team called CLARA. My partners thought I was crazy but they indulged me. We invested in Iceland against all odds in 2009. When all the other Icelandic entrepreneurs found out that I had invested in CLARA, I had a flood of requests to meet new companies.


Digital Transformation at Scale: Why the Strategy Is Delivery by Andrew Greenway,Ben Terrett,Mike Bracken,Tom Loosemore

Airbnb, bitcoin, blockchain, butterfly effect, call centre, chief data officer, choice architecture, cognitive dissonance, cryptocurrency, Diane Coyle, en.wikipedia.org, G4S, Internet of things, Kevin Kelly, Kickstarter, loose coupling, M-Pesa, minimum viable product, nudge unit, performance metric, ransomware, Silicon Valley, social web, the market place, The Wisdom of Crowds

That is not the same as saying that it is always going to get a service fully live and operational more quickly than what has happened before. This is a subtle difference, but an important one. Putting deadlines against your actions is not a bad idea; it focuses teams, keeps momentum high and provides natural points to review whether the overall strategy is still the right one. The skill is setting the right expectation about what will be delivered by that deadline – a minimum viable product used by 25 people, a fully working service in front of millions of users, or something in between. If you don’t know, opt to under promise and over deliver; it is better to have a disagreement than a nasty surprise. Organisational context There is a good chance that while you’re writing your digital strategy, several other teams in the organisation will be setting out their own grand plans.


pages: 145 words: 40,897

Gamification by Design: Implementing Game Mechanics in Web and Mobile Apps by Gabe Zichermann, Christopher Cunningham

airport security, future of work, game design, lateral thinking, minimum viable product, pattern recognition, Ruby on Rails, social graph, social web, urban planning, web application

No gamified system should be built with a set-it-and-forget-it mentality. It doesn’t work because players level out, get bored, game the system, or leave it altogether. By avoiding iteration, the system is certain to end up exactly where you don’t want it to be. In an agile design, prioritization is similarly important as it helps narrow the designer’s focus to a limited number of specific items. Agile design looks for the minimum viable product before launch—what the designer and target consumer need now—knowing they can change it later. In gamified design, an experience points (XP) system that assigns a point value to everything your player does is the absolute minimum for launch. The XP system must be able to report back about the players so that the designer can watch his engagement internally. Over time, this will transform any process.


pages: 237 words: 67,154

Ours to Hack and to Own: The Rise of Platform Cooperativism, a New Vision for the Future of Work and a Fairer Internet by Trebor Scholz, Nathan Schneider

1960s counterculture, activist fund / activist shareholder / activist investor, Airbnb, Amazon Mechanical Turk, barriers to entry, basic income, bitcoin, blockchain, Build a better mousetrap, Burning Man, capital controls, citizen journalism, collaborative economy, collaborative editing, collective bargaining, commoditize, conceptual framework, crowdsourcing, cryptocurrency, Debian, deskilling, disintermediation, distributed ledger, Ethereum, ethereum blockchain, future of work, gig economy, Google bus, hiring and firing, income inequality, information asymmetry, Internet of things, Jacob Appelbaum, Jeff Bezos, job automation, Julian Assange, Kickstarter, lake wobegon effect, low skilled workers, Lyft, Mark Zuckerberg, means of production, minimum viable product, moral hazard, Network effects, new economy, offshore financial centre, openstreetmap, peer-to-peer, post-work, profit maximization, race to the bottom, ride hailing / ride sharing, SETI@home, shareholder value, sharing economy, Shoshana Zuboff, Silicon Valley, smart cities, smart contracts, Snapchat, TaskRabbit, technoutopianism, transaction costs, Travis Kalanick, Uber for X, uber lyft, union organizing, universal basic income, Whole Earth Catalog, WikiLeaks, women in the workforce, Zipcar

Financially, the organization is bootstrapped with a small pool of funding from the community and is committed to forgoing traditional investment in favor of voluntary funding from the network. In May 2015, the ERS was just an idea born out of frustration with fundraising and income inequality, but under the mentorship of Gary Chou at Orbital NYC we were able to validate some early assumptions and raise money via Kickstarter to bring together a seed community for the Weird Economics Summit in NYC in November 2015. In 2016, we hope to develop a minimum viable product of the platform and pilot it in partnership with like-minded organizations. Project Name: Data Commons Cooperative Completed by: Noemi Giszpenc Location: Massachusetts URL: datacommons.coop The Data Commons Cooperative brings together cooperative, solidarity, social, generative, “new” economy organizations that are cataloging or mapping some slice of that space. Many organizations want to publicize the existence of alternatives and enhance the connections among them; the data-sharing cooperative makes it easier for members to gather, share, maintain, display, and deploy information about the economy they care about.


pages: 361 words: 76,849

The Year Without Pants: Wordpress.com and the Future of Work by Scott Berkun

barriers to entry, blue-collar work, Broken windows theory, en.wikipedia.org, Firefox, future of work, Google Hangouts, Jane Jacobs, job satisfaction, Lean Startup, lone genius, Mark Zuckerberg, minimum viable product, post-work, remote working, Results Only Work Environment, Richard Stallman, Seaside, Florida, side project, Silicon Valley, six sigma, Skype, stealth mode startup, Steve Jobs, The Death and Life of Great American Cities, the map is not the territory, Tony Hsieh, trade route, zero-sum game

The creation of teams was intended to foster more local autonomy and less dependence on Matt, but at the time of the Athens meet-up, teams were only weeks old. When Mullenweg left Athens, we immediately began work on Highlander. Of the many features we knew it would have to include, we narrowed them down to find the simplest, easiest, highest-value project we could release first (what's often called MVP or minimum viable product). Putting our list of feature ideas aside for the moment, we applied the same design thinking we'd done for posting. If the blogger's experience posting worked like this: then the visitor's experience commenting was like this: The largest burden of convincing a visitor to decide to comment was on the blogger. Bloggers who wrote a better post were more likely to get visitors to write comments in response.


pages: 290 words: 72,046

5 Day Weekend: Freedom to Make Your Life and Work Rich With Purpose by Nik Halik, Garrett B. Gunderson

Airbnb, bitcoin, Buckminster Fuller, business process, clean water, collaborative consumption, cryptocurrency, delayed gratification, diversified portfolio, en.wikipedia.org, estate planning, Ethereum, fear of failure, fiat currency, financial independence, glass ceiling, Grace Hopper, Home mortgage interest deduction, Isaac Newton, litecoin, Lyft, market fundamentalism, microcredit, minimum viable product, mortgage debt, mortgage tax deduction, Nelson Mandela, passive income, peer-to-peer, peer-to-peer rental, Ponzi scheme, quantitative easing, Ralph Waldo Emerson, ride hailing / ride sharing, sharing economy, side project, Skype, TaskRabbit, traveling salesman, uber lyft

You have to do your own thing because you’ll never get ahead if you’re just working hourly, even if you’re making good money.” Start as Small as Possible In most cases vision is a good thing. But when you first start something on the side, sometimes vision can actually hold you back. All too often people get scared away from entrepreneurship because they see a vision of how much they have to build, and it feels too overwhelming. The key is to think in terms of a minimum viable product. Forget about some grandiose scheme that will require a large capital investment, a team, infrastructure, etc. Learn to take things to market with very little if any capital expenditure. Become an expert on a strategy Garrett calls “Win, Then Play.” In other words, before you fully commit to a project or opportunity, test its market viability first. Do everything you can to prove market demand before investing a ton of time, money, and energy into it.


pages: 302 words: 73,946

People Powered: How Communities Can Supercharge Your Business, Brand, and Teams by Jono Bacon

Airbnb, barriers to entry, blockchain, bounce rate, Cass Sunstein, Charles Lindbergh, Debian, Firefox, if you build it, they will come, IKEA effect, Internet Archive, Jono Bacon, Kickstarter, Kubernetes, lateral thinking, Mark Shuttleworth, Minecraft, minimum viable product, more computing power than Apollo, planetary scale, pull request, Richard Stallman, Richard Thaler, sexual politics, Silicon Valley, Travis Kalanick, Y Combinator

