Baxter: Rethink Robotics

10 results back to index

pages: 413 words: 119,587

Machines of Loving Grace: The Quest for Common Ground Between Humans and Robots by John Markoff


A Declaration of the Independence of Cyberspace, AI winter, airport security, Apple II, artificial general intelligence, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, Bill Duvall, bioinformatics, Brewster Kahle, Burning Man, call centre, cellular automata, Chris Urmson, Claude Shannon: information theory, Clayton Christensen, clean water, cloud computing, collective bargaining, computer age, computer vision, crowdsourcing, DARPA: Urban Challenge, data acquisition, Dean Kamen, don't be evil, Douglas Engelbart, Douglas Hofstadter, Dynabook, Edward Snowden, Elon Musk, Erik Brynjolfsson, factory automation, future of work, Galaxy Zoo, Google Glasses, Google X / Alphabet X, Gödel, Escher, Bach, Hacker Ethic, haute couture, hive mind, hypertext link, industrial robot, information retrieval, Internet Archive, Internet of things, invention of the wheel, Jacques de Vaucanson, Jaron Lanier, Jeff Bezos, job automation, John Conway, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, John von Neumann, Kevin Kelly, knowledge worker, Kodak vs Instagram, loose coupling, Mark Zuckerberg, Marshall McLuhan, medical residency, Menlo Park, Mother of all demos, natural language processing, new economy, PageRank, pattern recognition, pre–internet, RAND corporation, Ray Kurzweil, Richard Stallman, Robert Gordon, Rodney Brooks, Sand Hill Road, Second Machine Age, self-driving car, semantic web, shareholder value, side project, Silicon Valley, Silicon Valley startup, Singularitarianism, skunkworks, Skype, social software, speech recognition, stealth mode startup, Stephen Hawking, Steve Ballmer, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, strong AI, superintelligent machines, technological singularity, Ted Nelson, telemarketer, telepresence, telepresence robot, Tenerife airport disaster, The Coming Technological Singularity, the medium is the message, Thorstein Veblen, Turing test, Vannevar Bush, Vernor Vinge, Watson beat the top human players on Jeopardy!, Whole Earth Catalog, William Shockley: the traitorous eight

The technical term for this relationship is “compliance,” and there is widespread belief among roboticists that over the next half decade these machines will be widely used in manufacturing, distribution, and even retail positions. Baxter is designed to be programmed easily by nontechnical workers. To teach the robot a new repetitive task, humans only have to guide the robot’s arms through the requisite motions and Baxter will automatically memorize the routine. When the robot was introduced, Rethink Robotics demonstrated Baxter’s capability to slowly pick up items on a conveyor belt and place them in new locations. This seemed like a relatively limited contribution to the workplace, but Brooks argues that the system will develop a library of capabilities over time and will increase its speed as new versions of its software become available. Rodney Brooks rejected early artificial intelligence in favor of a new approach he described as “fast, cheap, and out of control.” Later he designed Baxter, an inexpensive manufacturing robot intended to work with, rather than replace, human workers.

Shockley’s prescience was so striking that when Rodney Brooks, himself a pioneering roboticist at the Stanford Artificial Intelligence Laboratory in the 1970s, read Brock’s article in IEEE Spectrum in 2013, he passed Shockley’s original 1951 memo around his company, Rethink Robotics, and asked his employees to guess when the memo had been written. No one came close. That memo predates by more than a half century Rethink’s Baxter robot, introduced in the fall of 2012. Yet Baxter is almost exactly what Shockley proposed in the 1950s—a trainable robot with an expressive “face” on an LCD screen, “hands,” “sensory organs,” “memory,” and, of course, a “brain.” The philosophical difference between Shockley and Brooks is that Brooks’s intent has been for Baxter to cooperate with human workers rather than replace them, taking over dull, repetitive tasks in a factory and leaving more creative work for humans. Shockley’s original memo demonstrates that Silicon Valley had its roots in the fundamental paradox that technology both augments and dispenses with humans.

