Baxter: Rethink Robotics

12 results back to index


pages: 413 words: 119,587

Machines of Loving Grace: The Quest for Common Ground Between Humans and Robots by John Markoff

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

A Declaration of the Independence of Cyberspace, AI winter, airport security, Apple II, artificial general intelligence, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, Bill Duvall, bioinformatics, Brewster Kahle, Burning Man, call centre, cellular automata, Chris Urmson, Claude Shannon: information theory, Clayton Christensen, clean water, cloud computing, collective bargaining, computer age, computer vision, crowdsourcing, Danny Hillis, DARPA: Urban Challenge, data acquisition, Dean Kamen, deskilling, don't be evil, Douglas Engelbart, Douglas Hofstadter, Dynabook, Edward Snowden, Elon Musk, Erik Brynjolfsson, factory automation, From Mathematics to the Technologies of Life and Death, future of work, Galaxy Zoo, Google Glasses, Google X / Alphabet X, Grace Hopper, Gödel, Escher, Bach, Hacker Ethic, haute couture, hive mind, hypertext link, indoor plumbing, industrial robot, information retrieval, Internet Archive, Internet of things, invention of the wheel, Jacques de Vaucanson, Jaron Lanier, Jeff Bezos, job automation, John Conway, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, John von Neumann, Kevin Kelly, knowledge worker, Kodak vs Instagram, labor-force participation, loose coupling, Mark Zuckerberg, Marshall McLuhan, medical residency, Menlo Park, Mother of all demos, natural language processing, new economy, Norbert Wiener, PageRank, pattern recognition, pre–internet, RAND corporation, Ray Kurzweil, Richard Stallman, Robert Gordon, Rodney Brooks, Sand Hill Road, Second Machine Age, self-driving car, semantic web, shareholder value, side project, Silicon Valley, Silicon Valley startup, Singularitarianism, skunkworks, Skype, social software, speech recognition, stealth mode startup, Stephen Hawking, Steve Ballmer, Steve Jobs, Steve Wozniak, Steven Levy, Stewart Brand, strong AI, superintelligent machines, technological singularity, Ted Nelson, telemarketer, telepresence, telepresence robot, Tenerife airport disaster, The Coming Technological Singularity, the medium is the message, Thorstein Veblen, Turing test, Vannevar Bush, Vernor Vinge, Watson beat the top human players on Jeopardy!, Whole Earth Catalog, William Shockley: the traitorous eight

The technical term for this relationship is “compliance,” and there is widespread belief among roboticists that over the next half decade these machines will be widely used in manufacturing, distribution, and even retail positions. Baxter is designed to be programmed easily by nontechnical workers. To teach the robot a new repetitive task, humans only have to guide the robot’s arms through the requisite motions and Baxter will automatically memorize the routine. When the robot was introduced, Rethink Robotics demonstrated Baxter’s capability to slowly pick up items on a conveyor belt and place them in new locations. This seemed like a relatively limited contribution to the workplace, but Brooks argues that the system will develop a library of capabilities over time and will increase its speed as new versions of its software become available. Rodney Brooks rejected early artificial intelligence in favor of a new approach he described as “fast, cheap, and out of control.” Later he designed Baxter, an inexpensive manufacturing robot intended to work with, rather than replace, human workers.

Shockley’s prescience was so striking that when Rodney Brooks, himself a pioneering roboticist at the Stanford Artificial Intelligence Laboratory in the 1970s, read Brock’s article in IEEE Spectrum in 2013, he passed Shockley’s original 1951 memo around his company, Rethink Robotics, and asked his employees to guess when the memo had been written. No one came close. That memo predates by more than a half century Rethink’s Baxter robot, introduced in the fall of 2012. Yet Baxter is almost exactly what Shockley proposed in the 1950s—a trainable robot with an expressive “face” on an LCD screen, “hands,” “sensory organs,” “memory,” and, of course, a “brain.” The philosophical difference between Shockley and Brooks is that Brooks’s intent has been for Baxter to cooperate with human workers rather than replace them, taking over dull, repetitive tasks in a factory and leaving more creative work for humans. Shockley’s original memo demonstrates that Silicon Valley had its roots in the fundamental paradox that technology both augments and dispenses with humans.

NOTE: Page references in italics refer to photos. Abbeel, Pieter, 268 Abelson, Robert, 180–181 Abovitz, Rony, 271–275 Active Ontologies, 304 Ad Hoc Committee on the Triple Revolution, 73–74 agent-based interfaces, 195–226. see also Siri (Apple) avatars, 304, 305 Baxter (robot), 195–196, 204–205, 205, 207 Brooks and, 201–204 CALO, 31, 297, 302–304, 310, 311 chatbots, 221–225, 304 early personal computing and, 196–201 ethics of, 339–342 “golemics” and, 208–215 Google and, 12–13, 341 Microsoft and, 187–191, 215–220 Rethink Robotics and, 204–208 singularity and, 220–221 Agents, Inc., 191–192 aging, of humans, 93–94, 236–237, 245, 327–332 “Alchemy and Artificial Intelligence” (Dreyfus), 177 Allen, Paul, 267, 268, 337 Alone Together (Turkle), 173, 221–222 Amazon, 97–98, 206, 247 Ambler (robot), 33, 202 Anderson, Chris, 88 Andreessen, Marc, 69 Apocalypse AI (Geraci), 85, 116–117 Apple. see also Siri (Apple) early history of, 7, 8, 214, 279–281, 307 iPhone, 23, 93, 239, 275, 281 iPod, 194, 275, 281 Jobs and, 13, 35, 112, 131, 194, 214, 241, 281–282, 320–323 Knowledge Navigator, 188, 300, 304, 305–310, 317, 318 labor force of, 83–84 Rubin and, 240 Sculley and, 35, 280, 300, 305, 306, 307, 317 Architecture Machine, The (Negroponte), 191 Architecture Machine Group, 306–307, 308–309 Arkin, Ronald, 333–335 Armer, Paul, 74 Aronson, Louise, 328 Artificial General Intelligence, 26 artificial intelligence (AI). see artificial intelligence (AI) history; autonomous vehicles; intelligence augmentation (IA) versus AI; labor force; robotics advancement; Siri (Apple) artificial intelligence (AI) history, 95–158. see also intelligence augmentation (IA) versus AI AI commercialization, 156–158 AI terminology, xii, 105–109 AI Winter, 16, 130–131, 140 Breiner and, 125–135 deep learning neural networks, 150–156, 151 early neural networks, 141–150 expert systems, 134–141, 285 McCarthy and, 109–115 Moravec and, 115–125 Silicon Valley inception, 95–99, 100, 256 SRI inception, 99–105 Strong artificial intelligence, 12, 26, 272 “Artificial Intelligence” (Lighthill), 130 “Artificial Intelligence of Hubert L.

