reversible computing

13 results back to index


pages: 589 words: 147,053

The Age of Em: Work, Love and Life When Robots Rule the Earth by Robin Hanson

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

8-hour work day, artificial general intelligence, augmented reality, Berlin Wall, bitcoin, blockchain, brain emulation, business process, Clayton Christensen, cloud computing, correlation does not imply causation, demographic transition, Erik Brynjolfsson, ethereum blockchain, experimental subject, fault tolerance, financial intermediation, Flynn Effect, hindsight bias, job automation, job satisfaction, Just-in-time delivery, lone genius, Machinery of Freedom by David Friedman, market design, meta analysis, meta-analysis, Nash equilibrium, new economy, prediction markets, rent control, rent-seeking, reversible computing, risk tolerance, Silicon Valley, smart contracts, statistical model, stem cell, Thomas Malthus, trade route, Turing test, Vernor Vinge

While there has been no slowing in the fall of the average energy used per computation (Koomey and Naffziger 2015), processor speed gains slowed recently, and plans for many-layered chips suggest further difficulties roughly a decade from now. In addition, it seems that gains will slow even further around 2035, when computer chips must be redesigned to enable reversible computing. (Reversible computing is discussed in Chapter 6, Entropy section.) With reversible computing, gains in making parts smaller, faster, and cheaper have to be split between supporting more operations and running each operation more slowly to use less energy. Because of this, the cost per operation may only fall roughly half as fast as it otherwise would have fallen. And we may discover other limits to continued hardware gains. But even if hardware improvement rates fall by half compared with the familiar Moore’s law, we should still be able to cheaply emulate brains in fine detail within a century.

Because for adiabatic computers the cost of buying new hardware is about as important as the cost to power and cool that hardware, the logarithmic rate at which computing power becomes cheaper should be near the average of the logarithmic rates at which computer hardware becomes cheaper and the rates at which energy and cooling become cheaper. This is a reason why we might expect Moore’s law growth rates for active devices (not memory) to slow down by about a factor of two after around 2035 when nearly adiabatic reversible computing becomes important. Historically, the price of energy and cooling has fallen much slower than has the price of computer hardware. It might seem that when cooling is a major issue, computer hardware runs at as hot a temperature as feasible, as the rate at which heat is transferred via conduction is proportional to a local temperature difference. However, for adiabatic reversible computer hardware, the rate at which heat is generated is also roughly proportional to temperature, as it is determined fundamentally by the rate of bit erasure (also known as entropy production). Thus the best temperature at which to run such hardware is determined by other considerations.

As brains run at room temperature, use about 20 watts, and have about 100 billion neurons that each take a minimum of 20 milliseconds to react, brains in effect erase over a billion bits per neuron per minimum neuron reaction time. As there are roughly 1000 synapses per neuron on average, that is over a million bits erased per synapse per minimum neuron reaction time. Unless brain synapses are somehow doing the equivalent of a million logical operations per reaction time, the vast majority of the brain’s bit erasure must be non-logical. This suggests that human speed ems built on reversible computer hardware require far less than 20 watts of power. Another hint that most future computers will likely be miserly with energy is that the Earth has far more material to convert into computers than it has energy to run such computers at maximal rates. For example, by one plausible calculation of the typical energy consumption in a maximum-output nanotech-based machine (~10 watts per cubic centimeter), all of the light energy reaching Earth from the sun could be used by a single city of nanotech hardware 100 meters (~33 stories) tall and 10 kilometers on each side (Freitas 1999).

The Singularity Is Near: When Humans Transcend Biology by Ray Kurzweil

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

additive manufacturing, AI winter, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, anthropic principle, Any sufficiently advanced technology is indistinguishable from magic, artificial general intelligence, augmented reality, autonomous vehicles, Benoit Mandelbrot, Bill Joy: nanobots, bioinformatics, brain emulation, Brewster Kahle, Brownian motion, business intelligence, c2.com, call centre, carbon-based life, cellular automata, Claude Shannon: information theory, complexity theory, conceptual framework, Conway's Game of Life, cosmological constant, cosmological principle, cuban missile crisis, data acquisition, Dava Sobel, David Brooks, Dean Kamen, disintermediation, double helix, Douglas Hofstadter, en.wikipedia.org, epigenetics, factory automation, friendly AI, George Gilder, Gödel, Escher, Bach, informal economy, information retrieval, invention of the telephone, invention of the telescope, invention of writing, Isaac Newton, iterative process, Jaron Lanier, Jeff Bezos, job automation, job satisfaction, John von Neumann, Kevin Kelly, Law of Accelerating Returns, life extension, linked data, Loebner Prize, Louis Pasteur, mandelbrot fractal, Mikhail Gorbachev, mouse model, Murray Gell-Mann, mutually assured destruction, natural language processing, Network effects, new economy, Norbert Wiener, oil shale / tar sands, optical character recognition, pattern recognition, phenotype, premature optimization, randomized controlled trial, Ray Kurzweil, remote working, reversible computing, Richard Feynman, Richard Feynman, Rodney Brooks, Search for Extraterrestrial Intelligence, semantic web, Silicon Valley, Singularitarianism, speech recognition, statistical model, stem cell, Stephen Hawking, Stewart Brand, strong AI, superintelligent machines, technological singularity, Ted Kaczynski, telepresence, The Coming Technological Singularity, transaction costs, Turing machine, Turing test, Vernor Vinge, Y2K, Yogi Berra

Even at 1042 cps, a 2.2-pound "ultimate portable computer" would be able to perform the equivalent of all human thought over the last ten thousand years (assumed at ten billion human brains for ten thousand years) in ten microseconds.64 If we examine the "Exponential Growth of Computing" chart (p. 70), we see that this amount of computing is estimated to be available for one thousand dollars by 2080. A more conservative but compelling design for a massively parallel, reversible computer is Eric Drexler's patented nanocomputer design, which is entirely mechanical.65 Computations are performed by manipulating nanoscale rods, which are effectively spring-loaded. After each calculation, the rods containing intermediate values return to their original positions, thereby implementing the reverse computation. The device has a trillion (1012) processors and provides an overall rate of 1021 cps, enough to simulate one hundred thousand human brains in a cubic centimeter. Setting a Date for the Singularity. A more modest but still profound threshold will be achieved much earlier.

Because of nanotechnology's ability to manipulate matter and energy at the extremely fine scale of atoms and molecular fragments, the efficiency of using energy will be far greater, which will translate into lower energy requirements. Over the next several decades computing will make the transition to reversible computing. (See "The Limits of Computation" in chapter 3.) As I discussed, the primary energy need for computing with reversible logic gates is to correct occasional errors from quantum and thermal effects. As a result reversible computing has the potential to cut energy needs by as much as a factor of a billion, compared to nonreversible computing. Moreover, the logic gates and memory bits will be smaller, by at least a factor of ten in each dimension, reducing energy requirements by another thousand. Fully developed nanotechnology, therefore, will enable the energy requirements for each bit switch to be reduced by about a trillion.