Index Abayomi, 1–3, 7, 9, 19, 35, 278 abuse of system, 158, 217, 233, 234 access, 7–8, 16–17, 54–55, 225, 226 accountability, 139, 146, 148, 149 actions, tracking, 158–59 active participation, 109 adaptability, 176–77, 268–69 Adobe, 244 advertising, 195–96 advocacy, 23–24, 49, 111 Airbnb, 57 ambiguity, 155–56 American Physical Society, 139 Amnesty International, 18 Anderson, Chris, 46, 47 Android platform, 65 Ansari XPRIZE, xviii Apache, 6, 26 Apple, 6, 58, 128 approachability, 69–70 Ardour, 44, 52, 66 Areas of Expertise, 172–75 Ariely, Dan, 17 assets, building, 68–69 assumptions, 137, 271 asynchronous access, 54 attendance, 157 attendees, summit, 247–49 audience personas, 100, 108–19 in Bacon Method, 33 choosing, 109–12 content for, 194–95 creating, 114–16 examples of, 116–19 on Incentives Map, 230–32 On-Ramp Model for, 131, 135–38 Participation Framework for, 130 prioritizing, 112–13 productive participation by, 162–67 and relatedness, 107 audience(s) access to, 7–8 assumptions about, 137 and community strategy, 13 irrational decision making by, 101–8 for local communities, 5 surprising, 73–74 understanding your, 33, 99–100 authenticity, 75, 111, 183, 224 authority, 55–56, 200–201 Author persona, 166–67 automated measuring of condition, 217–18 autonomy, 105–6, 123 awareness, 22–24, 59–61, 192 Axe Change service, 14 Axe-Fx processors, 49–50 backlog, 150–51 Bacon Method, 32–34 Bahns, Angela, 47 Bassett, Angela, 237 Battlefield, 24, 128, 228 behavioral economics, 102–4 Bell, Alexander Graham, 153 belonging, sense of, 15, 18, 20, 143, 187, 215 Bennington, Chester, 183, 184 Big Rocks, 33, 88–96 and cadence-based cycles, 168–70 in community strategy, 94–95 and critical dimensions, 157, 161 defined, 88–89 departmental alignment on, 263 examples of, 91–94 format and key components of, 89–91 and Quarterly Delivery Plan, 34, 145–46, 148, 149 realistic thinking about, 95–96 Black Lives Matter, 18 blocked (status), 147 blogs, 193, 275 Bosch, 13 brand awareness, 24, 59–60 brand recognition, 85 Branson, Richard, 190 Buffer, 214 Build Skills stage, 132, 136, 137 business cards, 241–42 buy-in, 67, 85 cadence, operating on, 34, 264–66 Cadence-Based Community Cycle, 167–70, 264 Canonical, 1, 121, 151, 167, 245 capabilities, persona, 114, 116–18 Capital One, 13 career experience, 83 CasinoCoin, 244 Casual members, 129, 140–42 advancing, 196–97 engagement with, 198–99 incentivizing, 219, 221, 226–27 maturity model for, 166 mentoring, 203 CEOs, reporting to, 260 certainty, 105 Champions model, 49–52, 63–64, 66–67, 113, 260 chat channel, 250 check-ins, 267 civility, 187 clarity, 69–72, 138–39, 234 closing party, 250 coaching, 82–83, 205–6 Coca-Cola, 57 Coffee Bean Rewards app, 145 Colbert, Stephen, 73–74 collaboration, 8–9, 74–75, 185–86 Collaborators model, 52–56, 64–67, 86, 260, see also Inner Collaborator community; Outer Collaborator community commitment, 122 communication, 121 Community Associate, 255 Community Belonging Path, 16–20 community building, 14 additional resources on, 274–76 Bacon Method of, 32–34 as chronological journey, 127–28 consultations on, 276–77 continuing to learn about, 272–74 defining your value for, 77–78 end-to-end experience in, 125–26 fundamentals of, 15–16 getting started with, 37–38, 62 key principles of, 67–74 monitoring activities related to, 206–8 risks associated with, 154–55 tools for, 8 see also successful community building community–community engagement, 157 community culture, 30–31, 70–72, 179–88 Community Director, 254–58, 260 Community Engagement Model(s), 49–67 in Bacon Method, 33–34 Champions model, 49–52 Collaborators model, 52–59 and Community Value Statement, 80 Consumers model, 45–48 importance of selecting, 43–45 and marketing/public awareness, 59–61 scenarios for selecting, 61–67 Community Evangelist, 255 community(-ies) defined, 13–15 digital, 2–3, 5–13, 237 experimenting in, 123 foundational trends in, 7–9 future of, 35, 277–79 local, 3–5 power of, 7 social dynamics of, 15–16 value generated by, 20–29 Community Launch Timeline Template, 191 Community Leadership Summit, 179, 239 community management staff, 254–61 Community Managers, 78, 125, 126, 195, 255–56, 260–61 Community Mission, 40–43, 169 Community Mission Statement, 42, 80, 113 Community On-Ramp Model, 33–34, 130–38 community overview cards, 241–42 Community Participation Framework, 128–45 building community based on, 151–52 and building engagement, 138–44 Community On-Ramp Model in, 130–38 described, 128–30 engagement strategy to move members along, 196–206 focusing on creativity and momentum in, 209 incentives and rewards in, 145 incentives on, 211–13 incentivizing transitions in, 218–22, 226–27 mentoring in, 202–6 Community Personal Scaling Curve, 184 Community Persona Maturity Model, 163–67 Community Promise, 70–71 Community Specialist, 255 community strategy, 30 Big Rocks in, 94–95 changing, 96, 208 control over and collaboration on, 74–75 Core members’ contributions to, 201 execution of, 253–54 importance of, 13 integration of, in organization, 261–68 learning from implementation of, 268–69 planning, 39 Regular members in, 143 risks with, 29–32 and SCARF model, 105–8 variability in, 30 community summits, 245–51 finalizing attendees and content for, 247–49 follow through after, 250–51 running, 249–50 structure for, 246–47 community value, 164–67 Community Value Proposition, 175 Community Value Statement, 80–88 and Big Rocks, 89, 95 in cadence-based cycle, 169 maintaining focus on, 97 and on-ramp design, 135–36 prioritizing audience personas based on, 113 updating, 83–84, 87–88 value for community members in, 80–84 value for organization in, 84–88 company–community engagement, 157 competitions, 194 complete (status), 147 CompuServe, 5 conditions, for incentives, 216–18, 230–32 Conference Checklist, 241 conferences, 194, 195, 239, 240–43 connection(s) desire for, 9 for Regular members, 200 constructive criticism, 122–23 consultations, on community building, 276–77 Consumers model, 45–48, 62–63, 260 content for community summits, 247–49 in Growth Strategy, 192–95 for launch, 189 as source of value, 82 Content Creators (persona), 110–11, 113–15 content development in Champion communities, 49–50 in Collaborator communities, 52–56 by communities, 26–27 as source of value, 82, 86–87 contests, 194 contributions, to communities, 17, 19 control over community strategy, 74–75 over Regular members, 143 co-organizing events, 239 Core members, 129, 140 advancement for, 196–97 characteristics of, 143–44 at community summits, 242 engagement with, 201–2 incentivizing, 215, 219–20, 222, 227 maturity model for, 165, 166–67 mentoring for, 203, 205 percentage of, 141 creativity, 209 critical dimensions, 156–58, 161 criticism, 122–23, 176 cross-functional communities, 88 crowdfunding, 23–24 Cruz, Ted, 73–74 culture, community, see community culture Culture Cores, 181–88 customer engagement, 20–22 customer growth, as source of value, 85 Customer Relationship Management (CRM) system, 21 Cycle Planning, 168 Cycle Reviews, 268 dashboards, 160–61 data analysis, 207, 208 Davis, Miles, 182 Debian, 6, 26 decision making irrationality of, 101–8 pragmatism about, 184 SCARF model of behavior, 104–8 System 1 and 2 thinking, 102–3 unpopular decisions, 186 decision paralysis, 38, 106 dedicated events, organizing, 239–40 delayed (status), 147 delivery commitment to, 263–64 successful, 162, 167–70 delivery, as critical dimension, 157 delivery plans, see Quarterly Delivery Plan demonstrations, 194, 244 departmental alignment, 263–64 developer community, Big Rocks for, 93–94 Developer Relations personnel, 255 Developers (persona), 111, 114, 115 Diamandis, Peter, 40 Dickinson, Emily, 211 difficulty, of condition, 217 diffusion chain, 54 Digg, 12–13 digital communities early, 5–7 evolution of, 9–13 foundational trends in, 7–9 in-person events for, 237 as local and global communities, 2–3 digital interaction, and in-person events, 251 digital training, 243–44 dignity, 17 discipline, for community building, 31 Discourse, 66, 228, 233, 267 discovery, in gamification, 233 discussion forums, 49 Disney, 128 Docker, 12, 56 documentation, 274 domain expertise, 256, 257 Dreamforce conference, 22 Drupal, 204 Early Adopter program, 189–90 Editorial Calendar, 192–95 education (about product or service) in communities, 24–25 as source of value, 82 efficiency, as critical dimension, 157 ego calibration, 234–35 empathy, 186–87 employees openness for, 182–83 training and mentoring for, 266–68 empowerment, 55–56, 222 end-to-end experience, 59, 125–26 engagement as Area of Expertise, 174 Big Rocks related to, 93–94 with community, 72 in Community On-Ramp Model, 133–34, 136, 137 and Community Participation Framework, 138–44 in Community Participation Framework, 129 at conferences, 242 critical dimensions related to, 157 customer and user, 20–22 and Growth Strategy, 192 positivity and, 185 quality of, 159 rules for engaging with community members, 119–22 and submarine incentives, 226 and understanding audience, 99–100 Engagement Strategy, 181, 196–206 engineering department, community leadership staff reporting to, 260 equal opportunity, in Collaborator communities, 55, 58–59 estimated units, on Incentives Map, 231, 232 Event Evolution Path, 238–40 Event Organizers (persona), 111, 114–15, 117–18 events in-person, see in-person events online, 193 Everett, Noah, 224 execution of community strategy, 253–54, 268 successful, 162, 167–70 expectations clear, 70–72 in gamification, 234 in great experience, 127 related