 

pages: 339 words: 88,732

The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies by Erik Brynjolfsson, Andrew McAfee

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

2013 Report for America's Infrastructure - American Society of Civil Engineers - 19 March 2013, 3D printing, access to a mobile phone, additive manufacturing, Airbnb, Albert Einstein, Amazon Mechanical Turk, Amazon Web Services, American Society of Civil Engineers: Report Card, Any sufficiently advanced technology is indistinguishable from magic, autonomous vehicles, barriers to entry, Baxter: Rethink Robotics, British Empire, business intelligence, business process, call centre, clean water, combinatorial explosion, computer age, computer vision, congestion charging, corporate governance, crowdsourcing, David Ricardo: comparative advantage, employer provided health coverage, en.wikipedia.org, Erik Brynjolfsson, factory automation, falling living standards, Filter Bubble, first square of the chessboard / second half of the chessboard, Frank Levy and Richard Murnane: The New Division of Labor, Freestyle chess, full employment, game design, global village, happiness index / gross national happiness, illegal immigration, immigration reform, income inequality, income per capita, indoor plumbing, industrial robot, informal economy, inventory management, James Watt: steam engine, Jeff Bezos, jimmy wales, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Joseph Schumpeter, Kevin Kelly, Khan Academy, knowledge worker, Kodak vs Instagram, law of one price, low skilled workers, Lyft, Mahatma Gandhi, manufacturing employment, Mark Zuckerberg, Mars Rover, means of production, Narrative Science, Nate Silver, natural language processing, Network effects, new economy, New Urbanism, Nicholas Carr, Occupy movement, oil shale / tar sands, oil shock, pattern recognition, payday loans, price stability, Productivity paradox, profit maximization, Ralph Nader, Ray Kurzweil, recommendation engine, Report Card for America’s Infrastructure, Robert Gordon, Rodney Brooks, Ronald Reagan, Second Machine Age, self-driving car, sharing economy, Silicon Valley, Simon Kuznets, six sigma, Skype, software patent, sovereign wealth fund, speech recognition, statistical model, Steve Jobs, Steven Pinker, Stuxnet, supply-chain management, TaskRabbit, technological singularity, telepresence, The Bell Curve by Richard Herrnstein and Charles Murray, The Signal and the Noise by Nate Silver, The Wealth of Nations by Adam Smith, total factor productivity, transaction costs, Tyler Cowen: Great Stagnation, Vernor Vinge, Watson beat the top human players on Jeopardy!, winner-take-all economy, Y2K

We got a sneak peek at these potential paradox-busters shortly before Rethink’s public unveiling of their first line of robots, named Baxter. Brooks invited us to the company’s headquarters in Boston to see these automatons, and to see what they could do. Baxter is instantly recognizable as a humanoid robot. It has two burly, jointed arms with claw-like grips for hands; a torso; and a head with an LCD face that swivels to ‘look at’ the nearest person. It doesn’t have legs, though; Rethink sidestepped the enormous challenges of automatic locomotion by putting Baxter on wheels and having it rely on people to get from place to place. The company’s analyses suggest that it can still do lots of useful work without the ability to move under his own power. To train Baxter, you grab it by the wrist and guide the arm through the motions you want it to carry out.

Entrepreneurs and managers are constantly making these types of decisions, weighing the relative costs of each type of input, as well as the effects on the quality, reliability, and variety of output that can be produced. Rod Brooks estimates that the Baxter robot we met in chapter 2 works for the equivalent of about four dollars per hour, including all costs.33 As we discussed at the start of this chapter, to the extent that a factory owner previously employed a human to do the same task that Baxter could do, the economic incentive would be to substitute capital (Baxter) for labor as long as the human was paid more than four dollars per hour. If output stays the same, and assuming no new hires are made in engineering, management, or sales at the company, it would increase the ratio of capital to labor input.* Compensation of the remaining workers could go up or down in the wake of Baxter’s arrival. If their work is a close substitute for the robots’, then there will be downward pressure on human wages.

The robot also maintains safety; the two arms can’t collide (the motors resist you if you try to make this happen) and they automatically slow down if Baxter senses a person within their range. These and many other design features make working with this automaton a natural, intuitive, and nonthreatening experience. When we first approached it, we were nervous about catching a robot arm to the face, but this apprehension faded quickly, replaced by curiosity. Brooks showed us several Baxters at work in the company’s demo area. They were blowing past Moravec’s paradox—sensing and manipulating lots of different objects with ‘hands’ ranging from grips to suction cups. The robots aren’t as fast or fluid as a well-trained human worker at full speed, but they might not need to be. Most conveyor belts and assembly lines do not operate at full human speed; they would tire people out if they did. Baxter has a few obvious advantages over human workers.

 

pages: 484 words: 104,873

Rise of the Robots: Technology and the Threat of a Jobless Future by Martin Ford

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Affordable Care Act / Obamacare, AI winter, algorithmic trading, Amazon Mechanical Turk, artificial general intelligence, autonomous vehicles, banking crisis, Baxter: Rethink Robotics, Bernie Madoff, Bill Joy: nanobots, call centre, Capital in the Twenty-First Century by Thomas Piketty, Chris Urmson, Clayton Christensen, clean water, cloud computing, collateralized debt obligation, computer age, debt deflation, deskilling, diversified portfolio, Erik Brynjolfsson, factory automation, financial innovation, Flash crash, Fractional reserve banking, Freestyle chess, full employment, Goldman Sachs: Vampire Squid, High speed trading, income inequality, indoor plumbing, industrial robot, informal economy, iterative process, Jaron Lanier, job automation, John Maynard Keynes: technological unemployment, John von Neumann, Khan Academy, knowledge worker, labor-force participation, labour mobility, liquidity trap, low skilled workers, low-wage service sector, Lyft, manufacturing employment, McJob, moral hazard, Narrative Science, Network effects, new economy, Nicholas Carr, Norbert Wiener, obamacare, optical character recognition, passive income, performance metric, Peter Thiel, Plutocrats, plutocrats, post scarcity, precision agriculture, price mechanism, Ray Kurzweil, rent control, rent-seeking, reshoring, RFID, Richard Feynman, Richard Feynman, Rodney Brooks, secular stagnation, self-driving car, Silicon Valley, Silicon Valley startup, single-payer health, software is eating the world, sovereign wealth fund, speech recognition, Spread Networks laid a new fibre optics cable between New York and Chicago, stealth mode startup, stem cell, Stephen Hawking, Steve Jobs, Steven Levy, Steven Pinker, strong AI, Stuxnet, technological singularity, telepresence, telepresence robot, The Bell Curve by Richard Herrnstein and Charles Murray, The Coming Technological Singularity, Thomas L Friedman, too big to fail, Tyler Cowen: Great Stagnation, union organizing, Vernor Vinge, very high income, Watson beat the top human players on Jeopardy!, women in the workforce

A Versatile Robotic Worker Industrial Perception’s robot is a highly specialized machine focused specifically on moving boxes with maximum efficiency. Boston-based Rethink Robotics has taken a different track with Baxter, a lightweight humanoid manufacturing robot that can easily be trained to perform a variety of repetitive tasks. Rethink was founded by Rodney Brooks, one of the world’s foremost robotics researchers at MIT and a co-founder of iRobot, the company that makes the Roomba automated vacuum cleaner as well as military robots used to defuse bombs in Iraq and Afghanistan. Baxter, which costs significantly less than a year’s wages for a typical US manufacturing worker, is essentially a scaled-down industrial robot that is designed to operate safely in close proximity to people. In contrast to industrial robots, which require complex and expensive programming, Baxter can be trained simply by moving its arms through the required motions.

Companies of all sizes were on hand to showcase robots designed to perform precision manufacturing, transport medical supplies between departments in large hospitals, or autonomously operate heavy equipment for agriculture and mining. There was a personal robot named “Budgee” capable of carrying up to fifty pounds of stuff around the house or at the store. A variety of educational robots focused on everything from encouraging technical creativity to assisting children with autism or learning disabilities. At the Rethink Robotics booth, Baxter had received Halloween training and was grasping small boxes of candy and then dropping them into pumpkin-shaped trick-or-treat buckets. There were also companies marketing components like motors, sensors, vision systems, electronic controllers, and the specialized software used to construct robots. Silicon Valley start-up Grabit Inc. demonstrated an innovative electroadhesion-powered gripper that allows robots to pick up, carry, and place nearly anything simply by employing a controlled electrostatic charge.