CHAPTER THREE Achieving the Computational Capacity of the Human Brain107 The Sixth Paradigm of Computing Technology: Three-Dimensional Molecular Computing and Emerging Computational Technologies 107 The Bridge to 3-D Molecular Computing. Nanotubes Are Still the Best Bet. Computing with Molecules. Self-Assembly. Emulating Biology. Computing with DNA. Computing with Spin. Computing with Light. Quantum Computing. The Computational Capacity of the Human Brain 113 Accelerating the Availability of Human-Level Personal Computing. Human Memory Capacity. The Limits of Computation 116 Reversible Computing. How Smart Is a Rock? The Limits of Nanocomputing. Setting a Date for the Singularity. Memory and Computational Efficiency: A Rock Versus a Human Brain. Going Beyond the Ultimate: Pico- and Femtotechnology and Bending the Speed of Light. Going Back in Time. CHAPTER FOUR Achieving the Software of Human Intelligence: How to Reverse Engineer the Human Brain 127 Reverse Engineering the Brain: An Overview of the Task 127 New Brain-Imaging and Modeling Tools.


pages: 229 words: 67,599

The Logician and the Engineer: How George Boole and Claude Shannon Created the Information Age by Paul J. Nahin

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, Any sufficiently advanced technology is indistinguishable from magic, Claude Shannon: information theory, conceptual framework, Fellow of the Royal Society, finite state, four colour theorem, Georg Cantor, Grace Hopper, Isaac Newton, John von Neumann, knapsack problem, New Journalism, reversible computing, Richard Feynman, Richard Feynman, Schrödinger's Cat, Steve Jobs, Steve Wozniak, thinkpad, Turing machine, Turing test, V2 rocket

That is, if then Like T, F has the deep physical property I alluded to earlier that I’ll discuss in the final section of this chapter. A final observation: an important property of the Fredkin gate, a property not shared by the Toffoli gate, is the preservation of parity. That is, the outputs of a Fredkin gate always have the same number of 1s and 0s as do the inputs.6 10.4 THERMODYNAMICS OF LOGIC The reason for our interest in logically reversible computation becomes clear once we ask the following question: for the logically irreversible gates, where does the destroyed information “go”? It appears as heat! An implicit recognition of this can be found as long ago as 1929, in an important thermodynamics paper by the Hungarian physicist Leo Szilard (1898–1964).7 The explicit tying together of information, energy, and computation in analysts’ minds is, however, almost certainly due to a remark made by the Institute for Advanced Study mathematician John von Neumann (1903–1957) in a December 1949 lecture at the University of Illinois.8 In that lecture he asserted that the minimum energy Emin associated with manipulating a bit to be kT ln(2) joules (J), where T is the temperature on the Kelvin scale and k is Boltzmann’s constant (k = 1.38. 10−23).9 (Power is energy per unit time and so, just to keep the scale of this in mind, 1 = 1 = 1 watt) At “room temperature,” that is, at T = 300 K, this minimum energy is 2.87 · 10−21 J, a very tiny amount of energy.

An implicit recognition of this can be found as long ago as 1929, in an important thermodynamics paper by the Hungarian physicist Leo Szilard (1898–1964).7 The explicit tying together of information, energy, and computation in analysts’ minds is, however, almost certainly due to a remark made by the Institute for Advanced Study mathematician John von Neumann (1903–1957) in a December 1949 lecture at the University of Illinois.8 In that lecture he asserted that the minimum energy Emin associated with manipulating a bit to be kT ln(2) joules (J), where T is the temperature on the Kelvin scale and k is Boltzmann’s constant (k = 1.38. 10−23).9 (Power is energy per unit time and so, just to keep the scale of this in mind, 1 = 1 = 1 watt) At “room temperature,” that is, at T = 300 K, this minimum energy is 2.87 · 10−21 J, a very tiny amount of energy. As a comparison, every time one of the neurons in your brain “fires” (see the “majority logic” discussion in Chapter 6), the energy involved is a hundred billion (1011) times larger than von Neumann’s Emin!10 The existence of logically reversible computation, which doesn’t destroy information and so avoids the fundamental cause of heat, makes it plausible that it might be possible to build computers that could operate below von Neumann’s Emin. This is of great practical interest because, while Emin may be very tiny, in a modern VLSI (Very Large-Scale Integrated) computer circuit chip running at a high clock rate, the amount of heat energy produced can result in substantial power levels.

He first designed the so-called difference engine and then the analytical engine, both to be built from gears, levers, ratchets, springs, nuts, and bolts. Babbage actually built neither one, but versions of the difference engine were constructed later by others. The design of mechanical computers can actually be traced back hundreds of years before Baggage: see Herman H. Goldstein, The Computer from Pascal to von Neumann, Princeton University Press, 1972. 4. Charles H. Bennett, “Notes on the History of Reversible Computation,” IBM Journal of Research and Development, January 1988, pp. 16–23. 5. Charles H. Bennett and Rolf Landauer, “The Fundamental Limits of Computation,” Scientific American, July 1985, pp. 48–56. The opening quotation to this chapter comes from this paper. 6. In Feynman Lectures on Computation (edited by A.J.G. Hey and R.W. Allen), Addison-Wesley, 1996, the American physicist Richard Feynman (1918–1988) says of this conservation property (p. 39): “Fredkin … demanded that not only must a gate be reversible, but the number of 1s and 0s should never change.


pages: 230

Purely Functional Data Structures by Chris Okasaki

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

reversible computing, Turing machine, type inference

Instead, we periodically rotate the queue by moving all the elements of the rear stream to the end of the front stream, replacing f with f -H- reverse r and setting the new rear stream to empty. Note that this transformation does not affect the relative ordering of the elements. When should we rotate the queue? Recall that reverse is a monolithic function. We must therefore set up the computation far enough in advance to be able to discharge all its debits by the time its result is needed. The reverse computation takes \r\ steps, so we allocate \r\ debits to account for its cost. (For now we ignore the cost of the -H- operation). The earliest the reverse suspension could be forced is after | f | applications of tail, so if we rotate the queue when \r\ « \f\ and discharge one debit per operation, then we will have paid for the reverse by the time it is executed. In fact, we rotate the queue whenever r becomes one longer than f, thereby maintaining the invariant that \f\ > \r\.

Bootstrapped queues based on structural decomposition. Note that checkQ and checkF call snoc and tail, which in turn call checkQ. These functions must therefore all be defined mutually recursively. The complete implementation appears in Figure 10.2. These queues create a suspension to reverse the rear list at exactly the same time as banker's queues, and force the suspension one operation earlier than banker's queues. Thus, since the reverse computation contributes only 0(1) amortized time to each operation on banker's queues, it also contributes only 0(1) amortized time to each operation on bootstrapped queues. However, the running times of snoc and tail are not constant! Note that snoc calls checkQ, which in turn might call snoc on m. In this way we might get a cascade of calls to snoc, one at each level of the queue. However, successive lists in m at least double in size so the length of m is O(log n).


pages: 510 words: 120,048

Who Owns the Future? by Jaron Lanier

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, 4chan, Affordable Care Act / Obamacare, Airbnb, augmented reality, automated trading system, barriers to entry, bitcoin, book scanning, Burning Man, call centre, carbon footprint, cloud computing, computer age, crowdsourcing, David Brooks, David Graeber, delayed gratification, digital Maoism, en.wikipedia.org, facts on the ground, Filter Bubble, financial deregulation, Fractional reserve banking, Francis Fukuyama: the end of history, George Akerlof, global supply chain, global village, Haight Ashbury, hive mind, if you build it, they will come, income inequality, informal economy, invisible hand, Jacquard loom, Jaron Lanier, Jeff Bezos, job automation, Kevin Kelly, Khan Academy, Kickstarter, Kodak vs Instagram, life extension, Long Term Capital Management, Mark Zuckerberg, meta analysis, meta-analysis, moral hazard, mutually assured destruction, Network effects, new economy, Norbert Wiener, obamacare, packet switching, Peter Thiel, place-making, Plutocrats, plutocrats, Ponzi scheme, post-oil, pre–internet, race to the bottom, Ray Kurzweil, rent-seeking, reversible computing, Richard Feynman, Richard Feynman, Ronald Reagan, self-driving car, side project, Silicon Valley, Silicon Valley ideology, Silicon Valley startup, Skype, smart meter, stem cell, Steve Jobs, Steve Wozniak, Stewart Brand, Ted Nelson, The Market for Lemons, Thomas Malthus, too big to fail, trickle-down economics, Turing test, Vannevar Bush, WikiLeaks

Computation is the demarcation of a little part of the universe, called a computer, which is engineered to be very well understood and controllable, so that it closely approximates a deterministic, non-entropic process. But in order for a computer to run, the surrounding parts of the universe must take on the waste heat, the randomness. You can create a local shield against entropy, but your neighbors will always pay for it.* *A rare experimental machine called a “reversible” computer never forgets, so that any computation can be run backward as well as forward. Such devices run cool! This is an example of how thermodynamics and computation interact. Reversible computers don’t radiate as much heat; forgetting radiates randomness, which is the same thing as heating up the neighborhood. There is a fundamental problem with transposing that plan to economics: A marketplace is a system of competing players, each of whom would ideally be working from a different, but not an a priori better or worse, information position.