to Big Rocks, 95–96 experience, of audience persona, 114, 116, 118 experimentation, 123, 171 to build organizational capabilities, 206–8 with events, 251 expertise of community leadership staff, 256, 257 of community members, 28 in digital communities, 8 as source of value, 83 Exploding Kittens game, 24 extrinsic rewards, 214, 215, 216 on Incentives Map, 231 submarine incentives for, 224–25 Facebook, 13, 24 failure, as opportunity for improvement, 151 fairness in SCARF model, 107–8 of submarine incentives, 225 Fans as audience persona, 110, 113 community model for, 44, 62–63 fears, of audience persona, 114–15, 117, 118 Fedora, 66, 264 feedback about audience personas, 116 on Big Rocks, 94–95 from communities, 72–73 and community culture, 186 from Core members, 202 on mission statement, 41 on Organizational Capabilities Maturity Model, 176 in peer-based review, 204 from Regular members, 143, 200 Figment community, 10 Final Fantasy, 128 financial commitment, and creating value, 96 Firefox, 23, 209 Fitbit, 139, 145 focus for community building, 31 on Community Value Statement, 97 follow through after community summits, 250–51 after conferences, 242–43 formal experience, 114 forums, 91–92, 158 founders, community leadership staff reporting to, 260 Four Rules for Measuring Effectively, 156–61 Fractal Audio Systems, 14–15, 49–50 freeloaders, 54 fun, in community experience, 84 gamification, 232–35 Garmin, 190 GitHub, 24 global communities, digital communities as local and, 2–3 Global Learning XPRIZE Community, 189 GNOME, 26 GNU community, 6 goals for community summit sessions, 249 of Core members, serving, 202 for employee participation with community, 267 in incentives, 214 on Incentives Map, 230–32 for new hires, 259 Google, 13, 57, 58, 65, 128 Gordon-Levitt, Dan, 11–12 Gordon-Levitt, Joseph, 11–12, 219 governance, in Inner Collaborator communities, 66 gratification, 120, 127 group dynamics, 100, 119–22 group experiences, referral halo for, 61 grow, willingness to, 257 Growth (Area of Expertise), 174 growth, as critical dimension, 157 Growth Strategy, 181, 188–96 growth plan, 192–96 launch plan, 189–91 guest speakers, 238–39 habits, building, 142, 267 HackerOne, 69–70, 194, 214 Harley Owners Group, 132 help asking community members for, 120, 144 as source of value, 82 high-level objectives, see Big Rocks hiring, 27–29, 256 hiring away approach, 258–59 HITRECORD, 11–12, 219 Hoffman, Reid, 152 HomeRecording.com community, 81 humility, 187, 257 hypothesis testing, 207–8, 271–72 IBM, 6 idealism, 153–54 IGN (Imagine Games Network), 47–48 Ikea Effect, 101–2 impact in Community Belonging Path, 18 and Engagement Strategy, 199 multiplying, with communities, 2, 3, 9 imperfections, 188 imposter syndrome, 142 inauthentic participation, 233 incentives, xvii–xviii, 197 in Community Participation Framework, 145 on Community Participation Framework, 211–13 components of, 213–18 in Growth Strategy, 196 maintaining personal touch with, 235 in Outer Collaborator communities, 65 power of offering, 213–18 stated vs. submarine, 218–27 Incentives Map, 34, 229–32 Incentive Transition Points, 218–19 stated incentives for, 221–22 submarine incentives for, 226–27 incentivization building engagement with, 140 in Community Participation Framework, 130 Incubation stage, 171, 172 independent authenticity, 111 Indiegogo, 23 individual value, 164–67 influence, psychological importance of, 71 Influencing phase (Product Success Model), 52 information in community, 121 in digital communities, 8 infrastructure, for launch, 189 Inner Collaborator community, 56–58, 65–67, 86, 229 Inner Developers (persona), 111 in-person events community summits, 245–51 conferences, 240–43 and digital training vs. training workshops, 243–45 Event Evolution Path and strategy for, 238–40 fusion of digital interactions and, 251 in Growth Strategy, 195 launch, 190–91 in local communities, 4–5 managing, 237–38 value of, 77–78 in progress (status), 147 insight, from communities, 28, 72–73 intangible value, 78–79, 83 Integration stage, 171–72 Intel, 57 intentionality, 39, 69–70, 187 Intention stage, 171, 172 internal communities, 13 Community Engagement Model for, 66–67 importance of culture for, 180 personal interaction in, 185 value of, for community members, 83 Internet, 5–7, see also digital communities Internet Explorer, 23 intrinsic rewards, 215, 224–25 involved teams, on Quarterly Delivery Plan, 147, 148 Iron Maiden, 39 Jeep, 139 Jenkins, 26 job candidates, community members as, 27–29 job descriptions, community leadership staff, 258 Jokosher, 199 jQuery, 204 Kahneman, Daniel, 102 karma (Reddit), 228 Key Initiatives, for Big Rocks, 90, 91–93 keynote addresses, 245–47 Key Performance Indicators (KPIs), 90–94 cadence-based cycles for delivery of work on, 169, 170 on Quarterly Delivery Plan, 146, 148–50 tracking progress on, 159–60, 160–61 Kickstarter, 12, 23 Kubernetes, 26, 53, 66, 134, 204 labor, community members as source of, 120 The Late Show with Stephen Colbert (television series), 73–74 launch event, 190–91 launch plan, 189–91 leaders, community, 3, 4 leadership as Area of Expertise, 174 and autonomy in organizations, 123 clear and objective, 69–70 in community culture, 186 community involvement by, 262 by Core members, 144 in Inner Collaborator communities, 66 leadership value, 165, 167 lead generation, 28–29 A League of Their Own (film), 39 learning about community building, 272–74 from community strategy implementation, 268–69 Learning phase (Product Success Model), 51 Lego, 9, 10 Lego Ideas, 10 Lenovo, 57 Leonardo da Vinci, 37 Lindbergh, Charles, xvii Linkin Park, 183 Linux, 6, 26, 273–74 Linux Foundation, 26, 74 live stream, 250 local communities decline of, 3–5 digital communities as global and, 2–3 The Long Tail (Anderson), 46 Ma, Jack, 77 Ma Jian, 125 Make:, 195 Management (Area of Expertise), 173–74 marketing, 22–24 audience personas in, 108–9 and Community Engagement Model, 59–61 as source of value, 85 marketing department, community leadership staff reporting to, 260 Mastering phase (Product Success Model), 51–52 Mattermost, 214 maturity models, 34 Community Persona Maturity Model, 163–67 Organizational Capabilities Maturity Model, 171–76 meaningful work, 9, 17–18, 27, 41 measurable condition, 217 measurable goals, 160 measurable value, in Community Persona Maturity Model, 164–65 measuring effectively, rules for, 156–61 meeting people, as source of value, 82 meetings after conferences, 242–43 with conference attendees, 241 in local communities, 4–5 Meetup.com, 133 meetups, organizing, 239 mentoring for Casual members, 142 for community-building employees, 267–68 for community leadership staff, 256 by community members, 29 in Community Participation Framework, 202–6 of new hires, 259 as source of value, 82–83 meritocracy, 55 message boards, 5–6 Metal Gear Solid, 128 Metrics (Area of Expertise), 175 Mickos, Mårten, 69–70, 74, 262 Microsoft, 6, 13, 23 Minecraft, 25 Minecraft Forum, 25 Minecraft Wiki, 25 Minimum Viable Product, 68–69 mission statements, 32, 42, 80, 113 momentum, in Engagement Strategy, 198 momentum effect, 209 in Growth Strategy, 188, 195 in marketing and brand/product awareness, 60–61 motivations for audience persona, 114, 117, 118 for community members, 119–20 Mozilla, 23 MySpace, 12–13 NAMM music show, 239 need, for community, 30 networking, 28–29, 242 New York Times, 23 Nextcloud, 134 niche interests, 45–47 Nintendo, 9, 228 norms, cultural, 70, 130, 180, 182 notification, 147, 148 not started (status), 147 objectives, see also Big Rocks objectivity, of leadership, 69–70 onboarding, 107 in Community Participation Framework, 129 Community Persona Maturity Model for members in, 164, 165–66 gamification for, 233 importance of, 130–31 in Outer Collaborator communities, 65 online events, 193 On-Ramp members, incentivizing, 218–19, 221, 226–27 openness, 182–84 open-source code, 26, 53 open-source communities, 57–58, 261 Open Source community, 10 OpenStack, 26 optimization, in Engagement Strategy, 199–200 Optimizing phase (Product Success Model), 51 organizational capabilities building, with communities, 27–29 cadence-based cycles for building, 265–66 executing strategy to build, 253–54 experimentation to build, 206–8 success in terms of building, 162, 171–76 organizational experience, of community members, 122 organizational values, and community culture, 182–88 organizations community members as labor for, 120 identifying value for, 84–88 integration of community strategy in, 261–68 internal communities at, 13 leadership and autonomy in, 123 Orteig Prize, xvii Outer Collaborator community, 56–59, 64–65, 86 Outer Developers (persona), 111–12, 136–37 Owner of Big Rocks, 90, 91 in cadence-based cycles, 168–69 on Incentives Map, 231, 232 on Quarterly Delivery Plan, 147, 148 Participant Rewards Peak, 215–16 participation active, 109 audience personas and types of, 109 by Casual members, 142 in Consumer communities, 48 inauthentic, 233 productive, 162–67 PayPal, 13, 57 Pebble Smartwatch, 23 peer-based review, 203–5 peer-review process, 55 peer support, 139–40 peer value, 164–67 Peloton, 133, 233 Penney, James Cash, 253 people person, 256–57 perfection, 268–69 performance review, community engagement in, 262 permanence, of communities, 14 personal interaction, 184–85, 199 personal touch with incentives, 235 and submarine awards, 222–26 personal validation, 120, 224–25 personas, audience, see audience personas Photoshop “Magic Minute” videos, 244 PlayStation, 233 podcasts, 194 Pop!