In contrast to industrial robots, which require complex and expensive programming, Baxter can be trained simply by moving its arms through the required motions. If a facility uses multiple robots, one Baxter can be trained and then the knowledge can be propagated to the others simply by plugging in a USB device. The robot can be adapted to a variety of tasks, including light assembly work, transferring parts between conveyer belts, packing products into retail packaging, or tending machines used in metal fabrication. Baxter is particularly talented at packing finished products into shipping boxes. K’NEX, a toy construction set manufacturer located in Hat-field, Pennsylvania, found that Baxter’s ability to pack its products tightly allowed the company to use 20–40 percent fewer boxes.5 Rethink’s robot also has two-dimensional machine vision capability powered by cameras on both wrists and can pick up parts and even perform basic quality-control inspections.

 

pages: 371 words: 108,317

The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future by Kevin Kelly

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, A Declaration of the Independence of Cyberspace, AI winter, Airbnb, Albert Einstein, Amazon Web Services, augmented reality, bank run, barriers to entry, Baxter: Rethink Robotics, bitcoin, blockchain, book scanning, Brewster Kahle, Burning Man, cloud computing, computer age, connected car, crowdsourcing, dark matter, dematerialisation, Downton Abbey, Edward Snowden, Elon Musk, Filter Bubble, Freestyle chess, game design, Google Glasses, hive mind, Howard Rheingold, index card, indoor plumbing, industrial robot, Internet Archive, Internet of things, invention of movable type, invisible hand, Jaron Lanier, Jeff Bezos, job automation, Kevin Kelly, Kickstarter, linked data, Lyft, M-Pesa, Marshall McLuhan, means of production, megacity, Minecraft, multi-sided market, natural language processing, Netflix Prize, Network effects, new economy, Nicholas Carr, peer-to-peer lending, personalized medicine, placebo effect, planetary scale, postindustrial economy, recommendation engine, RFID, ride hailing / ride sharing, Rodney Brooks, self-driving car, sharing economy, Silicon Valley, slashdot, Snapchat, social graph, social web, software is eating the world, speech recognition, Stephen Hawking, Steven Levy, Ted Nelson, the scientific method, transport as a service, two-sided market, Uber for X, Watson beat the top human players on Jeopardy!, Whole Earth Review

We have preconceptions about how an intelligent robot should look and act, and these can blind us to what is already happening around us. To demand that artificial intelligence be humanlike is the same flawed logic as demanding that artificial flying be birdlike, with flapping wings. Robots, too, will think different. Consider Baxter, a revolutionary new workbot from Rethink Robotics. Designed by Rodney Brooks, the former MIT professor who invented the bestselling Roomba vacuum cleaner and its descendants, Baxter is an early example of a new class of industrial robots created to work alongside humans. Baxter does not look impressive. Sure, it’s got big strong arms and a flat-screen display like many industrial bots. And Baxter’s hands perform repetitive manual tasks, just as factory robots do. But it’s different in three significant ways. First, it can look around and indicate where it is looking by shifting the cartoon eyes on its head.

See also books; ebooks and readers realism, 211–14, 216 real time, 66, 88, 104, 114–17, 131, 145 recommendation engines, 169 Red Dead Redemption, 227–30 Reddit, 136, 140, 143, 149, 264 Red Hat, 69 reference transactions, 285 relationship network analysis, 187 relativity theory, 288 remixing of ideas, 193–210 and economic growth, 193–95 and intellectual property issues, 207–10 legal issues associated with, 207–10 and reduced cost of creating content, 196–97 and rewindability, 204–7 and visual media, 197–203 remixing video, 197–98 renting, 117–18 replication of media, 206–9 Rethink Robotics, 51 revert functions, 270 reviews by users/readers, 21, 72–73, 139, 266 rewindability, 204–7, 247–48, 270 RFID chips, 283 Rheingold, Howard, 148–49 ride-share taxis, 252 ring tones, 250 Ripley’s Believe It or Not, 278 robots ability to think differently, 51–52 Baxter, 51–52 categories of jobs for, 54–59, 60 and digital storage capacity, 265 dolls, 36 emergence of, 49 industrial robots, 52–53 and mass customization, 173 new jobs related to, 57–58 and personal success, 58–59 personal workbots, 58–59 stages of robot replacement, 59–60 training, 52–53 trust in, 54 Romer, Paul, 193, 209 Rosedale, Phil, 219 Rowling, J.

Optimally, workers should be able to get materials to and from the robot or to tweak its controls by hand throughout the workday; isolation makes that difficult. Baxter, however, is aware. Using force-feedback technology to feel if it is colliding with a person or another bot, it is courteous. You can plug it into a wall socket in your garage and easily work right next to it. Second, anyone can train Baxter. It is not as fast, strong, or precise as other industrial robots, but it is smarter. To train the bot, you simply grab its arms and guide them in the correct motions and sequence. It’s a kind of “watch me do this” routine. Baxter learns the procedure and then repeats it. Any worker is capable of this show and tell; you don’t even have to be literate. Previous workbots required highly educated engineers and crack programmers to write thousands of lines of code (and then debug them) in order to instruct the robot in the simplest change of task.

 

The Economic Singularity: Artificial intelligence and the death of capitalism by Calum Chace

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, agricultural Revolution, AI winter, Airbnb, artificial general intelligence, augmented reality, autonomous vehicles, banking crisis, Baxter: Rethink Robotics, Berlin Wall, Bernie Sanders, bitcoin, blockchain, call centre, Chris Urmson, congestion charging, credit crunch, David Ricardo: comparative advantage, Elon Musk, en.wikipedia.org, Erik Brynjolfsson, Flynn Effect, full employment, future of work, gender pay gap, gig economy, Google Glasses, Google X / Alphabet X, income inequality, industrial robot, Internet of things, invention of the telephone, invisible hand, James Watt: steam engine, Jaron Lanier, Jeff Bezos, job automation, John Maynard Keynes: technological unemployment, John von Neumann, Kevin Kelly, knowledge worker, lump of labour, Lyft, Mark Zuckerberg, Martin Wolf, McJob, means of production, Milgram experiment, Narrative Science, natural language processing, new economy, Occupy movement, Oculus Rift, PageRank, pattern recognition, post scarcity, post-industrial society, precariat, prediction markets, QWERTY keyboard, railway mania, RAND corporation, Ray Kurzweil, RFID, Rodney Brooks, Satoshi Nakamoto, Second Machine Age, self-driving car, sharing economy, Silicon Valley, Skype, software is eating the world, speech recognition, Stephen Hawking, Steve Jobs, TaskRabbit, technological singularity, Thomas Malthus, transaction costs, Tyler Cowen: Great Stagnation, Uber for X, universal basic income, Vernor Vinge, working-age population, Y Combinator, young professional

But the industrial robotics industry is changing: as well as growing quickly, its output is getting cheaper, safer and far more versatile. A landmark was reached in 2012 with the introduction of Baxter, a 3-foot tall robot (6 feet with his pedestal) from Rethink Robotics. The brainchild of Rodney Brooks, an Australian roboticist who used to be the director of the MIT Computer Science and Artificial Intelligence Laboratory, Baxter is much less dangerous to be around. By early 2015, Rethink had received over $100m in funding from venture capitalists, including the investment vehicle of Amazon founder Jeff Bezos. Baxter was intended to disrupt the industrial robots market by being cheaper, safer, and easier to programme. He is certainly cheaper, with a starting price of $22,000. He is safer because his arm and body movements are mediated by springs, and he carries an array of sensors to detect the presence nearby of squishy, fragile things like humans.