NOTE: Page references in italics refer to photos. Abbeel, Pieter, 268 Abelson, Robert, 180–181 Abovitz, Rony, 271–275 Active Ontologies, 304 Ad Hoc Committee on the Triple Revolution, 73–74 agent-based interfaces, 195–226. see also Siri (Apple) avatars, 304, 305 Baxter (robot), 195–196, 204–205, 205, 207 Brooks and, 201–204 CALO, 31, 297, 302–304, 310, 311 chatbots, 221–225, 304 early personal computing and, 196–201 ethics of, 339–342 “golemics” and, 208–215 Google and, 12–13, 341 Microsoft and, 187–191, 215–220 Rethink Robotics and, 204–208 singularity and, 220–221 Agents, Inc., 191–192 aging, of humans, 93–94, 236–237, 245, 327–332 “Alchemy and Artificial Intelligence” (Dreyfus), 177 Allen, Paul, 267, 268, 337 Alone Together (Turkle), 173, 221–222 Amazon, 97–98, 206, 247 Ambler (robot), 33, 202 Anderson, Chris, 88 Andreessen, Marc, 69 Apocalypse AI (Geraci), 85, 116–117 Apple. see also Siri (Apple) early history of, 7, 8, 214, 279–281, 307 iPhone, 23, 93, 239, 275, 281 iPod, 194, 275, 281 Jobs and, 13, 35, 112, 131, 194, 214, 241, 281–282, 320–323 Knowledge Navigator, 188, 300, 304, 305–310, 317, 318 labor force of, 83–84 Rubin and, 240 Sculley and, 35, 280, 300, 305, 306, 307, 317 Architecture Machine, The (Negroponte), 191 Architecture Machine Group, 306–307, 308–309 Arkin, Ronald, 333–335 Armer, Paul, 74 Aronson, Louise, 328 Artificial General Intelligence, 26 artificial intelligence (AI). see artificial intelligence (AI) history; autonomous vehicles; intelligence augmentation (IA) versus AI; labor force; robotics advancement; Siri (Apple) artificial intelligence (AI) history, 95–158. see also intelligence augmentation (IA) versus AI AI commercialization, 156–158 AI terminology, xii, 105–109 AI Winter, 16, 130–131, 140 Breiner and, 125–135 deep learning neural networks, 150–156, 151 early neural networks, 141–150 expert systems, 134–141, 285 McCarthy and, 109–115 Moravec and, 115–125 Silicon Valley inception, 95–99, 100, 256 SRI inception, 99–105 Strong artificial intelligence, 12, 26, 272 “Artificial Intelligence” (Lighthill), 130 “Artificial Intelligence of Hubert L.


pages: 339 words: 88,732

The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies by Erik Brynjolfsson, Andrew McAfee


2013 Report for America's Infrastructure - American Society of Civil Engineers - 19 March 2013, 3D printing, access to a mobile phone, additive manufacturing, Airbnb, Albert Einstein, Amazon Mechanical Turk, Amazon Web Services, American Society of Civil Engineers: Report Card, Any sufficiently advanced technology is indistinguishable from magic, autonomous vehicles, barriers to entry, Baxter: Rethink Robotics, British Empire, business intelligence, business process, call centre, clean water, combinatorial explosion, computer age, computer vision, congestion charging, corporate governance, crowdsourcing, David Ricardo: comparative advantage, employer provided health coverage,, Erik Brynjolfsson, factory automation, Filter Bubble, Frank Levy and Richard Murnane: The New Division of Labor, Freestyle chess, full employment, game design, global village, happiness index / gross national happiness, illegal immigration, immigration reform, income inequality, income per capita, industrial robot, informal economy, inventory management, James Watt: steam engine, Jeff Bezos, jimmy wales, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Joseph Schumpeter, Kevin Kelly, Khan Academy, knowledge worker, Kodak vs Instagram, law of one price, low skilled workers, Lyft, Mahatma Gandhi, manufacturing employment, Mark Zuckerberg, means of production, Nate Silver, natural language processing, Network effects, new economy, New Urbanism, Nicholas Carr, Occupy movement, oil shale / tar sands, oil shock, pattern recognition, payday loans, price stability, Productivity paradox, profit maximization, Ralph Nader, Ray Kurzweil, recommendation engine, Report Card for America’s Infrastructure, Robert Gordon, Rodney Brooks, Ronald Reagan, Second Machine Age, self-driving car, sharing economy, Silicon Valley, six sigma, Skype, software patent, speech recognition, statistical model, Steve Jobs, Steven Pinker, supply-chain management, TaskRabbit, technological singularity, telepresence, The Signal and the Noise by Nate Silver, The Wealth of Nations by Adam Smith, total factor productivity, transaction costs, Tyler Cowen: Great Stagnation, Vernor Vinge, Watson beat the top human players on Jeopardy!, winner-take-all economy, Y2K

We got a sneak peek at these potential paradox-busters shortly before Rethink’s public unveiling of their first line of robots, named Baxter. Brooks invited us to the company’s headquarters in Boston to see these automatons, and to see what they could do. Baxter is instantly recognizable as a humanoid robot. It has two burly, jointed arms with claw-like grips for hands; a torso; and a head with an LCD face that swivels to ‘look at’ the nearest person. It doesn’t have legs, though; Rethink sidestepped the enormous challenges of automatic locomotion by putting Baxter on wheels and having it rely on people to get from place to place. The company’s analyses suggest that it can still do lots of useful work without the ability to move under his own power. To train Baxter, you grab it by the wrist and guide the arm through the motions you want it to carry out.