pages: 270 words: 79,992

The End of Big: How the Internet Makes David the New Goliath by Nicco Mele

4chan, A Declaration of the Independence of Cyberspace, Airbnb, Amazon Web Services, Any sufficiently advanced technology is indistinguishable from magic, Apple's 1984 Super Bowl advert, barriers to entry, Berlin Wall, big-box store, bitcoin, business climate, call centre, Cass Sunstein, centralized clearinghouse, Chelsea Manning, citizen journalism, cloud computing, collaborative consumption, collaborative editing, commoditize, creative destruction, crony capitalism, cross-subsidies, crowdsourcing, David Brooks, death of newspapers, disruptive innovation, Donald Trump, Douglas Engelbart, Douglas Engelbart, en.wikipedia.org, Exxon Valdez, Fall of the Berlin Wall, Filter Bubble, Firefox, global supply chain, Google Chrome, Gordon Gekko, Hacker Ethic, Jaron Lanier, Jeff Bezos, jimmy wales, John Markoff, Julian Assange, Kevin Kelly, Khan Academy, Kickstarter, Lean Startup, Mark Zuckerberg, minimum viable product, Mitch Kapor, Mohammed Bouazizi, Mother of all demos, Narrative Science, new economy, Occupy movement, old-boy network, peer-to-peer, period drama, Peter Thiel, pirate software, publication bias, Robert Metcalfe, Ronald Reagan, Ronald Reagan: Tear down this wall, sharing economy, Silicon Valley, Skype, social web, Steve Jobs, Steve Wozniak, Stewart Brand, Stuxnet, Ted Nelson, Telecommunications Act of 1996, telemarketer, The Wisdom of Crowds, transaction costs, uranium enrichment, Whole Earth Catalog, WikiLeaks, Zipcar

. … All you have to do to serve them well is build a minimal infrastructure allowing them to get together and work things out for themselves. Any additional features are almost certainly superfluous and could even be damaging.35 This way of thinking in software design has a long pedigree—back to the “scratch your own itch” of Eric Raymond’s The Cathedral and the Bazaar, but more recently in the best-selling The Lean Startup, whose core admonition is to arrive at the minimum viable product as quickly as possible. It’s a compelling vision for running a software company or even an online services company. But does it work as an approach to government? Not so much. As Gary Wolf puts it in the Wired profile: His cause is not helped by the fact that if the Craigslist management style resembles any political system, it is not democracy but rather a low-key popular dictatorship. … Its inner workings are obscure, it publishes no account of its income or expenses, it has no obligation to respond to criticism, and all authority rests in the hands of a single man.36 I don’t mean to single out Newmark.


pages: 309 words: 81,975

Brave New Work: Are You Ready to Reinvent Your Organization? by Aaron Dignan

"side hustle", activist fund / activist shareholder / activist investor, Airbnb, Albert Einstein, autonomous vehicles, basic income, Bertrand Russell: In Praise of Idleness, bitcoin, Black Swan, blockchain, Buckminster Fuller, Burning Man, butterfly effect, cashless society, Clayton Christensen, clean water, cognitive bias, cognitive dissonance, corporate governance, corporate social responsibility, correlation does not imply causation, creative destruction, crony capitalism, crowdsourcing, cryptocurrency, David Heinemeier Hansson, deliberate practice, DevOps, disruptive innovation, don't be evil, Elon Musk, endowment effect, Ethereum, ethereum blockchain, Frederick Winslow Taylor, future of work, gender pay gap, Geoffrey West, Santa Fe Institute, gig economy, Google X / Alphabet X, hiring and firing, hive mind, income inequality, information asymmetry, Internet of things, Jeff Bezos, job satisfaction, Kevin Kelly, Kickstarter, Lean Startup, loose coupling, loss aversion, Lyft, Marc Andreessen, Mark Zuckerberg, minimum viable product, new economy, Paul Graham, race to the bottom, remote working, Richard Thaler, shareholder value, Silicon Valley, six sigma, smart contracts, Social Responsibility of Business Is to Increase Its Profits, software is eating the world, source of truth, Stanford marshmallow experiment, Steve Jobs, TaskRabbit, the High Line, too big to fail, Toyota Production System, uber lyft, universal basic income, Y Combinator, zero-sum game

When we finally share it with customers, we’re astonished to find that it doesn’t really meet their needs or that their needs have changed. The Lean Startup method offers a more scientific approach to new-product development. Developed by Eric Ries, the method proposes a feedback loop containing three stages: build, measure, and learn. To get started, pick a problem you are interested in and have the agency to solve, and build a minimum viable product (MVP) that will allow you to get user feedback as quickly as possible. You’re going to be engaged in what Ries calls validated learning. Instead of trusting your assumptions and barreling ahead, you’re going to identify them and ask one of the most powerful questions in innovation: how might we validate that? Innovation in Change OS transformation rarely starts with a focus on the practice of innovation, because other domains are typically what hold our creative energy back.