He is easier to programme because an operator can teach him new movements simply by physically moving his arms in the intended fashion. Baxter's short life has not been entirely plain sailing. Sales did not pick up as expected, and in December 2013, Rethink laid off around a quarter of its staff. One of the competitors stealing sales from Rethink is Universal Robots of Denmark, a manufacturer of small- and medium-sized robot arms. Universal increased sales to €30m in 2014, and aims to double its revenues every year until 2017. But Rethink remains well-funded, and in March 2015 it introduced a smaller, faster, more flexible robot arm called Sawyer. It can operate in more environments than Baxter, and can carry out more intricate movements. It is slightly more expensive, at $29,000. Rethink and Universal, along with other companies like the Swiss firm ABB and the German firm KUKI, are making industrial robots more effective, more affordable, and more widespread.

In the initial event in 2004 the winning car drove just seven of the 150 miles of the track before crashing. A dozen years later, self-driving cars are demonstrably superior to human drivers in almost all circumstances, and they are closing the remaining gap fast. As far as robotics is concerned, we are at 2004 again. And don't forget the power of exponential improvement. In chapter 2.3 we met Baxter, a new generation of industrial robot, which is beginning to demonstrate that robots can be flexible, adaptable, and easy to instruct in new tasks. Research teams around the world are teaching robots to do intricate tasks. In October 2015, a consortium of Japanese companies unveiled the Laundroid, a robot capable of folding a shirt in four minutes.[cxlviii] Meanwhile at the University of California, a team developing the Berkeley Robot for the Elimination of Tedious Tasks (BRETT) spent seven years reducing the time to fold a towel from 20 minutes to 1.5 minutes.

 

pages: 179 words: 43,441

The Fourth Industrial Revolution by Klaus Schwab

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, barriers to entry, Baxter: Rethink Robotics, bitcoin, blockchain, Buckminster Fuller, call centre, clean water, collaborative consumption, conceptual framework, continuous integration, crowdsourcing, disintermediation, distributed ledger, Edward Snowden, Elon Musk, epigenetics, Erik Brynjolfsson, future of work, global value chain, Google Glasses, income inequality, Internet Archive, Internet of things, invention of the steam engine, job automation, job satisfaction, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, life extension, Lyft, megacity, meta analysis, meta-analysis, more computing power than Apollo, mutually assured destruction, Narrative Science, Network effects, Nicholas Carr, personalized medicine, precariat, precision agriculture, Productivity paradox, race to the bottom, randomized controlled trial, reshoring, RFID, rising living standards, Second Machine Age, secular stagnation, self-driving car, sharing economy, Silicon Valley, smart cities, smart contracts, software as a service, Stephen Hawking, Steve Jobs, Steven Levy, Stuxnet, The Spirit Level, total factor productivity, transaction costs, Uber and Lyft, Watson beat the top human players on Jeopardy!, WikiLeaks, winner-take-all economy, women in the workforce, working-age population, Y Combinator, Zipcar

Positive impacts – Supply chain and logistics, eliminations – More leisure time – Improved health outcomes (big data for pharmaceutical gains in research and development) – Banking ATM as early adopter – More access to materials – Production “re-shoring” (i.e. replacing overseas workers with robots) Negative impacts – Job losses – Liability, accountability – Day-to-day social norms, end of 9-to-5 and 24-hour services – Hacking and cyber-risk The shift in action An article from The Fiscal Times appearing on CNBC.com states that: “Rethink Robotics released Baxter [in the fall of 2012] and received an overwhelming response from the manufacturing industry, selling out of their production capacity through April … [In April] Rethink launch[ed] a software platform that [allows] Baxter to do a more complex sequencing of tasks – for example, picking up a part, holding it in front of an inspection station and receiving a signal to place it in a ‘good’ or ‘not good’ pile. The company also [released] a software development kit … that will allow third parties – like university robotics researchers – to create applications for Baxter.” In “The Robot Reality: Service Jobs Are Next to Go”, Blaire Briody, 26 March 2013, The Fiscal Times, http://www.cnbc.com/id/100592545 Shift 16: Bitcoin and the Blockchain The tipping point: 10% of global gross domestic product (GDP) stored on blockchain technology By 2025: 58% of respondents expected this tipping point to have occurred Bitcoin and digital currencies are based on the idea of a distributed trust mechanism called the “blockchain”, a way of keeping track of trusted transactions in a distributed fashion.

 

pages: 271 words: 77,448

Humans Are Underrated: What High Achievers Know That Brilliant Machines Never Will by Geoff Colvin

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Ada Lovelace, autonomous vehicles, Baxter: Rethink Robotics, Black Swan, call centre, capital asset pricing model, computer age, corporate governance, deskilling, en.wikipedia.org, Freestyle chess, future of work, Google Glasses, Grace Hopper, industrial robot, interchangeable parts, job automation, knowledge worker, low skilled workers, meta analysis, meta-analysis, Narrative Science, new economy, rising living standards, self-driving car, sentiment analysis, Silicon Valley, Skype, Steve Jobs, Steve Wozniak, Steven Levy, Steven Pinker, theory of mind, Tim Cook: Apple, transaction costs

Google’s autonomous cars are an obvious and significant example—significant because the number one job among American men is truck driver. Many more examples are appearing. You can train a Baxter robot (from Rethink Robotics) to do all kinds of things—pack or unpack boxes, take items to or from a conveyor belt, fold a T-shirt, carry things around, count them, inspect them—just by moving its arms and hands (“end-effectors”) in the desired way. Many previous industrial robots had to be surrounded by safety cages because they could do just one thing in one way, over and over, and that’s all they knew; if you got between a welding robot and the piece it was welding, you were in deep trouble. But Baxter doesn’t hurt anyone as it hums about the shop floor; it adapts its movements to its environment by sensing everything around it, including people.

This is known as Moravec’s paradox; see, among many discussions of this topic, Hans Moravec, Mind Children (Harvard University Press, 1988), and Pamela McCorduck, Machines Who Think (A. K. Peters Ltd., 2004). Google’s autonomous cars . . . Jennifer Cheeseman Day and Jeffrey Rosenthal, “Detailed Occupations and Median Earnings: 2008.” U.S. Census Bureau, http://www.census.gov/people/io/files/acs08_detailedoccupations.pdf. You can train a Baxter robot . . . http://www.rethinkrobotics.com/baxter/. Robots went into the wreckage . . . “Meet the Robots of Fukushima Daiichi,” IEEE Spectrum, 28 February 2014, http://spectrum.ieee.org/slideshow/robotics/industrial-robots/meet-the-robots-of-fukushima-daiichi. By 2008 about 12,000 combat robots . . . “Pushing the Boundaries of Traditional HRI,” Science and Technology Innovations, Fall 2013, p. 7. Published by the University of Central Florida Institute for Simulation and Training.