., 75, 91, 266–67 New York Times, 109 Nobel Prize, 40, 118, 143n nodes, network, 156, 227, 230, 241–43, 350 “no free lunch” principle, 55–56, 59–60 nondeterministic music, 23n nonlinear solutions, 149–50 nonprofit share sites, 59n, 94–95 nostalgia, 129–32 NRO, 199–200 nuclear power, 133 nuclear weapons, 127, 296 nursing, 97–100, 123, 296n nursing homes, 97–100, 269 Obama, Barack, 79, 100 “Obamacare,” 100n obsolescence, 89, 95 oil resources, 43, 133 online stores, 171 Ono, Yoko, 212 ontologies, 124n, 196 open-source applications, 206, 207, 272, 310–11 optical illusions, 121 optimism, 32–35, 45, 130, 138–40, 218, 230n, 295 optimization, 144–47, 148, 153, 154–55, 167, 202, 203 Oracle, 265 Orbitz, 63, 64, 65 organ donors, 190, 191 ouroboros, 154 outcomes, economic, 40–41, 144–45 outsourcing, 177–78, 185 Owens, Buck, 256 packet switching, 228–29 Palmer, Amanda, 186–87 Pandora, 192 panopticons, 308 papacy, 190 paper money, 34n parallel computers, 147–48, 149, 151 paranoia, 309 Parrish, Maxfield, 214 particle interactions, 196 party machines, 202 Pascal, Blaise, 132, 139 Pascal’s Wager, 139 passwords, 307, 309 “past-oriented money,” 29–31, 35, 284–85 patterns, information, 178, 183, 184, 188–89 Paul, Ron, 33n Pauli exclusion principle, 181, 202 PayPal, 60, 93, 326 peasants, 565 pensions, 95, 99 Perestroika (Kushner), 165 “perfect investments,” 59–67, 77–78 performances, musical, 47–48, 51, 186–87, 253 perpetual motion, 55 Persian Gulf, 86 personal computers (PCs), 158, 182n, 214, 223, 229 personal information systems, 110, 312–16, 317 Pfizer, 265 pharmaceuticals industry, 66–67, 100–106, 123, 136, 203 philanthropy, 117 photography, 53, 89n, 92, 94, 309–11, 318, 319, 321 photo-sharing services, 53 physical trades, 292 physicians, 66–67 physics, 88, 153n, 167n Picasso, Pablo, 108 Pinterest, 180–81, 183 Pirate Party, 49, 199, 206, 226, 253, 284, 318 placebos, 112 placement fees, 184 player pianos, 160–61 plutocracy, 48, 291–94, 355 police, 246, 310, 311, 319–21, 335 politics, 13–18, 21, 22–25, 47–48, 85, 122, 124–26, 128, 134–37, 149–51, 155, 167, 199–234, 295–96, 342 see also conservatism; liberalism; libertarianism Ponzi schemes, 48 Popper, Karl, 189n popular culture, 111–12, 130, 137–38, 139, 159 “populating the stack,” 273 population, 17, 34n, 86, 97–100, 123, 125, 132, 133, 269, 296n, 325–26, 346 poverty, 37–38, 42, 44, 53–54, 93–94, 137, 148, 167, 190, 194, 253, 256, 263, 290, 291–92 power, personal, 13–15, 53, 60, 62–63, 86, 114, 116, 120, 122, 158, 166, 172–73, 175, 190, 199, 204, 207, 208, 278–79, 290, 291, 302–3, 308–9, 314, 319, 326, 344, 360 Presley, Elvis, 211 Priceline, 65 pricing strategies, 1–2, 43, 60–66, 72–74, 145, 147–48, 158, 169–74, 226, 261, 272–75, 289, 317–24, 331, 337–38 printers, 90, 99, 154, 162, 212, 269, 310–11, 316, 331, 347, 348, 349 privacy, 1–2, 11, 13–15, 25, 50–51, 64, 99, 108–9, 114–15, 120–21, 152, 177n, 199–200, 201, 204, 206–7, 234–35, 246, 272, 291, 305, 309–13, 314, 315–16, 317, 319–24 privacy rights, 13–15, 25, 204, 305, 312–13, 314, 315–16, 321–22 product design and development, 85–89, 117–20, 128, 136–37, 145, 154, 236 productivity, 7, 56–57, 134–35 profit margins, 59n, 71–72, 76–78, 94–95, 116, 177n, 178, 179, 207, 258, 274–75, 321–22 progress, 9–18, 20, 21, 37, 43, 48, 57, 88, 98, 123, 124–40, 130–37, 256–57, 267, 325–31, 341–42 promotions, 62 property values, 52 proprietary hardware, 172 provenance, 245–46, 247, 338 pseudo-asceticism, 211–12 public libraries, 293 public roads, 79–80 publishers, 62n, 92, 182, 277–78, 281, 347, 352–60 punishing vs. rewarding network effects, 169–74, 182, 183 quants, 75–76 quantum field theory, 167n, 195 QuNeo, 117, 118, 119 Rabois, Keith, 185 “race to the bottom,” 178 radiant risk, 61–63, 118–19, 120, 156, 183–84 Ragnarok, 30 railroads, 43, 172 Rand, Ayn, 167, 204 randomness, 143 rationality, 144 Reagan, Ronald, 149 real estate, 33, 46, 49–52, 61, 78, 95–96, 99, 193, 224, 227, 239, 245, 255, 274n, 289n, 296, 298, 300, 301 reality, 55–56, 59–60, 124n, 127–28, 154–56, 161, 165–68, 194–95, 203–4, 216–17, 295–303, 364–65 see also Virtual Reality (VR) reason, 195–96 recessions, economic, 31, 54, 60, 76–77, 79, 151–52, 167, 204, 311, 336–37 record labels, 347 recycling, 88, 89 Reddit, 118n, 186, 254 reductionism, 184 regulation, economic, 37–38, 44, 45–46, 49–50, 54, 56, 69–70, 77–78, 266n, 274, 299–300, 311, 321–22, 350–51 relativity theory, 167n religion, 124–25, 126, 131, 139, 190, 193–95, 211–17, 293, 300n, 326 remote computers, 11–12 rents, 144 Republican Party, 79, 202 research and development, 40–45, 85–89, 117–20, 128, 136–37, 145, 154, 215, 229–30, 236 retail sector, 69, 70–74, 95–96, 169–74, 272, 349–51, 355–56 retirement, 49, 150 revenue growth plans, 173n revenues, 149, 149, 150, 151, 173n, 225, 234–35, 242, 347–48 reversible computers, 143n revolutions, 199, 291, 331 rhythm, 159–62 Rich Dad, Poor Dad (Kiyosaki), 46 risk, 54, 55, 57, 59–63, 71–72, 85, 117, 118–19, 120, 156, 170–71, 179, 183–84, 188, 242, 277–81, 284, 337, 350 externalization of, 59n, 117, 277–81 risk aversion, 188 risk pools, 277–81, 284 risk radiation, 61–63, 118–19, 120, 156, 183–84 robo call centers, 177n robotic cars, 90–92 robotics, robots, 11, 12, 17, 23, 42, 55, 85–86, 90–92, 97–100, 111, 