pages: 286 words: 87,401

Blitzscaling: The Lightning-Fast Path to Building Massively Valuable Companies by Reid Hoffman, Chris Yeh

activist fund / activist shareholder / activist investor, Airbnb, Amazon Web Services, autonomous vehicles, bitcoin, blockchain, Bob Noyce, business intelligence, Chuck Templeton: OpenTable:, cloud computing, crowdsourcing, cryptocurrency, Daniel Kahneman / Amos Tversky, database schema, discounted cash flows, Elon Musk, Firefox, forensic accounting, George Gilder, global pandemic, Google Hangouts, Google X / Alphabet X, hydraulic fracturing, Hyperloop, inventory management, Isaac Newton, Jeff Bezos, Joi Ito, Khan Academy, late fees, Lean Startup, Lyft, M-Pesa, Marc Andreessen, margin call, Mark Zuckerberg, minimum viable product, move fast and break things, move fast and break things, Network effects, Oculus Rift, oil shale / tar sands, Paul Buchheit, Paul Graham, Peter Thiel, pre–internet, recommendation engine, ride hailing / ride sharing, Sam Altman, Sand Hill Road, Saturday Night Live, self-driving car, shareholder value, sharing economy, Silicon Valley, Silicon Valley startup, Skype, smart grid, social graph, software as a service, software is eating the world, speech recognition, stem cell, Steve Jobs, subscription business, Tesla Model S, thinkpad, transaction costs, transport as a service, Travis Kalanick, Uber for X, uber lyft, web application, winner-take-all economy, Y Combinator, yellow journalism

While there were other reasons why SocialNet failed, not launching early and iterating based on market feedback was probably the main cause of death. After my experiences at PayPal, and the success we found through rapid launches and product iteration, I was determined to launch LinkedIn as soon as possible. Our team defined a list of features that we thought were the minimum required to enter the market. Years later, Steve Blank and Eric Ries would dub this a “minimum viable product” (MVP). For LinkedIn, the MVP included a user’s professional profile, the ability to connect to other users, a search function to find other users, and a mechanism for sending messages to friends. Shortly before launch, we started worrying about whether LinkedIn would be useful without a critical mass of profiles. If a user logged in to LinkedIn, how could we make it useful even if none of that user’s friends had signed up yet?


pages: 247 words: 81,135

The Great Fragmentation: And Why the Future of All Business Is Small by Steve Sammartino

3D printing, additive manufacturing, Airbnb, augmented reality, barriers to entry, Bill Gates: Altair 8800, bitcoin, BRICs, Buckminster Fuller, citizen journalism, collaborative consumption, cryptocurrency, David Heinemeier Hansson, disruptive innovation, Elon Musk, fiat currency, Frederick Winslow Taylor, game design, Google X / Alphabet X, haute couture, helicopter parent, illegal immigration, index fund, Jeff Bezos, jimmy wales, Kickstarter, knowledge economy, Law of Accelerating Returns, lifelogging, market design, Metcalfe's law, Minecraft, minimum viable product, Network effects, new economy, peer-to-peer, post scarcity, prediction markets, pre–internet, profit motive, race to the bottom, random walk, Ray Kurzweil, recommendation engine, remote working, RFID, Rubik’s Cube, self-driving car, sharing economy, side project, Silicon Valley, Silicon Valley startup, skunkworks, Skype, social graph, social web, software is eating the world, Steve Jobs, survivorship bias, too big to fail, US Airways Flight 1549, web application, zero-sum game

He showed me the proof via the live video chat over Skype and his YouTube videos. A few short years ago, none of these tools existed so he would have had no way of proving himself. He also sent me his PDF plan of Project October Sky. Marketing rocket science I concluded I couldn’t really justify investing $10 000 into the project, but advised Raul I’d be happy to do something smaller together such as a minimum viable product if it could benefit both of us. He came up with the idea of sending a helium balloon into the near space field. He told me we could get more than 30 000 metres into the sky and film the curvature of the earth for under $1000. He went on to tell me that he wanted to do it for scientific and experimentation reasons, and that I could take on the marketing. In simple terms, if I’d fund it, he’d give me the filming rights and the decision on what to send up into space and film.


pages: 282 words: 81,873

Live Work Work Work Die: A Journey Into the Savage Heart of Silicon Valley by Corey Pein

23andMe, 4chan, affirmative action, Affordable Care Act / Obamacare, Airbnb, Amazon Mechanical Turk, Anne Wojcicki, artificial general intelligence, bank run, barriers to entry, Benevolent Dictator For Life (BDFL), Bernie Sanders, bitcoin, Build a better mousetrap, California gold rush, cashless society, colonial rule, computer age, cryptocurrency, data is the new oil, disruptive innovation, Donald Trump, Douglas Hofstadter, Elon Musk, Extropian, gig economy, Google bus, Google Glasses, Google X / Alphabet X, hacker house, hive mind, illegal immigration, immigration reform, Internet of things, invisible hand, Isaac Newton, Jeff Bezos, job automation, Kevin Kelly, Khan Academy, Law of Accelerating Returns, Lean Startup, life extension, Lyft, Mahatma Gandhi, Marc Andreessen, Mark Zuckerberg, Menlo Park, minimum viable product, move fast and break things, move fast and break things, mutually assured destruction, obamacare, passive income, patent troll, Paul Graham, peer-to-peer lending, Peter H. Diamandis: Planetary Resources, Peter Thiel, platform as a service, plutocrats, Plutocrats, Ponzi scheme, post-work, Ray Kurzweil, regulatory arbitrage, rent control, RFID, Robert Mercer, rolodex, Ronald Reagan, Ross Ulbricht, Ruby on Rails, Sam Altman, Sand Hill Road, Scientific racism, self-driving car, sharing economy, side project, Silicon Valley, Silicon Valley startup, Singularitarianism, Skype, Snapchat, social software, software as a service, source of truth, South of Market, San Francisco, Startup school, stealth mode startup, Steve Jobs, Steve Wozniak, TaskRabbit, technological singularity, technoutopianism, telepresence, too big to fail, Travis Kalanick, tulip mania, Uber for X, uber lyft, ubercab, upwardly mobile, Vernor Vinge, X Prize, Y Combinator

Most important, as every do-it-yourselfer knows, a sturdy monkey wrench is the most versatile item in any toolbox. To further establish my bona fides as a technologist and entrepreneur, I spent a few hours building a small website. It had just the right look for a circa-2015 startup—a bold palette, free of adornments. Leaning back in my desk chair, I regarded my creation admiringly. Here was what the tech entrepreneurs would refer to as my “minimum viable product.” Visit us online at monkeywrench.international! My next challenge: to devise a succinct, memorable expression of the essence of a company with nothing to offer. Then I remembered reading something about the VE firm Andreessen-Horowitz, which, much like my new company, I thought, produced nothing at all of value. I had read that Andreessen-Horowitz’s motto was inspired by an obscure and archaic Trotskyite buzzword: “permanent revolution.”


pages: 291 words: 90,771

Upscale: What It Takes to Scale a Startup. By the People Who've Done It. by James Silver

Airbnb, augmented reality, Ben Horowitz, blockchain, business process, call centre, credit crunch, crowdsourcing, DevOps, family office, future of work, Google Hangouts, high net worth, hiring and firing, Jeff Bezos, Kickstarter, Lean Startup, Lyft, Mark Zuckerberg, minimum viable product, Network effects, pattern recognition, ride hailing / ride sharing, Silicon Valley, Skype, Snapchat, software as a service, Uber and Lyft, uber lyft, women in the workforce, Y Combinator

‘Furthermore, what many founders find is that as soon as they internationalise their business, especially if they start opening extra offices, the complexity of the business goes up dramatically… This requires a different set of skills to handle different processes: your ability to nurture culture, your ability to communicate your vision, your ability to get them all to communicate and work together even if they’re not in the same location.’ So how did his experience at Innocent shape how he approached Graze’s expansion to the USA? Fletcher replies that he believes it is easier to expand overseas as an online business than as one in traditional retail. ‘I believe that technology has invented a number of useful mentalities or behaviours which are useful when going international. ‘When Graze went overseas it did a Minimum Viable Product [MVP] test in America, which involved two developers going over for eight weeks to make a website to measure over 100 Key Performance Indicators (KPIs) of what was going on in the local market. This meant that when we went to market we could invest a large amount of money because we were more confident it would work, so [we could] go in with a certain aggression, while being very clear on what the issues we had to solve were.’