 

pages: 347 words: 97,721

Only Humans Need Apply: Winners and Losers in the Age of Smart Machines by Thomas H. Davenport, Julia Kirby

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

AI winter, Andy Kessler, artificial general intelligence, asset allocation, Automated Insights, autonomous vehicles, Baxter: Rethink Robotics, business intelligence, business process, call centre, carbon-based life, Clayton Christensen, clockwork universe, conceptual framework, dark matter, David Brooks, deliberate practice, deskilling, Edward Lloyd's coffeehouse, Elon Musk, Erik Brynjolfsson, estate planning, follow your passion, Frank Levy and Richard Murnane: The New Division of Labor, Freestyle chess, game design, general-purpose programming language, Google Glasses, Hans Lippershey, haute cuisine, income inequality, index fund, industrial robot, information retrieval, intermodal, Internet of things, inventory management, Isaac Newton, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Khan Academy, knowledge worker, labor-force participation, loss aversion, Mark Zuckerberg, Narrative Science, natural language processing, Norbert Wiener, nuclear winter, pattern recognition, performance metric, Peter Thiel, precariat, quantitative trading / quantitative finance, Ray Kurzweil, Richard Feynman, Richard Feynman, risk tolerance, Robert Shiller, Robert Shiller, Rodney Brooks, Second Machine Age, self-driving car, Silicon Valley, six sigma, Skype, speech recognition, spinning jenny, statistical model, Stephen Hawking, Steve Jobs, Steve Wozniak, strong AI, superintelligent machines, supply-chain management, transaction costs, Tyler Cowen: Great Stagnation, Watson beat the top human players on Jeopardy!, Works Progress Administration, Zipcar

It often involves persuading and herding individuals who don’t actually report to the product manager, so it can be a challenging role. Jim Lawton, whom we also mentioned in Chapter 2, is chief product and marketing officer at Rethink Robotics, a “collaborative robotics” manufacturer in Boston. Rethink was founded and is led by Rodney Brooks, a former MIT professor, who also plays the role of chief technology officer. He handles the vision and the research. It is Lawton’s job to understand what customers want from robots and translate that into product capabilities. He’s also an evangelist for the idea that robots and people can collaborate with each other. Rethink’s robot models, which now include the cutely named Baxter and Sawyer, don’t require a lot of detailed programming. They learn their movements by having a person guide them. Unlike many robots, they don’t pose a danger to humans and don’t have to be isolated in cages.

As robots develop more intelligence, better machine vision, and greater ability to make decisions, they will become a combination of other types of cognitive technologies, but with the added ability to transform the physical environment (remember the “Great Convergence” toward the right in the chart at the beginning of this chapter). There are already, as we have discussed, systems to understand text and speech, systems to engage in intelligent Q&A with humans, and systems to recognize a variety of images. It’s just that they’re not yet embedded in the brain of a robot. Jim Lawton, the head of products at Rethink Robotics, commented to us in an interview: “An important area of experimentation today is around the intersection of collaborative robots, big data, and deep learning. The goal is to combine automation of physical tasks and cognitive tasks. For example, a robot could start combining all the information about how much torque is applied in a screw. Robots are, after all, a big bucket of sensors. A truly intelligent robot could begin to see what works in terms of how much torque in a screw leads to field failures.

For most companies today using such systems, underwriters and actuaries are able to monitor and change the systems in English-like language and graphic decision paths without help from a vendor or consultant. Rule-based underwriting in insurance has also been expanded to new areas—for example, medical and life insurance underwriting—from its initial base in property and casualty insurance. Another domain of automation in which transparency and ease of use are increasing is robotics. We mentioned the company Rethink Robotics (and their head of product and marketing, Jim Lawton) earlier in this chapter. That company and several others focus on the “collaborative robots” segment, in which humans and robots can work closely alongside each other. Whereas with a traditional robot, changing the pattern of movements and actions would require changes to a complex programming language, changing the behaviors of collaborative robots typically involves simply demonstrating the required movements to the robot.

 

pages: 677 words: 206,548

Future Crimes: Everything Is Connected, Everyone Is Vulnerable and What We Can Do About It by Marc Goodman

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, 3D printing, additive manufacturing, Affordable Care Act / Obamacare, Airbnb, airport security, Albert Einstein, algorithmic trading, artificial general intelligence, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, Bill Joy: nanobots, bitcoin, Black Swan, blockchain, borderless world, Brian Krebs, business process, butterfly effect, call centre, Chelsea Manning, cloud computing, cognitive dissonance, computer vision, connected car, corporate governance, crowdsourcing, cryptocurrency, data acquisition, data is the new oil, Dean Kamen, disintermediation, don't be evil, double helix, Downton Abbey, Edward Snowden, Elon Musk, Erik Brynjolfsson, Filter Bubble, Firefox, Flash crash, future of work, game design, Google Chrome, Google Earth, Google Glasses, Gordon Gekko, high net worth, High speed trading, hive mind, Howard Rheingold, hypertext link, illegal immigration, impulse control, industrial robot, Internet of things, Jaron Lanier, Jeff Bezos, job automation, John Harrison: Longitude, Jony Ive, Julian Assange, Kevin Kelly, Khan Academy, Kickstarter, knowledge worker, Kuwabatake Sanjuro: assassination market, Law of Accelerating Returns, Lean Startup, license plate recognition, litecoin, M-Pesa, Mark Zuckerberg, Marshall McLuhan, Menlo Park, mobile money, more computing power than Apollo, move fast and break things, Nate Silver, national security letter, natural language processing, obamacare, Occupy movement, Oculus Rift, offshore financial centre, optical character recognition, pattern recognition, personalized medicine, Peter H. Diamandis: Planetary Resources, Peter Thiel, pre–internet, RAND corporation, ransomware, Ray Kurzweil, refrigerator car, RFID, ride hailing / ride sharing, Rodney Brooks, Satoshi Nakamoto, Second Machine Age, security theater, self-driving car, shareholder value, Silicon Valley, Silicon Valley startup, Skype, smart cities, smart grid, smart meter, Snapchat, social graph, software as a service, speech recognition, stealth mode startup, Stephen Hawking, Steve Jobs, Steve Wozniak, strong AI, Stuxnet, supply-chain management, technological singularity, telepresence, telepresence robot, Tesla Model S, The Wisdom of Crowds, Tim Cook: Apple, trade route, uranium enrichment, Wall-E, Watson beat the top human players on Jeopardy!, Wave and Pay, We are Anonymous. We are Legion, web application, WikiLeaks, Y Combinator, zero day

Industrial robots are growing exponentially cheaper, more efficient, and more user-friendly, and perhaps no other robot exemplifies this trend as much as Baxter, the cute low-cost industrial bot from Rethink Robotics. At $22,000, it is a tenth of the price of its predecessors. More impressive is the fact that it works right out of the box and can be up and running in just an hour, as opposed to the eighteen months it took to integrate the previous generations of industrial robots into a factory operation. Baxter can learn to do simple tasks, such as “pick and place” objects on an assembly line, in just five minutes. It has an adorable face on its head-mounted display screen and two highly dexterous arms, which can move in any direction required to get a task done. Baxter requires no special programming and learns by using its computer vision to watch an employee perform a task, which the bot can repeat ad infinitum.

Doing so will have a tremendous positive impact on the future of robotics as programmers will not have to reinvent the wheel every time they want to encode a particular function in a robot. ROS is free and open source, providing modules for robotics simulation, movement, vision, navigation, perception, facial recognition, and so forth. It is exactly these types of open-source community efforts and shared experience building, barely conceivable just a few years ago, that allow companies like Rethink Robotics to offer Baxter for $22,000 instead of $200,000. ROS, originally developed at Willow Garage in 2007, is now maintained by the Open Source Robotics Foundation and runs on everything from small toys to large industrial robots. As noted numerous times throughout this book, there has never been a computer that could not be hacked, a dictum that applies to robots as well, with important implications for our common security.