Entrepreneurs and managers are constantly making these types of decisions, weighing the relative costs of each type of input, as well as the effects on the quality, reliability, and variety of output that can be produced. Rod Brooks estimates that the Baxter robot we met in chapter 2 works for the equivalent of about four dollars per hour, including all costs.33 As we discussed at the start of this chapter, to the extent that a factory owner previously employed a human to do the same task that Baxter could do, the economic incentive would be to substitute capital (Baxter) for labor as long as the human was paid more than four dollars per hour. If output stays the same, and assuming no new hires are made in engineering, management, or sales at the company, it would increase the ratio of capital to labor input.* Compensation of the remaining workers could go up or down in the wake of Baxter’s arrival. If their work is a close substitute for the robots’, then there will be downward pressure on human wages.

The robot also maintains safety; the two arms can’t collide (the motors resist you if you try to make this happen) and they automatically slow down if Baxter senses a person within their range. These and many other design features make working with this automaton a natural, intuitive, and nonthreatening experience. When we first approached it, we were nervous about catching a robot arm to the face, but this apprehension faded quickly, replaced by curiosity. Brooks showed us several Baxters at work in the company’s demo area. They were blowing past Moravec’s paradox—sensing and manipulating lots of different objects with ‘hands’ ranging from grips to suction cups. The robots aren’t as fast or fluid as a well-trained human worker at full speed, but they might not need to be. Most conveyor belts and assembly lines do not operate at full human speed; they would tire people out if they did. Baxter has a few obvious advantages over human workers.


pages: 484 words: 104,873

Rise of the Robots: Technology and the Threat of a Jobless Future by Martin Ford


3D printing, additive manufacturing, Affordable Care Act / Obamacare, AI winter, algorithmic trading, Amazon Mechanical Turk, artificial general intelligence, autonomous vehicles, banking crisis, Baxter: Rethink Robotics, Bernie Madoff, Bernie Madoff, Bill Joy: nanobots, call centre, Capital in the Twenty-First Century by Thomas Piketty, Chris Urmson, Clayton Christensen, clean water, cloud computing, collateralized debt obligation, computer age, debt deflation, diversified portfolio, Erik Brynjolfsson, factory automation, financial innovation, Flash crash, Fractional reserve banking, Freestyle chess, full employment, Goldman Sachs: Vampire Squid, High speed trading, income inequality, industrial robot, informal economy, iterative process, Jaron Lanier, job automation, John Maynard Keynes: technological unemployment, John von Neumann, Khan Academy, knowledge worker, labour mobility, liquidity trap, low skilled workers, low-wage service sector, Lyft, manufacturing employment, McJob, moral hazard, Network effects, new economy, Nicholas Carr, obamacare, optical character recognition, passive income, performance metric, Peter Thiel, plutocrats, Plutocrats, post scarcity, precision agriculture, price mechanism, Ray Kurzweil, reshoring, RFID, Rodney Brooks, secular stagnation, self-driving car, Silicon Valley, Silicon Valley startup, single-payer health, software is eating the world, speech recognition, Spread Networks laid a new fibre optics cable between New York and Chicago, stealth mode startup, stem cell, Stephen Hawking, Steve Jobs, Steven Levy, Steven Pinker, strong AI, technological singularity, telepresence, telepresence robot, The Coming Technological Singularity, Thomas L Friedman, too big to fail, Tyler Cowen: Great Stagnation, union organizing, Vernor Vinge, very high income, Watson beat the top human players on Jeopardy!, women in the workforce

A Versatile Robotic Worker Industrial Perception’s robot is a highly specialized machine focused specifically on moving boxes with maximum efficiency. Boston-based Rethink Robotics has taken a different track with Baxter, a lightweight humanoid manufacturing robot that can easily be trained to perform a variety of repetitive tasks. Rethink was founded by Rodney Brooks, one of the world’s foremost robotics researchers at MIT and a co-founder of iRobot, the company that makes the Roomba automated vacuum cleaner as well as military robots used to defuse bombs in Iraq and Afghanistan. Baxter, which costs significantly less than a year’s wages for a typical US manufacturing worker, is essentially a scaled-down industrial robot that is designed to operate safely in close proximity to people. In contrast to industrial robots, which require complex and expensive programming, Baxter can be trained simply by moving its arms through the required motions.