pages: 307 words: 88,180

AI Superpowers: China, Silicon Valley, and the New World Order by Kai-Fu Lee

AI winter, Airbnb, Albert Einstein, algorithmic trading, artificial general intelligence, autonomous vehicles, barriers to entry, basic income, business cycle, cloud computing, commoditize, computer vision, corporate social responsibility, creative destruction, crony capitalism, Deng Xiaoping, deskilling, Donald Trump, Elon Musk, en.wikipedia.org, Erik Brynjolfsson, full employment, future of work, gig economy, Google Chrome, happiness index / gross national happiness, if you build it, they will come, ImageNet competition, income inequality, informal economy, Internet of things, invention of the telegraph, Jeff Bezos, job automation, John Markoff, Kickstarter, knowledge worker, Lean Startup, low skilled workers, Lyft, mandatory minimum, Mark Zuckerberg, Menlo Park, minimum viable product, natural language processing, new economy, pattern recognition, pirate software, profit maximization, QR code, Ray Kurzweil, recommendation engine, ride hailing / ride sharing, risk tolerance, Robert Mercer, Rodney Brooks, Rubik’s Cube, Sam Altman, Second Machine Age, self-driving car, sentiment analysis, sharing economy, Silicon Valley, Silicon Valley ideology, Silicon Valley startup, Skype, special economic zone, speech recognition, Stephen Hawking, Steve Jobs, strong AI, The Future of Employment, Travis Kalanick, Uber and Lyft, uber lyft, universal basic income, urban planning, Y Combinator

That methodology was first explicitly formulated in Silicon Valley and popularized by the 2011 book The Lean Startup. Core to its philosophy is the idea that founders don’t know what product the market needs—the market knows what product the market needs. Instead of spending years and millions of dollars secretly creating their idea of the perfect product, startups should move quickly to release a “minimum viable product” that can tease out market demand for different functions. Internet-based startups can then receive instant feedback based on customer activity, letting them immediately begin iterating on the product: discard unused features, tack on new functions, and constantly test the waters of market demand. Lean startups must sense the subtle shifts in consumer behavior and then relentlessly tinker with products to meet that demand.


pages: 284 words: 92,688

Disrupted: My Misadventure in the Start-Up Bubble by Dan Lyons

activist fund / activist shareholder / activist investor, Airbnb, Ben Horowitz, Bernie Madoff, bitcoin, call centre, cleantech, cloud computing, corporate governance, disruptive innovation, dumpster diving, fear of failure, Filter Bubble, Golden Gate Park, Google Glasses, Googley, Gordon Gekko, hiring and firing, Jeff Bezos, Lean Startup, Lyft, Marc Andreessen, Mark Zuckerberg, Menlo Park, minimum viable product, new economy, Paul Graham, pre–internet, quantitative easing, ride hailing / ride sharing, Rosa Parks, Sand Hill Road, sharing economy, Silicon Valley, Silicon Valley ideology, Silicon Valley startup, Skype, Snapchat, software as a service, South of Market, San Francisco, Stanford prison experiment, Steve Ballmer, Steve Jobs, Steve Wozniak, telemarketer, tulip mania, uber lyft, Y Combinator, éminence grise

The tale of Netscape added a new twist: On the Internet, at least when it comes to investments, nobody cares if you’re a dog. The Netscape IPO set off the dotcom frenzy. In Silicon Valley it was as if someone had flipped a switch. Suddenly there was a new business model: Grow fast, lose money, go public. That model persists today. It’s a simple racket. Venture capitalists pump millions of dollars into a company. The company spends some of that money coding up a “minimum viable product,” or MVP, a term coined by Eric Ries, author of The Lean Startup, which has become a bible for new tech companies, and then pumps enormous sums into acquiring customers—by hiring sales reps, marketers, and public relations people who can get publicity, put on flashy conferences, and generate hype—brand and buzz, as HubSpot calls it. The losses pile up, but the revenue number rises. Basically the company is buying one-dollar bills and selling them for seventy-five cents, but it doesn’t matter, because mom-and-pop investors are only looking at the revenue growth rate.


pages: 400 words: 88,647

Frugal Innovation: How to Do Better With Less by Jaideep Prabhu Navi Radjou

3D printing, additive manufacturing, Affordable Care Act / Obamacare, Airbnb, Albert Einstein, barriers to entry, Baxter: Rethink Robotics, Bretton Woods, business climate, business process, call centre, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, cloud computing, collaborative consumption, collaborative economy, Computer Numeric Control, connected car, corporate social responsibility, creative destruction, crowdsourcing, disruptive innovation, Elon Musk, financial exclusion, financial innovation, global supply chain, IKEA effect, income inequality, industrial robot, intangible asset, Internet of things, job satisfaction, Khan Academy, Kickstarter, late fees, Lean Startup, low cost airline, low cost carrier, M-Pesa, Mahatma Gandhi, megacity, minimum viable product, more computing power than Apollo, new economy, payday loans, peer-to-peer lending, Peter H. Diamandis: Planetary Resources, precision agriculture, race to the bottom, reshoring, risk tolerance, Ronald Coase, self-driving car, shareholder value, sharing economy, Silicon Valley, Silicon Valley startup, six sigma, smart grid, smart meter, software as a service, standardized shipping container, Steve Jobs, supply-chain management, TaskRabbit, The Fortune at the Bottom of the Pyramid, The Nature of the Firm, transaction costs, Travis Kalanick, unbanked and underbanked, underbanked, women in the workforce, X Prize, yield management, Zipcar

He wants his company to be leaner, faster and better connected to customers, and to leverage digital and IT tools cleverly so that it can, for instance, close deals 50% more quickly and introduce new products 30% faster. To that end, in 2013 GE launched its FastWorks, a set of tools and principles that is helping GE marry scale and innovation with speed and agility. It has trained about 40,000 employees using workshops and online tools to build minimum viable products that quickly solve well-defined customer needs. Rather than over-engineering for the optimal solution and crafting complex business models, GE’s employees are learning to design and launch good-enough solutions, get quick customer feedback and then fine-tune them later as the teams learn more. In mid-2014, more than 300 projects across GE and around the world were using FastWorks. For example, GE used FastWorks to co-develop with Chevron and Los Alamos National Laboratory an innovative solution for flow metering in multiphase oil wells.


pages: 366 words: 94,209

Throwing Rocks at the Google Bus: How Growth Became the Enemy of Prosperity by Douglas Rushkoff

activist fund / activist shareholder / activist investor, Airbnb, algorithmic trading, Amazon Mechanical Turk, Andrew Keen, bank run, banking crisis, barriers to entry, bitcoin, blockchain, Burning Man, business process, buy and hold, buy low sell high, California gold rush, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, centralized clearinghouse, citizen journalism, clean water, cloud computing, collaborative economy, collective bargaining, colonial exploitation, Community Supported Agriculture, corporate personhood, corporate raider, creative destruction, crowdsourcing, cryptocurrency, disintermediation, diversified portfolio, Elon Musk, Erik Brynjolfsson, Ethereum, ethereum blockchain, fiat currency, Firefox, Flash crash, full employment, future of work, gig economy, Gini coefficient, global supply chain, global village, Google bus, Howard Rheingold, IBM and the Holocaust, impulse control, income inequality, index fund, iterative process, Jaron Lanier, Jeff Bezos, jimmy wales, job automation, Joseph Schumpeter, Kickstarter, loss aversion, Lyft, Marc Andreessen, Mark Zuckerberg, market bubble, market fundamentalism, Marshall McLuhan, means of production, medical bankruptcy, minimum viable product, Mitch Kapor, Naomi Klein, Network effects, new economy, Norbert Wiener, Oculus Rift, passive investing, payday loans, peer-to-peer lending, Peter Thiel, post-industrial society, profit motive, quantitative easing, race to the bottom, recommendation engine, reserve currency, RFID, Richard Stallman, ride hailing / ride sharing, Ronald Reagan, Satoshi Nakamoto, Second Machine Age, shareholder value, sharing economy, Silicon Valley, Snapchat, social graph, software patent, Steve Jobs, TaskRabbit, The Future of Employment, trade route, transportation-network company, Turing test, Uber and Lyft, Uber for X, uber lyft, unpaid internship, Y Combinator, young professional, zero-sum game, Zipcar

Finding an “angel” with ready cash was easier than finding a kid who knew how to mark up a Web page. Over the next decade, a basic playbook was established for how a startup gets to IPO or acquisition. Get an idea in college, find a programmer in the same dorm, build a prototype, write a business plan, present it at a conference, do an “angel round,” hire a couple more programmers to get to “minimum viable product,” raise a “Series A” round of investment, launch on the Web or App Store, achieve or manufacture huge numbers, write a new business plan with some scalable vision, raise a “Series B” round (if you absolutely need more funding), then get acquired or do an IPO. Terms such as angel round and Series A are now as common in programmer vocabulary as client and server. And, as young college-dropout CEOs quickly realize, this business vocabulary is more important than coding languages to their success in the startup game.