129, 135–36, 155, 157, 162, 260, 261, 269, 296n, 342, 359–60 Roman Empire, 24–25 root nodes, 241 Rousseau, Jean-Jacques, 129 Rousseau humor, 126, 129, 130–31 routers, 171–72 royalties, 47, 240, 254, 263–64, 323, 338 Rubin, Edgar, 121 rupture, 66–67 salaries, 10, 46–47, 50–54, 152, 178, 270–71, 287–88, 291–94, 338–39, 365 sampling, 71–72, 191, 221, 224–26, 259 San Francisco, University of, 190 satellites, 110 savings, 49, 72–74 scalable solutions, 47 scams, 119–21, 186, 275n, 287–88, 299–300 scanned books, 192, 193 SceneTap, 108n Schmidt, Eric, 305n, 352 Schwartz, Peter, 214 science fiction, 18, 126–27, 136, 137–38, 139, 193, 230n, 309, 356n search engines, 51, 60, 70, 81, 120, 191, 267, 289, 293 Second Life, 270, 343 Secret, The (Byrne), 216 securitization, 76–78, 99, 289n security, 14–15, 175, 239–40, 305–8, 345 self-actualization, 211–17 self-driving vehicles, 90–92, 98, 311, 343, 367 servants, 22 servers, 12n, 15, 31, 53–57, 71–72, 95–96, 143–44, 171, 180, 183, 206, 245, 358 see also Siren Servers “Sexy Sadie,” 213 Shakur, Tupac, 329 Shelley, Mary, 327 Short History of Progress, A (Wright), 132 “shrinking markets,” 66–67 shuttles, 22, 23n, 24 signal-processing algorithms, 76–78, 148 silicon chips, 10, 86–87 Silicon Valley, 12, 13, 14, 21, 34n, 56, 59, 60, 66–67, 70, 71, 75–76, 80, 93, 96–97, 100, 102, 108n, 125n, 132, 136, 154, 157, 162, 170, 179–89, 192, 193, 200, 207, 210, 211–18, 228, 230, 233, 258, 275n, 294, 299–300, 325–31, 345, 349, 352, 354–58 singularity, 22–25, 125, 215, 217, 327–28, 366, 367 Singularity University, 193, 325, 327–28 Sirenic Age, 66n, 354 Siren Servers, 53–57, 59, 61–64, 65, 66n, 69–78, 82, 91–99, 114–19, 143–48, 154–56, 166–89, 191, 200, 201, 203, 210n, 216, 235, 246–50, 258, 259, 269, 271, 272, 280, 285, 289, 293–94, 298, 301, 302–3, 307–10, 314–23, 326, 336–51, 354, 365, 366 Siri, 95 skilled labor, 99–100 Skout, 280n Skype, 95, 129 slavery, 22, 23, 33n Sleeper, 130 small businesses, 173 smartphones, 34n, 39, 162, 172, 192, 269n, 273 Smith, Adam, 121, 126 Smolin, Lee, 148n social contract, 20, 49, 247, 284, 288, 335, 336 social engineering, 112–13, 190–91 socialism, 14, 128, 254, 257, 341n social mobility, 66, 97, 292–94 social networks, 18, 51, 56, 60, 70, 81, 89, 107–9, 113, 114, 129, 167–68, 172–73, 179, 180, 190, 199, 200–201, 202, 204, 227, 241, 242–43, 259, 267, 269n, 274–75, 280n, 286, 307–8, 317, 336, 337, 343, 349, 358, 365–66 see also Facebook social safety nets, 10, 44, 54, 202, 251, 293 Social Security, 251, 345 software, 7, 9, 11, 14, 17, 68, 86, 99, 100–101, 128, 129, 147, 154, 155, 165, 172–73, 177–78, 182, 192, 234, 236, 241–42, 258, 262, 273–74, 283, 331, 347, 357 software-mediated technology, 7, 11, 14, 86, 100–101, 165, 234, 236, 258, 347 South Korea, 133 Soviet Union, 70 “space elevator pitch,” 233, 342, 361 space travel, 233, 266 Spain, 159–60 spam, 178, 275n spending levels, 287–88 spirituality, 126, 211–17, 325–31, 364 spreadsheet programs, 230 “spy data tax,” 234–35 Square, 185 Stalin, Joseph, 125n Stanford Research Institute (SRI), 215 Stanford University, 60, 75, 90, 95, 97, 101, 102, 103, 162, 325 Starr, Ringo, 256 Star Trek, 138, 139, 230n startup companies, 39, 60, 69, 93–94, 108n, 124n, 136, 179–89, 265, 274n, 279–80, 309–10, 326, 341, 343–45, 348, 352, 355 starvation, 123 Star Wars, 137 star (winner-take-all) system, 38–43, 50, 54–55, 204, 243, 256–57, 263, 329–30 statistics, 11, 20, 71–72, 75–78, 90–91, 93, 110n, 114–15, 186, 192 “stickiness,” 170, 171 stimulus, economic, 151–52 stoplights, 90 Strangelove humor, 127 student debt, 92, 95 “Study 27,” 160 “Study 36,” 160 Sumer, 29 supergoop, 85–89 supernatural phenomena, 55, 124–25, 127, 132, 192, 194–95, 300 supply chain, 70–72, 174, 187 Supreme Court, U.S., 104–5 surgery, 11–13, 17, 18, 98, 157–58, 363 surveillance, 1–2, 11, 14, 50–51, 64, 71–72, 99, 108–9, 114–15, 120–21, 152, 177n, 199–200, 201, 206–7, 234–35, 246, 272, 291, 305, 309–11, 315, 316, 317, 319–24 Surviving Progress, 132 sustainable economies, 235–37, 285–87 Sutherland, Ivan, 221 swarms, 99, 109 synthesizers, 160 synthetic biology, 162 tablets, 85, 86, 87, 88, 113, 162, 229 Tahrir Square, 95 Tamagotchis, 98 target ads, 170 taxation, 44, 45, 49, 52, 60, 74–75, 77, 82, 149, 149, 150, 151, 202, 210, 234–35, 263, 273, 289–90 taxis, 44, 91–92, 239, 240, 266–67, 269, 273, 311 Teamsters, 91 TechCrunch, 189 tech fixes, 295–96 technical schools, 96–97 technologists (“techies”), 9–10, 15–16, 45, 47–48, 66–67, 88, 122, 124, 131–32, 134, 139–40, 157–62, 165–66, 178, 193–94, 295–98, 307, 309, 325–31, 341, 342, 356n technology: author’s experience in, 47–48, 62n, 69–72, 93–94, 114, 130, 131–32, 153, 158–62, 178, 206–7, 228, 265, 266–67, 309–10, 325, 328, 343, 352–53, 362n, 364, 365n, 366 bio-, 11–13, 17, 18, 109–10, 162, 330–31 chaos and, 165–66, 273n, 331 collusion in, 65–66, 72, 169–74, 255, 350–51 complexity of, 53–54 costs of, 8, 18, 72–74, 87n, 136–37, 170–71, 176–77, 184–85 creepiness of, 305–24 cultural impact of, 8–9, 21, 23–25, 53, 130, 135–40 development and emergence of, 7–18, 21, 53–54, 60–61, 66–67, 85–86, 87, 97–98, 129–38, 157–58, 182, 188–90, 193–96, 217 digital, 2–3, 7–8, 15–16, 18, 31, 40, 43, 50–51, 132, 208 economic impact of, 1–3, 15–18, 29–30, 37, 40, 