Companies of all sizes were on hand to showcase robots designed to perform precision manufacturing, transport medical supplies between departments in large hospitals, or autonomously operate heavy equipment for agriculture and mining. There was a personal robot named “Budgee” capable of carrying up to fifty pounds of stuff around the house or at the store. A variety of educational robots focused on everything from encouraging technical creativity to assisting children with autism or learning disabilities. At the Rethink Robotics booth, Baxter had received Halloween training and was grasping small boxes of candy and then dropping them into pumpkin-shaped trick-or-treat buckets. There were also companies marketing components like motors, sensors, vision systems, electronic controllers, and the specialized software used to construct robots. Silicon Valley start-up Grabit Inc. demonstrated an innovative electroadhesion-powered gripper that allows robots to pick up, carry, and place nearly anything simply by employing a controlled electrostatic charge.

In contrast to industrial robots, which require complex and expensive programming, Baxter can be trained simply by moving its arms through the required motions. If a facility uses multiple robots, one Baxter can be trained and then the knowledge can be propagated to the others simply by plugging in a USB device. The robot can be adapted to a variety of tasks, including light assembly work, transferring parts between conveyer belts, packing products into retail packaging, or tending machines used in metal fabrication. Baxter is particularly talented at packing finished products into shipping boxes. K’NEX, a toy construction set manufacturer located in Hat-field, Pennsylvania, found that Baxter’s ability to pack its products tightly allowed the company to use 20–40 percent fewer boxes.5 Rethink’s robot also has two-dimensional machine vision capability powered by cameras on both wrists and can pick up parts and even perform basic quality-control inspections.


pages: 371 words: 108,317

The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future by Kevin Kelly


3D printing, A Declaration of the Independence of Cyberspace, AI winter, Airbnb, Albert Einstein, Amazon Web Services, augmented reality, bank run, barriers to entry, Baxter: Rethink Robotics, bitcoin, blockchain, book scanning, Brewster Kahle, Burning Man, cloud computing, computer age, connected car, crowdsourcing, dark matter, dematerialisation, Downton Abbey, Edward Snowden, Elon Musk, Filter Bubble, Freestyle chess, game design, Google Glasses, hive mind, Howard Rheingold, index card, industrial robot, Internet Archive, Internet of things, invention of movable type, invisible hand, Jaron Lanier, Jeff Bezos, job automation, Kevin Kelly, Kickstarter, linked data, Lyft, M-Pesa, Marshall McLuhan, means of production, megacity, Minecraft, multi-sided market, natural language processing, Netflix Prize, Network effects, new economy, Nicholas Carr, peer-to-peer lending, placebo effect, planetary scale, postindustrial economy, recommendation engine, RFID, ride hailing / ride sharing, Rodney Brooks, self-driving car, sharing economy, Silicon Valley, slashdot, Snapchat, social graph, social web, software is eating the world, speech recognition, Stephen Hawking, Steven Levy, Ted Nelson, the scientific method, transport as a service, two-sided market, Uber for X, Watson beat the top human players on Jeopardy!, Whole Earth Review

We have preconceptions about how an intelligent robot should look and act, and these can blind us to what is already happening around us. To demand that artificial intelligence be humanlike is the same flawed logic as demanding that artificial flying be birdlike, with flapping wings. Robots, too, will think different. Consider Baxter, a revolutionary new workbot from Rethink Robotics. Designed by Rodney Brooks, the former MIT professor who invented the bestselling Roomba vacuum cleaner and its descendants, Baxter is an early example of a new class of industrial robots created to work alongside humans. Baxter does not look impressive. Sure, it’s got big strong arms and a flat-screen display like many industrial bots. And Baxter’s hands perform repetitive manual tasks, just as factory robots do. But it’s different in three significant ways. First, it can look around and indicate where it is looking by shifting the cartoon eyes on its head.

See also books; ebooks and readers realism, 211–14, 216 real time, 66, 88, 104, 114–17, 131, 145 recommendation engines, 169 Red Dead Redemption, 227–30 Reddit, 136, 140, 143, 149, 264 Red Hat, 69 reference transactions, 285 relationship network analysis, 187 relativity theory, 288 remixing of ideas, 193–210 and economic growth, 193–95 and intellectual property issues, 207–10 legal issues associated with, 207–10 and reduced cost of creating content, 196–97 and rewindability, 204–7 and visual media, 197–203 remixing video, 197–98 renting, 117–18 replication of media, 206–9 Rethink Robotics, 51 revert functions, 270 reviews by users/readers, 21, 72–73, 139, 266 rewindability, 204–7, 247–48, 270 RFID chips, 283 Rheingold, Howard, 148–49 ride-share taxis, 252 ring tones, 250 Ripley’s Believe It or Not, 278 robots ability to think differently, 51–52 Baxter, 51–52 categories of jobs for, 54–59, 60 and digital storage capacity, 265 dolls, 36 emergence of, 49 industrial robots, 52–53 and mass customization, 173 new jobs related to, 57–58 and personal success, 58–59 personal workbots, 58–59 stages of robot replacement, 59–60 training, 52–53 trust in, 54 Romer, Paul, 193, 209 Rosedale, Phil, 219 Rowling, J.