pages: 368 words: 96,825

Bold: How to Go Big, Create Wealth and Impact the World by Peter H. Diamandis, Steven Kotler

3D printing, additive manufacturing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, Charles Lindbergh, cloud computing, creative destruction, crowdsourcing, Daniel Kahneman / Amos Tversky, dematerialisation, deskilling, disruptive innovation, Elon Musk, en.wikipedia.org, Exxon Valdez, fear of failure, Firefox, Galaxy Zoo, Google Glasses, Google Hangouts, gravity well, ImageNet competition, industrial robot, Internet of things, Jeff Bezos, John Harrison: Longitude, John Markoff, Jono Bacon, Just-in-time delivery, Kickstarter, Kodak vs Instagram, Law of Accelerating Returns, Lean Startup, life extension, loss aversion, Louis Pasteur, low earth orbit, Mahatma Gandhi, Marc Andreessen, Mark Zuckerberg, Mars Rover, meta analysis, meta-analysis, microbiome, minimum viable product, move fast and break things, Narrative Science, Netflix Prize, Network effects, Oculus Rift, optical character recognition, packet switching, PageRank, pattern recognition, performance metric, Peter H. Diamandis: Planetary Resources, Peter Thiel, pre–internet, Ray Kurzweil, recommendation engine, Richard Feynman, ride hailing / ride sharing, risk tolerance, rolodex, self-driving car, sentiment analysis, shareholder value, Silicon Valley, Silicon Valley startup, skunkworks, Skype, smart grid, stem cell, Stephen Hawking, Steve Jobs, Steven Levy, Stewart Brand, superconnector, technoutopianism, telepresence, telepresence robot, Turing test, urban renewal, web application, X Prize, Y Combinator, zero-sum game

The traditional methodology involved creating a product in secret, usually over a number of years, then bomb-dropping it on the public with one massive launch. Unfortunately, in a world of increasingly rapid change, spending a few years separated from one’s customers can mean bankruptcy. Enter agile design, an ideology that emphasizes fast feedback loops.9 Instead of launching a finely polished gem, companies now release a “minimum viable product,” then get immediate feedback from customers, incorporate that feedback into the next iteration, release a slightly upgraded version, and repeat. Instead of design cycles that last years, the agile process takes weeks and produces results directly in line with consumer expectations. This is rapid iteration. “We saw this with Gmail,” says Salim Ismail.10 “Instead of sending designers off to spend years coming up with the best twenty-five features anyone would ever want in an email program, Google released a version with around three features and asked their customers what else they wanted the program to do.


pages: 382 words: 105,819

Zucked: Waking Up to the Facebook Catastrophe by Roger McNamee

4chan, Albert Einstein, algorithmic trading, AltaVista, Amazon Web Services, barriers to entry, Bernie Sanders, Boycotts of Israel, Cass Sunstein, cloud computing, computer age, cross-subsidies, data is the new oil, Donald Trump, Douglas Engelbart, Douglas Engelbart, Electric Kool-Aid Acid Test, Elon Musk, Filter Bubble, game design, income inequality, Internet of things, Jaron Lanier, Jeff Bezos, John Markoff, laissez-faire capitalism, Lean Startup, light touch regulation, Lyft, Marc Andreessen, Mark Zuckerberg, market bubble, Menlo Park, Metcalfe’s law, minimum viable product, Mother of all demos, move fast and break things, move fast and break things, Network effects, paypal mafia, Peter Thiel, pets.com, post-work, profit maximization, profit motive, race to the bottom, recommendation engine, Robert Mercer, Ronald Reagan, Sand Hill Road, self-driving car, Silicon Valley, Silicon Valley startup, Skype, Snapchat, social graph, software is eating the world, Stephen Hawking, Steve Jobs, Steven Levy, Stewart Brand, The Chicago School, Tim Cook: Apple, two-sided market, Uber and Lyft, Uber for X, uber lyft, Upton Sinclair, WikiLeaks, Yom Kippur War

Netflix, Box, Dropbox, Slack, and many other businesses were built on this model. Thus began the “lean startup” model. Without the huge expense and operational burden of creating a full tech infrastructure, new companies did not have to aim for perfection when they launched a new product, which had been Silicon Valley’s primary model to that point. For a fraction of the cost, they could create a minimum viable product (MVP), launch it, and see what happened. The lean startup model could work anywhere, but it worked best with cloud software, which could be updated as often as necessary. The first major industry created with the new model was social media, the Web 2.0 startups that were building networks of people rather than pages. Every day after launch, founders would study the data and tweak the product in response to customer feedback.


pages: 309 words: 114,984

The Digital Doctor: Hope, Hype, and Harm at the Dawn of Medicine’s Computer Age by Robert Wachter

"Robert Solow", activist fund / activist shareholder / activist investor, Affordable Care Act / Obamacare, AI winter, Airbnb, Atul Gawande, Captain Sullenberger Hudson, Checklist Manifesto, Chuck Templeton: OpenTable:, Clayton Christensen, collapse of Lehman Brothers, computer age, creative destruction, crowdsourcing, deskilling, disruptive innovation, en.wikipedia.org, Erik Brynjolfsson, everywhere but in the productivity statistics, Firefox, Frank Levy and Richard Murnane: The New Division of Labor, Google Glasses, Ignaz Semmelweis: hand washing, Internet of things, job satisfaction, Joseph Schumpeter, Kickstarter, knowledge worker, lifelogging, medical malpractice, medical residency, Menlo Park, minimum viable product, natural language processing, Network effects, Nicholas Carr, obamacare, pattern recognition, peer-to-peer, personalized medicine, pets.com, Productivity paradox, Ralph Nader, RAND corporation, Second Machine Age, self-driving car, Silicon Valley, Silicon Valley startup, six sigma, Skype, Snapchat, software as a service, Steve Jobs, Steven Levy, the payments system, The Wisdom of Crowds, Thomas Bayes, Toyota Production System, Uber for X, US Airways Flight 1549, Watson beat the top human players on Jeopardy!, Yogi Berra

“Athenahealth, BIDMC Ink Development Deal,” HealthLeaders Media, February 3, 2015. 232 Don Berwick, former head of Medicare Quoted in A. Gawande, “The Velluvial Matrix,” New Yorker, June 16, 2010. 232 In May 2014, activist investor David Einhorn Lopez and Penn, “Read David Einhorn’s Brutal Presentation.” Bush rebutted Einhorn in J. Wieczner, “Bush vs. Einhorn: How athenahealth’s CEO Met His Short-Seller,” Fortune, May 28, 2014. Chapter 25: Silicon Valley Meets Healthcare 235 “For thousands of years, guys like us” “Minimum Viable Product,” Silicon Valley (television series), HBO, 2014. 235 “Our investment convinced the IT world” Interview of David Blumenthal by the author, July 16, 2014. 236 “Health IT Sees First Billion Dollar Quarter” A. Gold, Politico Morning eHealth, July 17, 2014, available at http://www.politico.com/morningehealth/0714/morningehealth14675.html. 237 a … healthcare impresario named Matthew Holt Interview of Holt by the author, August 6, 2014. 237 He became interested in technology as a kid Interview of Nate Gross by the author, August 6, 2014. 238 One was Doximity www.doximity.com. 238 The other was Rock Health www.rockhealth.com. 240 The first is called Augmedix. www.augmedix.com.


pages: 561 words: 114,843

Startup CEO: A Field Guide to Scaling Up Your Business, + Website by Matt Blumberg

activist fund / activist shareholder / activist investor, airport security, Albert Einstein, bank run, Ben Horowitz, Broken windows theory, crowdsourcing, deskilling, fear of failure, high batting average, high net worth, hiring and firing, Inbox Zero, James Hargreaves, Jeff Bezos, job satisfaction, Kickstarter, knowledge economy, knowledge worker, Lean Startup, Mark Zuckerberg, minimum viable product, pattern recognition, performance metric, pets.com, rolodex, Rubik’s Cube, shareholder value, Silicon Valley, Skype

While the Lean Canvas uses some of the same criteria that I noted that I use above for vetting ideas, it’s the place where you start to document the specifics of those criteria so you can go out and test the things that must be true in order for your business model to work. Following is a section-by-section guide to test what must be true in each of the nine boxes of Maurya’s Lean Canvas. Problem What problem are you trying to solve, and for whom? In Steve Blank’s “Customer Development” model, defining your audience and your product come concurrently as you build a minimum viable product (MVP). Your solution needs to address a specific problem or pain point that affects a well-defined audience. You don’t want to develop “a solution in search of a problem” (see sidebar). The assumption you’re trying to test in this box on the Lean Canvas is that this type of person has this exact problem. FIGURE 2.1 Maurya’s Lean Canvas Business Plan Solution You can only describe your solution after defining your audience and their problems.