53–54, 60–66, 71–74, 79–110, 124, 134–37, 161, 162, 169–77, 181–82, 183, 184–85, 218, 254, 277–78, 298, 335–39, 341–51, 357–58 educational, 92–97 efficiency of, 90, 118, 191 employment in, 56–57, 60, 71–74, 79, 123, 135, 178 engineering for, 113–14, 123–24, 192, 194, 217, 218, 326 essential vs. worthless, 11–12 failure of, 188–89 fear of (technophobia), 129–32, 134–38 freedom as issue in, 32–33, 90–92, 277–78, 336 government influence in, 158, 199, 205–6, 234–35, 240, 246, 248–51, 307, 317, 341, 345–46, 350–51 human agency and, 8–21, 50–52, 85, 88, 91, 124–40, 144, 165–66, 175–78, 191–92, 193, 217, 253–64, 274–75, 283–85, 305–6, 328, 341–51, 358–60, 361, 362, 365–67 ideas for, 123, 124, 158, 188–89, 225, 245–46, 286–87, 299, 358–60 industrial, 49, 83, 85–89, 123, 132, 154, 343 information, 7, 32–35, 49, 66n, 71–72, 109, 110, 116, 120, 125n, 126, 135, 136, 254, 312–16, 317 investment in, 66, 181, 183, 184, 218, 277–78, 298, 348 limitations of, 157–62, 196, 222 monopolies for, 60, 65–66, 169–74, 181–82, 187–88, 190, 202, 326, 350 morality and, 50–51, 72, 73–74, 188, 194–95, 262, 335–36 motivation and, 7–18, 85–86, 97–98, 216 nano-, 11, 12, 17, 162 new vs. old, 20–21 obsolescence of, 89, 97 political impact of, 13–18, 22–25, 85, 122, 124–26, 128, 134–37, 199–234, 295–96, 342 progress in, 9–18, 20, 21, 37, 43, 48, 57, 88, 98, 123, 124–40, 130–37, 256–57, 267, 325–31, 341–42 resources for, 55–56, 157–58 rupture as concept in, 66–67 scams in, 119–21, 186, 275n, 287–88, 299–300 singularity of, 22–25, 125, 215, 217, 327–28, 366, 367 social impact of, 9–21, 124–40, 167n, 187, 280–81, 310–11 software-mediated, 7, 11, 14, 86, 100–101, 165, 234, 236, 258, 347 startup companies in, 39, 60, 69, 93–94, 108n, 124n, 136, 179–89, 265, 274n, 279–80, 309–10, 326, 341, 343–45, 348, 352, 355 utopian, 13–18, 21, 31, 37–38, 45–46, 96, 128, 130, 167, 205, 207, 265, 267, 270, 283, 290, 291, 308–9, 316 see also specific technologies technophobia, 129–32, 134–38 television, 86, 185–86, 191, 216, 267 temperature, 56, 145 Ten Commandments, 300n Terminator, The, 137 terrorism, 133, 200 Tesla, Nikola, 327 Texas, 203 text, 162, 352–60 textile industry, 22, 23n, 24, 135 theocracy, 194–95 Theocracy humor, 124–25 thermodynamics, 88, 143n Thiel, Peter, 60, 93, 326 thought experiments, 55, 139 thought schemas, 13 3D printers, 7, 85–89, 90, 99, 154, 162, 212, 269, 310–11, 316, 331, 347, 348, 349 Thrun, Sebastian, 94 Tibet, 214 Time Machine, The (Wells), 127, 137, 261, 331 topology, network, 241–43, 246 touchscreens, 86 tourism, 79 Toyota Prius, 302 tracking services, 109, 120–21, 122 trade, 29 traffic, 90–92, 314 “tragedy of the commons,” 66n Transformers, 98 translation services, 19–20, 182, 191, 195, 261, 262, 284, 338 transparency, 63–66, 74–78, 118, 176, 190–91, 205–6, 278, 291, 306–9, 316, 336 transportation, 79–80, 87, 90–92, 123, 258 travel agents, 64 Travelocity, 65 travel sites, 63, 64, 65, 181, 279–80 tree-shaped networks, 241–42, 243, 246 tribal dramas, 126 trickle-down effect, 148–49, 204 triumphalism, 128, 157–62 tropes (humors), 124–40, 157, 170, 230 trust, 32–34, 35, 42, 51–52 Turing, Alan, 127–28, 134 Turing’s humor, 127–28, 191–94 Turing Test, 330 Twitter, 128, 173n, 180, 182, 188, 199, 200n, 201, 204, 245, 258, 259, 349, 365n 2001: A Space Odyssey, 137 two-way links, 1–2, 227, 245, 289 underemployment, 257–58 unemployment, 7–8, 22, 79, 85–106, 117, 151–52, 234, 257–58, 321–22, 331, 343 “unintentional manipulation,” 144 United States, 25, 45, 54, 79–80, 86, 138, 199–204 universities, 92–97 upper class, 45, 48 used car market, 118–19 user interface, 362–63, 364 utopianism, 13–18, 21, 30, 31, 37–38, 45–46, 96, 128, 130, 167, 205, 207, 265, 267, 270, 283, 290, 291, 308–9, 316 value, economic, 21, 33–35, 52, 61, 64–67, 73n, 108, 283–90, 299–300, 321–22, 364 value, information, 1–3, 15–16, 20, 210, 235–43, 257–58, 259, 261–63, 271–75, 321–24, 358–60 Values, Attitudes, and Lifestyles (VALS), 215 variables, 149–50 vendors, 71–74 venture capital, 66, 181, 218, 277–78, 298, 348 videos, 60, 100, 162, 185–86, 204, 223, 225, 226, 239, 240, 242, 245, 277, 287, 329, 335–36, 349, 354, 356 Vietnam War, 353n vinyl records, 89 viral videos, 185–86 Virtual Reality (VR), 12, 47–48, 127, 129, 132, 158, 162, 214, 283–85, 312–13, 314, 315, 325, 343, 356, 362n viruses, 132–33 visibility, 184, 185–86, 234, 355 visual cognition, 111–12 VitaBop, 100–106, 284n vitamins, 100–106 Voice, The, 185–86 “voodoo economics,” 149 voting, 122, 202–4, 249 Wachowski, Lana, 165 Wall Street, 49, 70, 76–77, 181, 184, 234, 317, 331, 350 Wal-Mart, 69, 70–74, 89, 174, 187, 201 Warhol, Andy, 108 War of the Worlds, The (Wells), 137 water supplies, 17, 18 Watts, Alan, 211–12 Wave, 189 wealth: aggregate or concentration of, 9, 42–43, 53, 60, 61, 74–75, 96, 97, 108, 115, 148, 157–58, 166, 175, 201, 202, 208, 234, 278–79, 298, 305, 335, 355, 360 creation of, 32, 33–34, 46–47, 50–51, 57, 62–63, 79, 92, 96, 120, 148–49, 210, 241–43, 270–75, 291–94, 338–39, 349 inequalities and redistribution of, 20, 37–45, 65–66, 92, 97, 144, 254, 256–57, 274–75, 286–87, 290–94, 298, 299–300 see also income levels weather forecasting, 110, 120, 150 weaving, 22, 23n, 24 webcams, 99, 245 websites, 80, 170, 200, 201, 343 Wells, H.