Optimally, workers should be able to get materials to and from the robot or to tweak its controls by hand throughout the workday; isolation makes that difficult. Baxter, however, is aware. Using force-feedback technology to feel if it is colliding with a person or another bot, it is courteous. You can plug it into a wall socket in your garage and easily work right next to it. Second, anyone can train Baxter. It is not as fast, strong, or precise as other industrial robots, but it is smarter. To train the bot, you simply grab its arms and guide them in the correct motions and sequence. It’s a kind of “watch me do this” routine. Baxter learns the procedure and then repeats it. Any worker is capable of this show and tell; you don’t even have to be literate. Previous workbots required highly educated engineers and crack programmers to write thousands of lines of code (and then debug them) in order to instruct the robot in the simplest change of task.


pages: 179 words: 43,441

The Fourth Industrial Revolution by Klaus Schwab


3D printing, additive manufacturing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, barriers to entry, Baxter: Rethink Robotics, bitcoin, blockchain, Buckminster Fuller, call centre, clean water, collaborative consumption, conceptual framework, continuous integration, crowdsourcing, disintermediation, distributed ledger, Edward Snowden, Elon Musk, epigenetics, Erik Brynjolfsson, future of work, global value chain, Google Glasses, income inequality, Internet Archive, Internet of things, invention of the steam engine, job automation, job satisfaction, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, life extension, Lyft, megacity, meta-analysis, more computing power than Apollo, mutually assured destruction, Network effects, Nicholas Carr, precariat, precision agriculture, Productivity paradox, race to the bottom, randomized controlled trial, reshoring, RFID, rising living standards, Second Machine Age, secular stagnation, self-driving car, sharing economy, Silicon Valley, smart cities, smart contracts, software as a service, Stephen Hawking, Steve Jobs, Steven Levy, The Spirit Level, total factor productivity, transaction costs, Uber and Lyft, Watson beat the top human players on Jeopardy!, WikiLeaks, winner-take-all economy, women in the workforce, working-age population, Y Combinator, Zipcar

Positive impacts – Supply chain and logistics, eliminations – More leisure time – Improved health outcomes (big data for pharmaceutical gains in research and development) – Banking ATM as early adopter – More access to materials – Production “re-shoring” (i.e. replacing overseas workers with robots) Negative impacts – Job losses – Liability, accountability – Day-to-day social norms, end of 9-to-5 and 24-hour services – Hacking and cyber-risk The shift in action An article from The Fiscal Times appearing on states that: “Rethink Robotics released Baxter [in the fall of 2012] and received an overwhelming response from the manufacturing industry, selling out of their production capacity through April … [In April] Rethink launch[ed] a software platform that [allows] Baxter to do a more complex sequencing of tasks – for example, picking up a part, holding it in front of an inspection station and receiving a signal to place it in a ‘good’ or ‘not good’ pile. The company also [released] a software development kit … that will allow third parties – like university robotics researchers – to create applications for Baxter.” In “The Robot Reality: Service Jobs Are Next to Go”, Blaire Briody, 26 March 2013, The Fiscal Times, Shift 16: Bitcoin and the Blockchain The tipping point: 10% of global gross domestic product (GDP) stored on blockchain technology By 2025: 58% of respondents expected this tipping point to have occurred Bitcoin and digital currencies are based on the idea of a distributed trust mechanism called the “blockchain”, a way of keeping track of trusted transactions in a distributed fashion.


pages: 271 words: 77,448

Humans Are Underrated: What High Achievers Know That Brilliant Machines Never Will by Geoff Colvin


Ada Lovelace, autonomous vehicles, Baxter: Rethink Robotics, Black Swan, call centre, capital asset pricing model, computer age, corporate governance,, Freestyle chess, future of work, Google Glasses, industrial robot, interchangeable parts, job automation, knowledge worker, low skilled workers, meta-analysis, new economy, rising living standards, self-driving car, sentiment analysis, Silicon Valley, Skype, Steve Jobs, Steve Wozniak, Steven Levy, Steven Pinker, Tim Cook: Apple, transaction costs

Google’s autonomous cars are an obvious and significant example—significant because the number one job among American men is truck driver. Many more examples are appearing. You can train a Baxter robot (from Rethink Robotics) to do all kinds of things—pack or unpack boxes, take items to or from a conveyor belt, fold a T-shirt, carry things around, count them, inspect them—just by moving its arms and hands (“end-effectors”) in the desired way. Many previous industrial robots had to be surrounded by safety cages because they could do just one thing in one way, over and over, and that’s all they knew; if you got between a welding robot and the piece it was welding, you were in deep trouble. But Baxter doesn’t hurt anyone as it hums about the shop floor; it adapts its movements to its environment by sensing everything around it, including people.