pages: 410 words: 119,823

Radical Technologies: The Design of Everyday Life by Adam Greenfield

3D printing, Airbnb, augmented reality, autonomous vehicles, bank run, barriers to entry, basic income, bitcoin, blockchain, business intelligence, business process, call centre, cellular automata, centralized clearinghouse, centre right, Chuck Templeton: OpenTable:, cloud computing, collective bargaining, combinatorial explosion, Computer Numeric Control, computer vision, Conway's Game of Life, cryptocurrency, David Graeber, dematerialisation, digital map, disruptive innovation, distributed ledger, drone strike, Elon Musk, Ethereum, ethereum blockchain, facts on the ground, fiat currency, global supply chain, global village, Google Glasses, IBM and the Holocaust, industrial robot, informal economy, information retrieval, Internet of things, James Watt: steam engine, Jane Jacobs, Jeff Bezos, job automation, John Conway, John Markoff, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, John von Neumann, joint-stock company, Kevin Kelly, Kickstarter, late capitalism, license plate recognition, lifelogging, M-Pesa, Mark Zuckerberg, means of production, megacity, megastructure, minimum viable product, money: store of value / unit of account / medium of exchange, natural language processing, Network effects, New Urbanism, Occupy movement, Oculus Rift, Pareto efficiency, pattern recognition, Pearl River Delta, performance metric, Peter Eisenman, Peter Thiel, planetary scale, Ponzi scheme, post scarcity, post-work, RAND corporation, recommendation engine, RFID, rolodex, Satoshi Nakamoto, self-driving car, sentiment analysis, shareholder value, sharing economy, Silicon Valley, smart cities, smart contracts, social intelligence, sorting algorithm, special economic zone, speech recognition, stakhanovite, statistical model, stem cell, technoutopianism, Tesla Model S, the built environment, The Death and Life of Great American Cities, The Future of Employment, transaction costs, Uber for X, undersea cable, universal basic income, urban planning, urban sprawl, Whole Earth Review, WikiLeaks, women in the workforce

Numbers like these are clearly a very strong incentive for talented developers to abandon the drudgery and anonymity of academic or corporate toil for chancier work in the startup sector, and so that is just what many of them now do. Surprisingly few of these entrepreneurially inclined developers actually intend to build and grow a sustainable business themselves, though. They are explicit about their intention to develop instead a “minimum viable product” as a technology or concept demonstrator, and more or less immediately thereafter flip their company to a deep-pocketed suitor. One of the upshots of this is that there’s a far larger, younger and more diverse cohort imagining and developing emerging technologies than ever before in history—and precisely because of means like GitHub, 3D printing and cheap Shenzhen production, virtually everyone among that cohort is able to generate prototypes of a sophistication that would have taxed the capabilities of the largest and wealthiest corporations of just a few years ago.


pages: 719 words: 181,090

Site Reliability Engineering: How Google Runs Production Systems by Betsy Beyer, Chris Jones, Jennifer Petoff, Niall Richard Murphy

Air France Flight 447, anti-pattern, barriers to entry, business intelligence, business process, Checklist Manifesto, cloud computing, combinatorial explosion, continuous integration, correlation does not imply causation, crowdsourcing, database schema, defense in depth, DevOps, en.wikipedia.org, fault tolerance, Flash crash, George Santayana, Google Chrome, Google Earth, information asymmetry, job automation, job satisfaction, Kubernetes, linear programming, load shedding, loose coupling, meta analysis, meta-analysis, microservices, minimum viable product, MVC pattern, performance metric, platform as a service, revision control, risk tolerance, side project, six sigma, the scientific method, Toyota Production System, trickle-down economics, web application, zero day

Although internal customers are generally more tolerant of rough edges and early alphas than external customers, it’s still necessary to provide documentation. SREs are busy, and if your solution is too difficult or confusing, they will write their own solution. Set expectations When an engineer with years of familiarity in a problem space begins designing a product, it’s easy to imagine a utopian end-state for the work. However, it’s important to differentiate aspirational goals of the product from minimum success criteria (or Minimum Viable Product). Projects can lose credibility and fail by promising too much, too soon; at the same time, if a product doesn’t promise a sufficiently rewarding outcome, it can be difficult to overcome the necessary activation energy to convince internal teams to try something new. Demonstrating steady, incremental progress via small releases raises user confidence in your team’s ability to deliver useful software.


pages: 579 words: 183,063

Tribe of Mentors: Short Life Advice From the Best in the World by Timothy Ferriss

23andMe, A Pattern Language, agricultural Revolution, Airbnb, Albert Einstein, Bayesian statistics, bitcoin, Black Swan, blockchain, Brownian motion, Buckminster Fuller, Clayton Christensen, cloud computing, cognitive dissonance, Colonization of Mars, corporate social responsibility, cryptocurrency, David Heinemeier Hansson, dematerialisation, don't be evil, double helix, effective altruism, Elon Musk, Ethereum, ethereum blockchain, family office, fear of failure, Gary Taubes, Geoffrey West, Santa Fe Institute, Google Hangouts, Gödel, Escher, Bach, haute couture, helicopter parent, high net worth, In Cold Blood by Truman Capote, income inequality, index fund, Jeff Bezos, job satisfaction, Johann Wolfgang von Goethe, Kevin Kelly, Lao Tzu, Law of Accelerating Returns, Lyft, Mahatma Gandhi, Marc Andreessen, Marshall McLuhan, Mikhail Gorbachev, minimum viable product, move fast and break things, move fast and break things, Naomi Klein, non-fiction novel, Peter Thiel, profit motive, Ralph Waldo Emerson, Ray Kurzweil, Saturday Night Live, side project, Silicon Valley, Skype, smart cities, smart contracts, Snapchat, Steve Jobs, Steven Pinker, Stewart Brand, TaskRabbit, Tesla Model S, too big to fail, Turing machine, uber lyft, web application, Whole Earth Catalog, Y Combinator

Before working on BitTorrent, I was on an ill-fated project called Mojo Nation, which had a massive list of very cool features it was supposed to have, but due to lack of focus, it didn’t deliver well on any of them. After that experience (and being part of similar software project failures earlier) I decided to make a project that did only one thing and did it well, with the goal instead of succeeding being to not fail. Anything is better than never shipping. The result was BitTorrent. These days the term of art is “minimum viable product,” which is an overly clinical term for the ethos of forgetting about succeeding massively and instead focusing all your efforts on desperately trying to not fail. Abject failure is the result of most software development projects. If you could have a gigantic billboard anywhere with anything on it, what would it say? “Avoid sugar. Especially soda and juice. All other diet advice is noise.”


Seeking SRE: Conversations About Running Production Systems at Scale by David N. Blank-Edelman

Affordable Care Act / Obamacare, algorithmic trading, Amazon Web Services, bounce rate, business continuity plan, business process, cloud computing, cognitive bias, cognitive dissonance, commoditize, continuous integration, crowdsourcing, dark matter, database schema, Debian, defense in depth, DevOps, domain-specific language, en.wikipedia.org, fault tolerance, fear of failure, friendly fire, game design, Grace Hopper, information retrieval, Infrastructure as a Service, Internet of things, invisible hand, iterative process, Kubernetes, loose coupling, Lyft, Marc Andreessen, microservices, minimum viable product, MVC pattern, performance metric, platform as a service, pull request, RAND corporation, remote working, Richard Feynman, risk tolerance, Ruby on Rails, search engine result page, self-driving car, sentiment analysis, Silicon Valley, single page application, Snapchat, software as a service, software is eating the world, source of truth, the scientific method, Toyota Production System, web application, WebSocket, zero day

Many of the considerations involved in an open source adoption are resolved by a third-party solution, and they are on the hook for maintaining that operational stability. Neither adopt nor buy solutions invalidate the need for documentation, maintenance, monitoring, logging, tooling, automation, and all other aspects that define a service. The difference between a PoC, a functional prototype, a Minimum Viable Product (MVP), and a first-class service with high operational integrity resembles the distance between the sun and each planet. Toward the end of this chapter, we address some of the critical facets that define a first-class service. However, now that we’re at least considering the difference between build, buy, and adopt, we can address some additional points of consideration. Acknowledge Reality You’re a fantastic SRE.