pages: 377 words: 97,144

Singularity Rising: Surviving and Thriving in a Smarter, Richer, and More Dangerous World by James D. Miller

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, affirmative action, Albert Einstein, artificial general intelligence, Asperger Syndrome, barriers to entry, brain emulation, cloud computing, cognitive bias, correlation does not imply causation, crowdsourcing, Daniel Kahneman / Amos Tversky, David Brooks, David Ricardo: comparative advantage, Deng Xiaoping, en.wikipedia.org, feminist movement, Flynn Effect, friendly AI, hive mind, impulse control, indoor plumbing, invention of agriculture, Isaac Newton, John von Neumann, knowledge worker, Long Term Capital Management, low skilled workers, Netflix Prize, neurotypical, pattern recognition, Peter Thiel, phenotype, placebo effect, prisoner's dilemma, profit maximization, Ray Kurzweil, recommendation engine, reversible computing, Richard Feynman, Richard Feynman, Rodney Brooks, Silicon Valley, Singularitarianism, Skype, statistical model, Stephen Hawking, Steve Jobs, supervolcano, technological singularity, The Coming Technological Singularity, the scientific method, Thomas Malthus, transaction costs, Turing test, Vernor Vinge, Von Neumann architecture

Reasons to Believe in the Likely Development of AI through Either a Kurzweil Merger, Clues from the Human Brain, Brain Emulation, or Creating an AI from Scratch: •The human brain exists, showing that it’s possible to create intelligent, flexible entities that can study their own intelligence. •The human brain runs slowly compared to what we think should be possible. As one AI theorist wrote, “Physically speaking, it ought to be possible to run a brain at a million times the speed without shrinking it, cooling it, or invoking reversible computing or quantum computing.”73 •The human brain is being studied by tens of thousands of neuroscientists, many of whom will undoubtedly (and at least for now, mostly unintentionally) provide clues to how to build AIs. •Human-level or better AIs would confer significant benefits on a nation’s military. •Long-term and well-studied trends support the probable continuation of Moore’s Law. •Future technologies, such as carbon nanotubes, will likely make it possible for companies like Intel to continue Moore’s Law.

See also thermonuclear war nuclear weapons, 24, 126 nutritional-supplement regime, 179 O Obama, Barack (President), 73 obsolescence, 144, 147 The Odyssey (Homer), 61 Omohundro, Steve, 25 Overcoming Bias (blog), 138, 207 P Pac-Man video game, 209 parallel processing, 18–19 Parkinson’s disease, 168–69 Pascal, Blaise, 208 patents and copyrights, 143 people, long term—oriented, 80 person, anonymous, 93 pharmaceutical product development, 183 phonetic pattern of language, 91 pirate maps, 184 placebo effect, 110–11 plagues, 36, 45, 78 plastic surgery, 89 Plath, Sylvia, 92 political correctness, 172 Polizzi, Eric, 5 population groups, 75–76, 96, 173 pornography, hard-core, 38, 195 pornography, Internet, 194 post-Singularity civilization, 199–200, 221 goods, 42 operating-system world, 41 pre-Singularity property will have value of, 188 pre-Singularity will be worthless, 187 property rights, 56, 188 race throughout the galaxy, 199 ultra-AI and chess, 132 value, 189 value of education, 192 value of money, 211 Praetorian Guard, 148 pre-Singularity destructive technologies, 201–2 investments, ultra-AI might obliterate the value of, 187 property rights, 56, 187–89 value of money, 211 prisoner-of-war camp, 31 Prisoners’ Dilemma AI development and, 47–53 annihilation of mankind, xix Chinese militaries and, 48–53 drug use and risk of schizophrenia or kidney failure, 160–62 unleaded vs. leaded petrol (gas), 57 US militaries and, 48–53 probe, self-replicating, 199–200 procrastination, 106 production wands, 145 pro-eugenic Chinese, ix prognosticators, 206–7 property owning, 147 property rights economic behavior and, xviii post-Singularity, 56 stable, 82 property rights, pre-Singularity, 187 property rights of bio-humans, 149 Psychology Today, 195 psychotic breakdowns, 120 Q quantum computing, 5, 17 quantum effects, 4 R rabbit population, 142 race, star-faring, 200 racial classifications, 76 racial equality, 173 rapture of the nerds, 208 Rattner, Justin, 35 real estate developer, 181–82 real estate development, 188 recessive condition, inherited, 83 Recursive Darkness (horse), 55, 57 Reed, Leonard, 204–5 religious disagreement, 43 reproductive fitness, 76 reproductive success, 75 resale value, 181 residential housing, 181 The Restaurant at the End of the Universe Adams), 150 retirement savings, 175–76 reverse-engineering biology, 203 reversible computing, 17 Ricardian comparative advantage, 136–37, 143, 188, 190 Ricardian scenario, 189 Ricardo, David, xvii, 135, 143 rich investors, 144–45 Ritalin (cognitive-enhancement drug), xiv, 104–5 Robin. See Hanson, Robin robots, 17, 210 robot soldiers, 24, 53 Roman Empire, 24, 78 Roman Republic, 137–38 Rumsfeld, Donald (former US Secretary of Defense), xviii Russia, 187, 194, 206 S safety-enhancing products, 179 Salamon, Anna, 44 SAT tests, 66, 162–63 savers gamble on the future, 176 Savoca, Elizabeth, 171 Scientific American “Why Women Live Longer,” 179 Scottish Mental Survey (1932), 68 search engines, 167 Second Law of Thermodynamics, 27 seed AI computer program of roughly human-level intelligence capable of improving itself, 36 intelligence explosion, undergoing, 48 that undergoes an intelligence explosion, 36 Self-Aware Systems, 25 sequence F, U, 115 sexbots, 193–95 sex drives, 195 sex-selective abortions, 194 sexually transmitted diseases, 194 Shakespeare, 21 Shaw, George Bernard, 84 Shulman, Carl, 147, 202 Singularitarians, 215 Singularity AI as smart as humans and/or augmenting human intelligence, x AI-centered, 209 AI-induced, 21 bad, avoid making, 58–59 bad Singularity-like event, x being well-educated will not make you materially better off, 192 believers, 27, 208 beyond which human affairs can not continue, xv civilization, xviii disabled children and, 212 emulations, materialized through, 203 enabling of computers, 6 expectations and savings rates, 186–87 expectations raise people’s uncertainty about the quality of the future, 193 expectations should affect when you have children, 193 five undisputed facts about, x–xii by gradual improvement, 178 harm of an unfriendly, 44 hellish, destroys the value of money, 58 humanity will be richer from, 165 intelligence explosion, from an, 203 investments, destroys the value of all, 57 is near, 177, 185, 191, 201, 207 Kurzweil-type, 178 luxuries from, 167 money has no value, 192 money no longer has value, 56 operating-system, 41 pollution as a bad, 56–57 post-Singularity civilization, 199–200, 221 post-Singularity race throughout the galaxy, 199 pre-Singularity destructive technologies, 201–2 pre-Singularity property rights will be respected, 187 pre-Singularity property rights will have value of post-Singularity, 188–89 pre-Singularity value of money, 211 profit opportunities of, 178 property rights and savings, 187–88 rapid political change, would bring about, 187 rich, makes everyone extremely, 192 savings and future wealth, 189 savings and investment returns, 188–89 savings rate, plummeting of, 191–92 savings rates with different Singularity scenarios, 189–90 scarcity, might abolish, 187 signposts of the, 177–78 utopian, 56, 58 utopian, will probably be, 179 as utopian or dystopian, 56 value of money, destroys the, 181 watch list, 209 Singularity conference, 92 Singularity Institute for Artificial Intelligence to create a “seed AI” designed to undergo an intelligence explosion to become a friendly ultra-AI, 14 Michael Vassar as director and former president, 44 Peter Thiel financial backing of, viii Yudkowsky founded, 35–36 The Singularity Is Near (Kurzweil), 3, 207 Singularity materialized through emulations, 203 Singularity movement intelligence explosion is a barrier to entry into, 38 Singularity of a black hole, xviii Singularity University Larry Page founded, x slaveholder compensation, 187 slave labor, 137–38 sleep deprivation, 105, 109, 124, 155.