This is known as Moravec’s paradox; see, among many discussions of this topic, Hans Moravec, Mind Children (Harvard University Press, 1988), and Pamela McCorduck, Machines Who Think (A. K. Peters Ltd., 2004). Google’s autonomous cars . . . Jennifer Cheeseman Day and Jeffrey Rosenthal, “Detailed Occupations and Median Earnings: 2008.” U.S. Census Bureau, You can train a Baxter robot . . . Robots went into the wreckage . . . “Meet the Robots of Fukushima Daiichi,” IEEE Spectrum, 28 February 2014, By 2008 about 12,000 combat robots . . . “Pushing the Boundaries of Traditional HRI,” Science and Technology Innovations, Fall 2013, p. 7. Published by the University of Central Florida Institute for Simulation and Training.


pages: 347 words: 97,721

Only Humans Need Apply: Winners and Losers in the Age of Smart Machines by Thomas H. Davenport, Julia Kirby


AI winter, Andy Kessler, artificial general intelligence, asset allocation, autonomous vehicles, Baxter: Rethink Robotics, business intelligence, business process, call centre, carbon-based life, Clayton Christensen, clockwork universe, conceptual framework, dark matter, David Brooks, deliberate practice, Edward Lloyd's coffeehouse, Elon Musk, Erik Brynjolfsson, estate planning, follow your passion, Frank Levy and Richard Murnane: The New Division of Labor, Freestyle chess, game design, general-purpose programming language, Google Glasses, Hans Lippershey, haute cuisine, income inequality, index fund, industrial robot, information retrieval, intermodal, Internet of things, inventory management, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Khan Academy, knowledge worker, loss aversion, Mark Zuckerberg, natural language processing, nuclear winter, pattern recognition, performance metric, Peter Thiel, precariat, quantitative trading / quantitative finance, Ray Kurzweil, risk tolerance, Robert Shiller, Robert Shiller, Rodney Brooks, Second Machine Age, self-driving car, Silicon Valley, six sigma, Skype, speech recognition, spinning jenny, statistical model, Stephen Hawking, Steve Jobs, Steve Wozniak, strong AI, superintelligent machines, supply-chain management, transaction costs, Tyler Cowen: Great Stagnation, Watson beat the top human players on Jeopardy!, Works Progress Administration, Zipcar

It often involves persuading and herding individuals who don’t actually report to the product manager, so it can be a challenging role. Jim Lawton, whom we also mentioned in Chapter 2, is chief product and marketing officer at Rethink Robotics, a “collaborative robotics” manufacturer in Boston. Rethink was founded and is led by Rodney Brooks, a former MIT professor, who also plays the role of chief technology officer. He handles the vision and the research. It is Lawton’s job to understand what customers want from robots and translate that into product capabilities. He’s also an evangelist for the idea that robots and people can collaborate with each other. Rethink’s robot models, which now include the cutely named Baxter and Sawyer, don’t require a lot of detailed programming. They learn their movements by having a person guide them. Unlike many robots, they don’t pose a danger to humans and don’t have to be isolated in cages.

As robots develop more intelligence, better machine vision, and greater ability to make decisions, they will become a combination of other types of cognitive technologies, but with the added ability to transform the physical environment (remember the “Great Convergence” toward the right in the chart at the beginning of this chapter). There are already, as we have discussed, systems to understand text and speech, systems to engage in intelligent Q&A with humans, and systems to recognize a variety of images. It’s just that they’re not yet embedded in the brain of a robot. Jim Lawton, the head of products at Rethink Robotics, commented to us in an interview: “An important area of experimentation today is around the intersection of collaborative robots, big data, and deep learning. The goal is to combine automation of physical tasks and cognitive tasks. For example, a robot could start combining all the information about how much torque is applied in a screw. Robots are, after all, a big bucket of sensors. A truly intelligent robot could begin to see what works in terms of how much torque in a screw leads to field failures.