 

pages: 292 words: 85,151

Exponential Organizations: Why New Organizations Are Ten Times Better, Faster, and Cheaper Than Yours (And What to Do About It) by Salim Ismail, Yuri van Geest

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

23andMe, 3D printing, Airbnb, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, bioinformatics, bitcoin, Black Swan, blockchain, Burning Man, business intelligence, business process, call centre, chief data officer, Clayton Christensen, clean water, cloud computing, cognitive bias, collaborative consumption, collaborative economy, corporate social responsibility, cross-subsidies, crowdsourcing, cryptocurrency, dark matter, Dean Kamen, dematerialisation, discounted cash flows, distributed ledger, Edward Snowden, Elon Musk, en.wikipedia.org, ethereum blockchain, Galaxy Zoo, game design, Google Glasses, Google Hangouts, Google X / Alphabet X, gravity well, hiring and firing, Hyperloop, industrial robot, Innovator's Dilemma, Internet of things, Iridium satellite, Isaac Newton, Jeff Bezos, Kevin Kelly, Kickstarter, knowledge worker, Kodak vs Instagram, Law of Accelerating Returns, Lean Startup, life extension, loose coupling, loss aversion, Lyft, Mark Zuckerberg, market design, means of production, minimum viable product, natural language processing, Netflix Prize, Network effects, new economy, Oculus Rift, offshore financial centre, p-value, PageRank, pattern recognition, Paul Graham, Peter H. Diamandis: Planetary Resources, Peter Thiel, prediction markets, profit motive, publish or perish, Ray Kurzweil, recommendation engine, RFID, ride hailing / ride sharing, risk tolerance, Ronald Coase, Second Machine Age, self-driving car, sharing economy, Silicon Valley, skunkworks, Skype, smart contracts, Snapchat, social software, software is eating the world, speech recognition, stealth mode startup, Stephen Hawking, Steve Jobs, subscription business, supply-chain management, TaskRabbit, telepresence, telepresence robot, Tony Hsieh, transaction costs, Tyler Cowen: Great Stagnation, urban planning, WikiLeaks, winner-take-all economy, X Prize, Y Combinator

The best part is that, thanks to the drastically lower costs of many accelerating technologies today, it doesn’t cost all that much to set up an advanced laboratory. As outlined in our Chapter One table on falling technology costs, ten years ago it cost $100,000 to establish a DNA synthesis lab; today that price is down to about $5,000. And while an industrial robot would set you back a million bucks a decade ago, the latest model of that same robot (Rethink RoboticsBaxter robot) is now available for $22,000. In the realm of MEMS sensors, the outlay for accelerometers, microphones, gyroscopes, cameras and magnetometers has dropped 80 percent or more compared to five years ago, according to McKinsey. Finally, a 3D printer carried a $40,000 price tag seven years ago; today it costs just $100. In short, Moore’s Law is the modern lab’s best friend. Recommendation: Start an internal accelerating technologies lab, leveraging core competencies and aiming for moonshot innovations at a budget price.

AI production monitoring Leverage sensor data, algorithms and AI to detect early faults in production and resolve them long before the product comes to market, thus radically reducing repairs, returns and recalls. Customizable and programmable robots Easily programmable and customizable robots for manufacturing, helping workers or removing the need for them to do repetitive and heavy tasks altogether (e.g., Baxter, Unbounded Robotics, Otherlab). Sustainable production and logistics Greener and more self-sufficient production driven by robo-transport, sensors, AI, flexible solar panels and perovskite solar cells. Nanomaterials (graphene) that can be added to buildings, vehicles, machines and equipment. Transformation in Logistics (road, water and air transport). Autonomous transport and delivery Leveraging autonomous vehicles (e.g., Google’s self-driving car) and drones (e.g., Matternet) for the transport and delivery of supplies and products, especially in remote areas.

 

Frugal Innovation: How to Do Better With Less by Jaideep Prabhu Navi Radjou

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, additive manufacturing, Affordable Care Act / Obamacare, Airbnb, Albert Einstein, barriers to entry, Baxter: Rethink Robotics, Bretton Woods, business climate, business process, call centre, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, cloud computing, collaborative consumption, collaborative economy, connected car, corporate social responsibility, crowdsourcing, Elon Musk, financial innovation, global supply chain, income inequality, industrial robot, Internet of things, job satisfaction, Khan Academy, Kickstarter, late fees, Lean Startup, low cost carrier, M-Pesa, Mahatma Gandhi, megacity, minimum viable product, more computing power than Apollo, new economy, payday loans, peer-to-peer lending, Peter H. Diamandis: Planetary Resources, precision agriculture, race to the bottom, reshoring, ride hailing / ride sharing, risk tolerance, Ronald Coase, self-driving car, shareholder value, sharing economy, Silicon Valley, Silicon Valley startup, six sigma, smart grid, smart meter, software as a service, Steve Jobs, supply-chain management, TaskRabbit, The Fortune at the Bottom of the Pyramid, The Nature of the Firm, transaction costs, unbanked and underbanked, underbanked, women in the workforce, X Prize, yield management, Zipcar

It works with innovators outside the group, with a view to building a global additive manufacturing ecosystem to spread the use of the technology. The main challenge is developing sufficient capacity for large- and small-scale industrial needs; if achieved, this will create many new manufacturing businesses and jobs. In addition to 3D printing, the plummeting cost of industrial robots – such as Baxter, a $25,000 humanoid robot sold by Rethink Robotics – is unleashing a wave of automation in factories that could not only boost manufacturers’ productivity and quality but also their agility. SRI International, a research institute based in Silicon Valley, is working on a project funded by DARPA (Defence Advanced Research Projects Agency) to develop nimbler, smaller and lighter robotic arms that will be ten times cheaper and consume 20 times less energy than existing industrial robots, and yet perform complex tasks in dynamic settings more reliably.