pages: 855 words: 178,507

The Information: A History, a Theory, a Flood by James Gleick

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, AltaVista, bank run, bioinformatics, Brownian motion, butterfly effect, citation needed, Claude Shannon: information theory, clockwork universe, computer age, conceptual framework, crowdsourcing, death of newspapers, discovery of DNA, double helix, Douglas Hofstadter, en.wikipedia.org, Eratosthenes, Fellow of the Royal Society, Gödel, Escher, Bach, Henri Poincaré, Honoré de Balzac, index card, informal economy, information retrieval, invention of the printing press, invention of writing, Isaac Newton, Jacquard loom, Jacquard loom, Jaron Lanier, jimmy wales, John von Neumann, Joseph-Marie Jacquard, Louis Daguerre, Marshall McLuhan, Menlo Park, microbiome, Milgram experiment, Network effects, New Journalism, Norbert Wiener, On the Economy of Machinery and Manufactures, PageRank, pattern recognition, phenotype, pre–internet, Ralph Waldo Emerson, RAND corporation, reversible computing, Richard Feynman, Richard Feynman, Simon Singh, Socratic dialogue, Stephen Hawking, Steven Pinker, stochastic process, talking drums, the High Line, The Wisdom of Crowds, transcontinental railway, Turing machine, Turing test, women in the workforce

“Logical Depth and Physical Complexity.” In The Universal Turing Machine: A Half-Century Survey, edited by Rolf Herken. Oxford: Oxford University Press, 1988. ———. “How to Define Complexity in Physics, and Why.” In Complexity, Entropy, and the Physics of Information, edited by W. H. Zurek. Reading, Mass.: Addison-Wesley, 1990. ———. “Notes on the History of Reversible Computation.” IBM Journal of Research and Development 44 (2000): 270–77. ———. “Notes on Landauer’s Principle, Reversible Computation, and Maxwell’s Demon.” arXiv:physics 0210005 v2 (2003). ———. “Publicity, Privacy, and Permanence of Information.” In Quantum Computing: Back Action 2006, AIP Conference Proceedings 864, edited by Debabrata Goswami. Melville, N.Y.: American Institute of Physics, 2006. Bennett, Charles H., and Gilles Brassard. “Quantum Cryptography: Public Key Distribution and Coin Tossing.”

♦ “I THINK THE INFORMATION PROBABLY GOES OFF”: Quoted in Tom Siegfried, The Bit and the Pendulum: From Quantum Computing to M Theory—The New Physics of Information (New York: Wiley and Sons, 2000), 203. ♦ “THERE IS NO BABY UNIVERSE”: Stephen Hawking, “Information Loss in Black Holes,” Physical Review D 72 (2005): 4. ♦ THE “THERMODYNAMICS OF COMPUTATION”: Charles H. Bennett, “Notes on the History of Reversible Computation,” IBM Journal of Research and Development 44 (2000): 270. ♦ “COMPUTERS … MAY BE THOUGHT OF AS ENGINES”: Charles H. Bennett, “The Thermodynamics of Computation—a Review,” International Journal of Theoretical Physics 21, no. 12 (1982): 906. ♦ BACK-OF-THE-ENVELOPE CALCULATION: Ibid. ♦ ROLF LANDAUER: “Information Is Physical,” Physics Today 23 (May 1991); “Information Is Inevitably Physical,” in Anthony H.


pages: 574 words: 164,509

Superintelligence: Paths, Dangers, Strategies by Nick Bostrom

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

agricultural Revolution, AI winter, Albert Einstein, algorithmic trading, anthropic principle, anti-communist, artificial general intelligence, autonomous vehicles, barriers to entry, bioinformatics, brain emulation, cloud computing, combinatorial explosion, computer vision, cosmological constant, dark matter, DARPA: Urban Challenge, data acquisition, delayed gratification, demographic transition, Douglas Hofstadter, Drosophila, Elon Musk, en.wikipedia.org, epigenetics, fear of failure, Flash crash, Flynn Effect, friendly AI, Gödel, Escher, Bach, income inequality, industrial robot, informal economy, information retrieval, interchangeable parts, iterative process, job automation, John von Neumann, knowledge worker, Menlo Park, meta analysis, meta-analysis, mutually assured destruction, Nash equilibrium, Netflix Prize, new economy, Norbert Wiener, NP-complete, nuclear winter, optical character recognition, pattern recognition, performance metric, phenotype, prediction markets, price stability, principal–agent problem, race to the bottom, random walk, Ray Kurzweil, recommendation engine, reversible computing, social graph, speech recognition, Stanislav Petrov, statistical model, stem cell, Stephen Hawking, strong AI, superintelligent machines, supervolcano, technological singularity, technoutopianism, The Coming Technological Singularity, The Nature of the Firm, Thomas Kuhn: the structure of scientific revolutions, transaction costs, Turing machine, Vernor Vinge, Watson beat the top human players on Jeopardy!, World Values Survey

If we require irreversible computations, and assume a nanomechanical implementation of the “computronium” (which would allow us to push close to the Landauer limit of energy efficiency), a computer system driven by a Dyson sphere could generate some 1047 operations per second.22 Combining these estimates with our earlier estimate of the number of stars that could be colonized, we get a number of about 1067 ops/s once the accessible parts of the universe have been colonized (assuming nanomechanical computronium).23 A typical star maintains its luminosity for some 1018 s. Consequently, the number of computational operations that could be performed using our cosmic endowment is at least 1085. The true number is probably much larger. We might get additional orders of magnitude, for example, if we make extensive use of reversible computation, if we perform the computations at colder temperatures (by waiting until the universe has cooled further), or if we make use of additional sources of energy (such as dark matter).24 It might not be immediately obvious to some readers why the ability to perform 1085 computational operations is a big deal. So it is useful to put it in context. We may, for example, compare this number with our earlier estimate (Box 3, in Chapter 2) that it may take about 1031–1044 ops to simulate all neuronal operations that have occurred in the history of life on Earth.

Still further complications arise from the fact that emulations can be copied and that they can run at different speeds: possibilities with no direct analogs in human experience. (Cf. Bostrom [2006b]; Bostrom and Yudkowsky [forthcoming].) 19. There will be a trade-off between total parallel computing power and computational speed, as the highest computational speeds will be attainable only at the expense of a reduction in power efficiency. This will be especially true after one enters the era of reversible computing. 20. An emulation could be tested by leading it into temptation. By repeatedly testing how an emulation started from a certain prepared state reacts to various sequences of stimuli, one could obtain high confidence in the reliability of that emulation. But the further the mental state is subsequently allowed to develop away from its validated starting point, the less certain one could be that it would remain reliable.


pages: 798 words: 240,182

The Transhumanist Reader by Max More, Natasha Vita-More

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, Any sufficiently advanced technology is indistinguishable from magic, artificial general intelligence, augmented reality, Bill Joy: nanobots, bioinformatics, brain emulation, Buckminster Fuller, cellular automata, clean water, cloud computing, cognitive bias, cognitive dissonance, combinatorial explosion, conceptual framework, Conway's Game of Life, cosmological principle, data acquisition, discovery of DNA, Drosophila, en.wikipedia.org, experimental subject, Extropian, fault tolerance, Flynn Effect, Francis Fukuyama: the end of history, Frank Gehry, friendly AI, game design, germ theory of disease, hypertext link, impulse control, index fund, John von Neumann, joint-stock company, Kevin Kelly, Law of Accelerating Returns, life extension, Louis Pasteur, Menlo Park, meta analysis, meta-analysis, moral hazard, Network effects, Norbert Wiener, P = NP, pattern recognition, phenotype, positional goods, prediction markets, presumed consent, Ray Kurzweil, reversible computing, RFID, Richard Feynman, Ronald Reagan, silicon-based life, Singularitarianism, stem cell, stochastic process, superintelligent machines, supply-chain management, supply-chain management software, technological singularity, Ted Nelson, telepresence, telepresence robot, telerobotics, the built environment, The Coming Technological Singularity, the scientific method, The Wisdom of Crowds, transaction costs, Turing machine, Turing test, Upton Sinclair, Vernor Vinge, Von Neumann architecture, Whole Earth Review, women in the workforce

Additional Constraints for Nanocomputers About a year ago I had the occasion to design a nanocomputer using Eric Drexler’s mechanical rod logic, which will be examined in detail later in this essay. As someone who was used to the size and speed constraints of electronics, I was in my glory with this new medium. I went wild, adding functionality, pipelining, multicomputing, the works. I could build a supercomputer beyond the wildest dreams of Cray, the size of a bacterium! What I didn’t do was pay any ­attention to “this crazy reversible computing stuff.” Until I did the heat dissipation calculations. The problem is that there really is a fundamental physical limit involved in computation, but it represents an amount of energy so small (it’s ­comparable to the thermal energy of one atom) that it is totally negligible in existing physical devices. But in a nanocomputer, it far outweighs all the other heat-producing mechanisms; in fact, my nanocomputer design had the same heat dissipation per unit volume as a low-grade explosive.