For most companies today using such systems, underwriters and actuaries are able to monitor and change the systems in English-like language and graphic decision paths without help from a vendor or consultant. Rule-based underwriting in insurance has also been expanded to new areas—for example, medical and life insurance underwriting—from its initial base in property and casualty insurance. Another domain of automation in which transparency and ease of use are increasing is robotics. We mentioned the company Rethink Robotics (and their head of product and marketing, Jim Lawton) earlier in this chapter. That company and several others focus on the “collaborative robots” segment, in which humans and robots can work closely alongside each other. Whereas with a traditional robot, changing the pattern of movements and actions would require changes to a complex programming language, changing the behaviors of collaborative robots typically involves simply demonstrating the required movements to the robot.


pages: 677 words: 206,548

Future Crimes: Everything Is Connected, Everyone Is Vulnerable and What We Can Do About It by Marc Goodman


23andMe, 3D printing, additive manufacturing, Affordable Care Act / Obamacare, Airbnb, airport security, Albert Einstein, algorithmic trading, artificial general intelligence, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, Bill Joy: nanobots, bitcoin, Black Swan, blockchain, borderless world, Brian Krebs, business process, butterfly effect, call centre, Chelsea Manning, cloud computing, cognitive dissonance, computer vision, connected car, corporate governance, crowdsourcing, cryptocurrency, data acquisition, data is the new oil, Dean Kamen, disintermediation, don't be evil, Downton Abbey, Edward Snowden, Elon Musk, Erik Brynjolfsson, Filter Bubble, Firefox, Flash crash, future of work, game design, Google Chrome, Google Earth, Google Glasses, Gordon Gekko, high net worth, High speed trading, hive mind, Howard Rheingold, hypertext link, illegal immigration, impulse control, industrial robot, Internet of things, Jaron Lanier, Jeff Bezos, job automation, John Harrison: Longitude, Jony Ive, Julian Assange, Kevin Kelly, Khan Academy, Kickstarter, knowledge worker, Kuwabatake Sanjuro: assassination market, Law of Accelerating Returns, Lean Startup, license plate recognition, litecoin, M-Pesa, Mark Zuckerberg, Marshall McLuhan, Menlo Park, mobile money, more computing power than Apollo, move fast and break things, Nate Silver, national security letter, natural language processing, obamacare, Occupy movement, Oculus Rift, offshore financial centre, optical character recognition, pattern recognition, Peter H. Diamandis: Planetary Resources, Peter Thiel, pre–internet, RAND corporation, ransomware, Ray Kurzweil, RFID, ride hailing / ride sharing, Rodney Brooks, Satoshi Nakamoto, Second Machine Age, security theater, self-driving car, shareholder value, Silicon Valley, Silicon Valley startup, Skype, smart cities, smart grid, smart meter, Snapchat, social graph, software as a service, speech recognition, stealth mode startup, Stephen Hawking, Steve Jobs, Steve Wozniak, strong AI, supply-chain management, technological singularity, telepresence, telepresence robot, Tesla Model S, The Wisdom of Crowds, Tim Cook: Apple, trade route, Watson beat the top human players on Jeopardy!, Wave and Pay, We are Anonymous. We are Legion, web application, WikiLeaks, Y Combinator, zero day

Industrial robots are growing exponentially cheaper, more efficient, and more user-friendly, and perhaps no other robot exemplifies this trend as much as Baxter, the cute low-cost industrial bot from Rethink Robotics. At $22,000, it is a tenth of the price of its predecessors. More impressive is the fact that it works right out of the box and can be up and running in just an hour, as opposed to the eighteen months it took to integrate the previous generations of industrial robots into a factory operation. Baxter can learn to do simple tasks, such as “pick and place” objects on an assembly line, in just five minutes. It has an adorable face on its head-mounted display screen and two highly dexterous arms, which can move in any direction required to get a task done. Baxter requires no special programming and learns by using its computer vision to watch an employee perform a task, which the bot can repeat ad infinitum.

Doing so will have a tremendous positive impact on the future of robotics as programmers will not have to reinvent the wheel every time they want to encode a particular function in a robot. ROS is free and open source, providing modules for robotics simulation, movement, vision, navigation, perception, facial recognition, and so forth. It is exactly these types of open-source community efforts and shared experience building, barely conceivable just a few years ago, that allow companies like Rethink Robotics to offer Baxter for $22,000 instead of $200,000. ROS, originally developed at Willow Garage in 2007, is now maintained by the Open Source Robotics Foundation and runs on everything from small toys to large industrial robots. As noted numerous times throughout this book, there has never been a computer that could not be hacked, a dictum that applies to robots as well, with important implications for our common security.


pages: 292 words: 85,151

Exponential Organizations: Why New Organizations Are Ten Times Better, Faster, and Cheaper Than Yours (And What to Do About It) by Salim Ismail, Yuri van Geest