MacArthur Foundation 14 John Deere 67 John Lewis 195 Johnson & Johnson 100, 111 Johnson, Warren 98 Jones, Don 112 jugaad (frugal ingenuity) 199, 202 Jugaad Innovation (Radjou, Prabhu and Ahuja, 2012) xvii, 17 just-in-time design 33–4 K Kaeser, Joe 217 Kalanick, Travis 163 Kalundborg (Denmark) 160 kanju 201 Karkal, Shamir 124 Kaufman, Ben 50–1, 126 Kawai, Daisuke 29–30 Kelly, John 199–200 Kennedy, President John 138 Kenya 57, 200–1 key performance indicators see KPIs Khan Academy 16–17, 113–14, 164 Khan, Salman (Sal) 16–17, 113–14 Kickstarter 17, 48, 137, 138 KieranTimberlake 196 Kimberly-Clark 25, 145 Kingfisher 86–7, 91, 97, 157, 158–9, 185–6, 192–3, 208 KissKissBankBank 17, 137 Knox, Steve 145 Knudstorp, Jørgen Vig 37, 68, 69 Kobori, Michael 83, 100 KPIs (key performance indicators) 38–9, 67, 91–2, 185–6, 208 Kuhndt, Michael 194 Kurniawan, Arie 151–2 L La Chose 108 La Poste 92–3, 157 La Ruche qui dit Oui 137 “labs on a chip” 52 Lacheret, Yves 173–5 Lada 1 laser cutters 134, 166 Laskey, Alex 119 last-mile challenge 57, 146, 156 L’Atelier 168–9 Latin America 161 lattice organisation 63–4 Laury, Véronique 208 Laville, Elisabeth 91 Lawrence, Jamie 185, 192–3, 208 LCA (life-cycle assessment) 196–7 leaders 179, 203–5, 214, 217 lean manufacturing 192 leanness 33–4, 41, 42, 170, 192 Learnbox 114 learning by doing 173, 179 learning organisations 179 leasing 123 Lee, Deishin 159 Lego 51, 126 Lego Group 37, 68, 69, 144 Legrand 157 Lenovo 56 Leroy, Adolphe 127 Leroy Merlin 127–8 Leslie, Garthen 150–1 Lever, William Hesketh 96 Levi Strauss & Co 60, 82–4, 100, 122–3 Lewis, Dijuana 212 life cycle of buildings 196 see also product life cycle life-cycle assessment (LCA) 196–7 life-cycle costs 12, 24, 196 Lifebuoy soap 95, 97 lifespan of companies 154 lighting 32, 56, 123, 201 “lightweighting” 47 linear development cycles 21, 23 linear model of production 80–1 Link 131 littleBits 51 Livi, Daniele 88 Livi, Vittorio 88 local communities 52, 57, 146, 206–7 local markets 183–4 Local Motors 52, 129, 152 local solutions 188, 201–2 local sourcing 51–2, 56, 137, 174, 181 localisation 56, 137 Locavesting (Cortese, 2011) 138 Logan car 2–3, 12, 179, 198–9 logistics 46, 57–8, 161, 191, 207 longevity 121, 124 Lopez, Maribel 65–6 Lopez Research 65–6 L’Oréal 174 Los Alamos National Laboratory 170 low-cost airlines 60, 121 low-cost innovation 11 low-income markets 12–13, 161, 203, 207 Lowry, Adam 81–2 M m-health 109, 111–12 M-KOPA 201 M-Pesa 57, 201 M3D 48, 132 McDonough Braungart Design Chemistry (MBDC) 84 McDonough, William 82 McGregor, Douglas 63 MacGyvers 17–18, 130, 134, 167 McKelvey, Jim 135 McKinsey & Company 81, 87, 209 mainstream, frugal products in 216 maintenance 66, 75, 76, 124, 187 costs 48–9, 66 Mainwaring, Simon 8 Maistre, Christophe de 187–8, 216 Maker Faire 18, 133–4 Maker platform 70 makers 18, 133–4, 145 manufacturing 20th-century model 46, 55, 80–1 additive 47–9 continuous 44–5 costs 47, 48, 52 decentralised 9, 44, 51–2 frugal 44–54 integration with logistics 57–8 new approaches 50–4 social 50–1 subtractive method 48 tools for 47, 47–50 Margarine Unie 96 market 15, 28, 38, 64, 186, 189, 192 R&D and 21, 26, 33, 34 market research 25, 61, 139, 141 market share 100 marketing 21–2, 24, 36, 61–3, 91, 116–20, 131, 139 and R&D 34, 37, 37–8 marketing teams 143, 150 markets 12–13, 42, 62, 215 see also emerging markets Marks & Spencer (M&S) 97, 215 Plan A 90, 156, 179–81, 183–4, 186–7, 214 Marriott 140 Mars 57, 158–9, 161 Martin Marietta 159 Martin, Tod 154 mass customisation 9, 46, 47, 48, 57–8 mass market 189 mass marketing 21–2 mass production 9, 46, 57, 58, 74, 129, 196 Massachusetts Institute of Technology see MIT massive open online courses see MOOCs materials 3, 47, 48, 73, 92, 161 costs 153, 161, 190 recyclable 74, 81, 196 recycled 77, 81–2, 83, 86, 89, 183, 193 renewable 77, 86 repurposing 93 see also C2C; reuse Mayhew, Stephen 35, 36 Mazoyer, Eric 90 Mazzella, Frédéric 163 MBDC (McDonough Braungart Design Chemistry) 84 MDI 16 measurable goals 185–6 Mechanical Engineer Laboratory (MEL) 52 “MEcosystems” 154–5, 156–8 Medicare 110 medication 111–12 Medicity 211 MedStartr 17 MEL (Mechanical Engineer Laboratory) 52 mental models 2, 193–203, 206, 216 Mercure 173 Merlin, Rose 127 Mestrallet, Gérard 53, 54 method (company) 81–2 Mexico 38, 56 Michelin 160 micro-factories 51–2, 52, 66, 129, 152 micro-robots 52 Microsoft 38 Microsoft Kinect 130 Microsoft Word 24 middle classes 197–8, 216 Migicovsky, Eric 137–8 Mikkiche, Karim 199 millennials 7, 14, 17, 131–2, 137, 141, 142 MindCET 165 miniaturisation 52, 53–4 Mint.com 125 MIT (Massachusetts Institute of Technology) 44–5, 107, 130, 134, 202 mobile health see m-health mobile phones 24, 32, 61, 129–30, 130, 168, 174 emerging market use 198 infrastructure 56, 198 see also smartphones mobile production units 66–7 mobile technologies 16, 17, 103, 133, 174, 200–1, 207 Mocana 151 Mochon, Daniel 132 modular design 67, 90 modular production units 66–7 Modularer Querbaukasten see MQB “mompreneurs” 145 Mondelez 158–9 Money Dashboard 125 Moneythink 162 monitoring 65–6, 106, 131 Monopoly 144 MOOCs (massive open online courses) 60, 61, 112, 113, 114, 164 Morieux, Yves 64 Morocco 207 Morris, Robert 199–200 motivation, employees 178, 180, 186, 192, 205–8 motivational approaches to shaping consumer behaviour 105–6 Motorola 56 MQB (Modularer Querbaukasten) 44, 45–6 Mulally, Alan 70, 166 Mulcahy, Simon 157 Mulliez family 126–7 Mulliez, Vianney 13, 126 multi-nodal innovation 202–3 Munari, Bruno 93 Murray, Mike 48–9 Musk, Elon 172 N Nano car 119, 156 National Geographic 102 natural capital, loss of 158–9 Natural Capital Leaders Platform 158–9 natural resources 45, 86 depletion 7, 72, 105, 153, 158–9 see also resources NCR 55–6 near-shoring 55 Nelson, Simon 113 Nemo, Sophie-Noëlle 93 Nest Labs 98–100, 103 Nestlé 31, 44, 68, 78, 94, 158–9, 194, 195 NetPositive plan 86, 208 networking 152–3, 153 new materials 47, 92 New Matter 132 new technologies 21, 27 Newtopia 32 next-generation customers 121–2 next-generation manufacturing techniques 44–6, 46–7 see also frugal manufacturing Nigeria 152, 197–8 Nike 84 NineSigma 151 Nissan 4, 4–5, 44, 199 see also Renault-Nissan non-governmental organisations 167 non-profit organisations 161, 162, 202 Nooyi, Indra 217 Norman, Donald 120 Norris, Greg 196 North American companies 216–17 North American market 22 Northrup Grumman 68 Norton, Michael 132 Norway 103 Novartis 44–5, 215 Novotel 173, 174 nudging 100, 108, 111, 117, 162 Nussbaum, Bruce 140 O O2 147 