Addition has the property that its inputs and results are related in such a way that the result can replace one of the inputs with no loss of information. However, many useful, even necessary, functions don’t have this property. We can still use those functions reversibly; the only trick needed is not to erase the inputs! Ultimately, of course, you have to get rid of the input in order to process the next one; but you can always erase the output without entropic cost if you’ve saved the input. This leads to structures in reversible computation called “retractile cascades.” Each of a series of (logical) circuits computes a function of the output of its predecessor. If the final output is erased first, and then the next-to-last, and so forth, the entire operation is reversible, and can be done (in theory!) without any energy dissipation. If we adopt these rules throughout our computer design, we can reduce the number of bits erased per cycle from around 100,000 to around 10.


pages: 372 words: 101,174

How to Create a Mind: The Secret of Human Thought Revealed by Ray Kurzweil

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, Albert Michelson, anesthesia awareness, anthropic principle, brain emulation, cellular automata, Claude Shannon: information theory, cloud computing, computer age, Dean Kamen, discovery of DNA, double helix, en.wikipedia.org, epigenetics, George Gilder, Google Earth, Isaac Newton, iterative process, Jacquard loom, Jacquard loom, John von Neumann, Law of Accelerating Returns, linear programming, Loebner Prize, mandelbrot fractal, Norbert Wiener, optical character recognition, pattern recognition, Peter Thiel, Ralph Waldo Emerson, random walk, Ray Kurzweil, reversible computing, self-driving car, speech recognition, Steven Pinker, strong AI, the scientific method, theory of mind, Turing complete, Turing machine, Turing test, Wall-E, Watson beat the top human players on Jeopardy!, X Prize

These densities have not yet been demonstrated, however, so we’ll use the more conservative estimate. [Note: Anders Sandberg, “The Physics of the Information Processing Superobjects: Daily Life Among the Jupiter Brains,” Journal of Evolution and Technology 5 (December 22, 1999), http://www.transhumanist.com/volume5/Brains2.pdf.] As discussed above, 1042 calculations per second could be achieved without producing significant heat. By fully deploying reversible computing techniques, using designs that generate low levels of errors, and allowing for reasonable amounts of energy dissipation, we should end up somewhere between 1042 and 1050 calculations per second. The design terrain between these two limits is complex. Examining the technical issues that arise as we advance from 1042 to 1050 is beyond the scope of this chapter. We should keep in mind, however, that the way this will play out is not by starting with the ultimate limit of 1050 and working backward based on various practical considerations.


pages: 445 words: 105,255

Radical Abundance: How a Revolution in Nanotechnology Will Change Civilization by K. Eric Drexler

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, agricultural Revolution, Bill Joy: nanobots, Brownian motion, carbon footprint, Cass Sunstein, conceptual framework, crowdsourcing, dark matter, double helix, failed state, global supply chain, industrial robot, iterative process, Mars Rover, means of production, Menlo Park, mutually assured destruction, New Journalism, performance metric, reversible computing, Richard Feynman, Richard Feynman, Silicon Valley, South China Sea, Thomas Malthus, V2 rocket, Vannevar Bush

Manufacturers have begun to resort to stacking layers to add devices, but this adds an increment in processing cost with each layer. Unlike shrinking the devices themselves, stacking layers isn’t a recipe for exponential improvements. 226from milliwatts to nanowatts: Through technologies that operate substantially closer to (yet still short of) the ultimate thermodynamic limits for digital computation (C. H. Bennett, “Notes on the History of Reversible Computation,” IBM Journal of Research and Development 32 [1988]: 16–23). 229ten-fold reductions in vehicle mass: As a consequence of improvements in the strength of practical structural materials (discussed in Chapter 11). 229a doubling of typical engine efficiencies: See the discussion of chemical energy conversion in Chapter 11 and its notes; automobile and truck engines today are substantially less than 50 percent efficient. 230coal-fired power plants (2,300 today): International Energy Agency Clean Coal Centre, http://www.iea-coal.org.uk/site/2010/database-section/coal-power (retrieved December 2012). 230By enabling abundant elements . . . to substitute for scarcer materials: Chapter 11 (and notes) describe some of the main aspects of this materials-substitution opportunity. 231Atomically precise fabrication can produce membranes: For example, short carbon nanotubes and nanoporous graphene provide models for flow pathways through low-resistance membranes (e.g., D.


pages: 489 words: 148,885

Accelerando by Stross, Charles

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

call centre, carbon-based life, cellular automata, cognitive dissonance, Conway's Game of Life, dark matter, dumpster diving, Extropian, finite state, Flynn Effect, glass ceiling, gravity well, John von Neumann, knapsack problem, Kuiper Belt, Magellanic Cloud, mandelbrot fractal, market bubble, means of production, packet switching, performance metric, phenotype, planetary scale, Pluto: dwarf planet, reversible computing, Richard Stallman, SETI@home, Silicon Valley, Singularitarianism, slashdot, South China Sea, stem cell, technological singularity, telepresence, The Chicago School, theory of mind, Turing complete, Turing machine, Turing test, upwardly mobile, Vernor Vinge, Von Neumann architecture, web of trust, Y2K

The door opens onto what used to be one of the side galleries of the museum building, full of interactive exhibits designed to explain elementary optics to hyperactive children and their indulgent parental units. Traditional optics are long since obsolete – tunable matter can slow photons to a stop, teleport them here to there, play ping-pong with spin and polarization – and besides, the dumb matter in the walls and floor has been replaced by low-power computronium, heat sinks dangling far below the floor of the lily-pad habitat to dispose of the scanty waste photons from reversible computation. Now the room is empty. "Since I became curator here, I've turned the museum's structural supports into a dedicated high-density memory store. One of the fringe benefits of a supervisory post, of course. I have about a billion avabits of capacity, enough to archive the combined sensory bandwidth and memories of the entire population of twentieth-century Earth – if that was what interested me."


pages: 598 words: 183,531

Hackers: Heroes of the Computer Revolution - 25th Anniversary Edition by Steven Levy

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

air freight, Apple II, Bill Gates: Altair 8800, Buckminster Fuller, Byte Shop, computer age, computer vision, corporate governance, El Camino Real, game design, Hacker Ethic, hacker house, Haight Ashbury, John Conway, Mark Zuckerberg, Menlo Park, non-fiction novel, Paul Graham, popular electronics, RAND corporation, reversible computing, Richard Stallman, Silicon Valley, software patent, speech recognition, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, Ted Nelson, Whole Earth Catalog, Y Combinator

There were secrets to those IBM machines that had been painstakingly learned by some of the older people at MIT with access to the 704 and friends among the Priesthood. Amazingly, a few of these programmers, grad students working with McCarthy, had even written a program that utilized one of the rows of tiny lights: the lights would be lit in such an order that it looked like a little ball was being passed from right to left: if an operator hit a switch at just the right time, the motion of the lights could be reversed—computer Ping-Pong! This obviously was the kind of thing that you’d show off to impress your peers, who would then take a look at the actual program you had written to see how it was done. To top the program, someone else might try to do the same thing with fewer instructions—a worthy endeavor, since there was so little room in the small “memory” of the computers of those days that not many instructions could fit into them.