23andMe, 3D printing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, bioinformatics, bitcoin, Black Swan, blockchain, Burning Man, business intelligence, business process, call centre, chief data officer, Clayton Christensen, clean water, cloud computing, cognitive bias, collaborative consumption, collaborative economy, corporate social responsibility, cross-subsidies, crowdsourcing, cryptocurrency, dark matter, Dean Kamen, dematerialisation, discounted cash flows, distributed ledger, Edward Snowden, Elon Musk,, ethereum blockchain, Galaxy Zoo, game design, Google Glasses, Google Hangouts, Google X / Alphabet X, hiring and firing, Hyperloop, industrial robot, Innovator's Dilemma, Internet of things, Iridium satellite, Jeff Bezos, Kevin Kelly, Kickstarter, knowledge worker, Kodak vs Instagram, Law of Accelerating Returns, Lean Startup, life extension, loose coupling, loss aversion, Lyft, Mark Zuckerberg, market design, means of production, minimum viable product, natural language processing, Netflix Prize, Network effects, new economy, Oculus Rift, offshore financial centre, p-value, PageRank, pattern recognition, Paul Graham, Peter H. Diamandis: Planetary Resources, Peter Thiel, prediction markets, profit motive, Ray Kurzweil, recommendation engine, RFID, ride hailing / ride sharing, risk tolerance, Second Machine Age, self-driving car, sharing economy, Silicon Valley, skunkworks, Skype, smart contracts, Snapchat, social software, software is eating the world, speech recognition, stealth mode startup, Stephen Hawking, Steve Jobs, subscription business, supply-chain management, TaskRabbit, telepresence, telepresence robot, Tony Hsieh, transaction costs, Tyler Cowen: Great Stagnation, urban planning, WikiLeaks, winner-take-all economy, X Prize, Y Combinator

The best part is that, thanks to the drastically lower costs of many accelerating technologies today, it doesn’t cost all that much to set up an advanced laboratory. As outlined in our Chapter One table on falling technology costs, ten years ago it cost $100,000 to establish a DNA synthesis lab; today that price is down to about $5,000. And while an industrial robot would set you back a million bucks a decade ago, the latest model of that same robot (Rethink RoboticsBaxter robot) is now available for $22,000. In the realm of MEMS sensors, the outlay for accelerometers, microphones, gyroscopes, cameras and magnetometers has dropped 80 percent or more compared to five years ago, according to McKinsey. Finally, a 3D printer carried a $40,000 price tag seven years ago; today it costs just $100. In short, Moore’s Law is the modern lab’s best friend. Recommendation: Start an internal accelerating technologies lab, leveraging core competencies and aiming for moonshot innovations at a budget price.

AI production monitoring Leverage sensor data, algorithms and AI to detect early faults in production and resolve them long before the product comes to market, thus radically reducing repairs, returns and recalls. Customizable and programmable robots Easily programmable and customizable robots for manufacturing, helping workers or removing the need for them to do repetitive and heavy tasks altogether (e.g., Baxter, Unbounded Robotics, Otherlab). Sustainable production and logistics Greener and more self-sufficient production driven by robo-transport, sensors, AI, flexible solar panels and perovskite solar cells. Nanomaterials (graphene) that can be added to buildings, vehicles, machines and equipment. Transformation in Logistics (road, water and air transport). Autonomous transport and delivery Leveraging autonomous vehicles (e.g., Google’s self-driving car) and drones (e.g., Matternet) for the transport and delivery of supplies and products, especially in remote areas.


pages: 310 words: 34,482

Makers at Work: Folks Reinventing the World One Object or Idea at a Time by Steven Osborn


3D printing, additive manufacturing, air freight, Airbnb, augmented reality, autonomous vehicles, barriers to entry, Baxter: Rethink Robotics,, computer vision, crowdsourcing, dumpster diving,, Firefox, future of work, Google Chrome, Google Glasses, Google Hangouts, Hacker Ethic, Internet of things, Iridium satellite, Khan Academy, Kickstarter, Mason jar, means of production, Minecraft, minimum viable product, Network effects, Oculus Rift, patent troll, popular electronics, Rodney Brooks, side project, Silicon Valley, Skype, slashdot, social software, software as a service, special economic zone, speech recognition, subscription business, telerobotics, urban planning, web application, Y Combinator

Linder: Rod used to run CSAIL, the Computer Science and Artificial Intelligence Lab at MIT. He was cofounder, chairman and CTO of iRobot. You know, Roombas, Packbots and all that. In 2008 he started Heartland Robotics. Rod was looking for a design engineer-type of person to work on the user interface. I ended up being employee number ten and the lead user interface guy, at what is now Rethink Robotics, on the product they now call Baxter— but which at that point in time didn’t really exist. Well, it existed in theory, I guess. Heartland was starting to build it, which was pretty exciting. From that point on, I wasn’t sure if I would end up at MIT, but it didn’t matter because I was doing pretty cool stuff with Rod. Pattie did end up accepting me. So I went to MIT because I thought there would be plenty of time to start companies and not so many opportunities to go to MIT.