Obama, President Barack 6, 8, 13, 134, 138, 208 obsolescence, planned 24, 121 offshoring 55 Oh, Amy 145 Ohayon, Elie 71–2 Oliver Wyman 22 Olocco, Gregory 206 O’Marah, Kevin 58 on-demand services 39, 124 online communities 31, 50, 61, 134 online marketing 143 online retailing 60, 132 onshoring 55 Opel 4 open innovation 104, 151, 152, 153, 154 open-source approach 48, 129, 134, 135, 172 open-source hardware 51, 52, 89, 130, 135, 139 open-source software 48, 130, 132, 144–5, 167 OpenIDEO 142 operating costs 45, 215 Opower 103, 109, 119 Orange 157 Orbitz 173 organisational change 36–7, 90–1, 176, 177–90, 203–8, 213–14, 216 business models 190–3 mental models 193–203 organisational culture 36–7, 170, 176, 177–9, 213–14, 217 efficacy focus 181–3 entrepreneurial 76, 173 see also organisational change organisational structure 63–5, 69 outsourcing 59, 143, 146 over-engineering 27, 42, 170 Overby, Christine 25 ownership 9 Oxylane Group 127 P P&G (Procter & Gamble) 19, 31, 58, 94, 117, 123, 145, 195 packaging 57, 96, 195 Page, Larry 63 “pain points” 29, 30, 31 Palmer, Michael 212 Palo Alto Junior League 20 ParkatmyHouse 17, 63, 85 Parker, Philip 61 participation, customers 128–9 partner ecosystems 153, 154, 200 partners 65, 72, 148, 153, 156–8 sharing data with 59–60 see also distributors; hyper-collaboration; suppliers Partners in Care Foundation 202 partnerships 41, 42, 152–3, 156–7, 171–2, 174, 191 with SMBs 173, 174, 175 with start-ups 20, 164–5, 175 with suppliers 192–3 see also hyper-collaboration patents 171–2 Payne, Alex 124 PE International 196 Pearson 164–5, 167, 181–3, 186, 215 Pebble 137–8 peer-to-peer economic model 10 peer-to-peer lending 10 peer-to-peer sales 60 peer-to-peer sharing 136–7 Pélisson, Gérard 172–3 PepsiCo 38, 40, 179, 190, 194, 215 performance 47, 73, 77, 80, 95 of employees 69 Pernod Ricard 157 personalisation 9, 45, 46, 48, 62, 129–30, 132, 149 Peters, Tom 21 pharmaceutical industry 13, 22, 23, 33, 58, 171, 181 continuous manufacturing 44–6 see also GSK Philippines 191 Philips 56, 84, 100, 123 Philips Lighting 32 Picaud, Philippe 122 Piggy Mojo 119 piggybacking 57 Piketty, Thomas 6 Plan A (M&S) 90, 156, 179–81, 183–4, 186–7, 214 Planet 21 (Accor) 174–5 planned obsolescence 24, 121 Plastyc 17 Plumridge, Rupert 18 point-of-sale data 58 Poland 103 pollution 74, 78, 87, 116, 187, 200 Polman, Paul 11, 72, 77, 94, 203–5, 217 portfolio management tools 27, 33 Portugal 55, 103 postponement 57–8 Potočnik, Janez 8, 79 Prabhu, Arun 25 Prahalad, C.K. 12 predictive analytics 32–3 predictive maintenance 66, 67–8 Priceline 173 pricing 81, 117 processes digitising 65–6 entrenched 14–16 re-engineering 74 simplifying 169, 173 Procter & Gamble see P&G procurement priorities 67–8 product life cycle 21, 75, 92, 186 costs 12, 24, 196 sustainability 73–5 product-sharing initiatives 87 production costs 9, 83 productivity 49, 59, 65, 79–80, 153 staff 14 profit 14, 105 Progressive 100, 116 Project Ara 130 promotion 61–3 Propeller Health 111 prosumers xix–xx, 17–18, 125, 126–33, 136–7, 148, 154 empowering and engaging 139–46 see also horizontal economy Protomax 159 prototypes 31–2, 50, 144, 152 prototyping 42, 52, 65, 152, 167, 192, 206 public 50–1, 215 public sector, working with 161–2 publishers 17, 61 Pullman 173 Puma 194 purchasing power 5–6, 216 pyramidal model of production 51 pyramidal organisations 69 Q Qarnot Computing 89 Qualcomm 84 Qualcomm Life 112 quality 3, 11–12, 15, 24, 45, 49, 82, 206, 216 high 1, 9, 93, 198, 216 measure of 105 versus quantity 8, 23 quality of life 8, 204 Quicken 19–21 Quirky 50–1, 126, 150–1, 152 R R&D 35, 67, 92, 151 big-ticket programmes 35–6 and business development 37–8 China 40, 188, 206 customer focus 27, 39, 43 frugal approach 12, 26–33, 82 global networks 39–40 incentives 38–9 industrial model 2, 21–6, 33, 36, 42 market-focused, agile model 26–33 and marketing 34, 37, 37–8 recommendations for managers 34–41 speed 23, 27, 34, 149 spending 15, 22, 23, 28, 141, 149, 152, 171, 187 technology culture 14–15, 38–9 see also Air Liquide; Ford; GSK; IBM; immersion; Renault; SNCF; Tarkett; Unilever R&D labs 9, 21–6, 70, 149, 218 in emerging markets 40, 188, 200 R&D teams 26, 34, 38–9, 65, 127, 150, 194–5 hackers as 142 innovation brokering 168 shaping customer behaviour 120–2 Raspberry Pi 135–6, 164 Ratti, Carlo 107 raw materials see materials real-time demand signals 58, 59 Rebours, Christophe 157–8 recession 5–6, 6, 46, 131, 180 Reckitt Benckiser 102 recommendations for managers flexing assets 65–71 R&D 34–41 shaping consumer behaviour 116–24 sustainability 90–3 recruiting 70–1 recyclable materials 74, 81, 196 recyclable products 3, 73, 159, 195–6 recycled materials 77, 81–2, 83, 86, 89, 183, 193 recycling 8, 9, 87, 93, 142, 159 e-waste 87–8 electronic and electrical goods (EU) 8, 79 by Tarkett 73–7 water 83, 175 see also C2C; circular economy Recy’Go 92–3 regional champions 182 regulation 7–8, 13, 78–9, 103, 216 Reich, Joshua 124 RelayRides 17 Renault 1–5, 12, 117, 156–7, 179 Renault-Nissan 4–5, 40, 198–9, 215 renewable energy 8, 53, 74, 86, 91, 136, 142, 196 renewable materials 77, 86 Replicator 132 repurposing 93 Requardt, Hermann 189 reshoring 55–6 resource constraints 4–5, 217 resource efficiency 7–8, 46, 47–9, 79, 190 Resource Revolution (Heck, Rogers and Carroll, 2014) 87–8 resources 40, 42, 73, 86, 197, 199 consumption 9, 26, 73–7, 101–2 costs 78, 203 depletion 7, 72, 105, 153, 158–9 reducing use 45, 52, 65, 73–7, 104, 199, 203 saving 72, 77, 200 scarcity 22, 46, 72, 73, 77–8, 80, 158–9, 190, 203 sharing 56–7, 159–61, 167 substitution 92 wasting 169–70 retailers 56, 129, 214 “big-box” 9, 18, 137 Rethink Robotics 49 return on investment 22, 197 reuse 9, 73, 76–7, 81, 84–5, 92–3, 200 see also C2C revenues, generating 77, 167, 180 reverse innovation 202–3 rewards 37, 178, 208 Riboud, Franck 66, 184, 217 Rifkin, Jeremy 9–10 robots 47, 49–50, 70, 144–5, 150 Rock Health 151 Rogers, Jay 129 Rogers, Matt 87–8 Romania 2–3, 103 rookie mindset 164, 168 Rose, Stuart 179–80, 180 Roulin, Anne 195 Ryan, Eric 81–2 Ryanair 60 S S-Oil 106 SaaS (software as a service) 60 Saatchi & Saatchi 70–1 Saatchi & Saatchi + Duke 71–2, 143 sales function 15, 21, 25–6, 36, 116–18, 146 Salesforce.com 157 Santi, Paolo 108 SAP 59, 186 Saunders, Charles 211 savings 115 Sawa Orchards 29–31 Scandinavian countries 6–7 see also Norway Schmidt, Eric 136 Schneider Electric 150 Schulman, Dan 161–2 Schumacher, E.F. 104–5, 105 Schweitzer, Louis 1, 2, 3, 4, 179 SCM (supply chain management) systems 59 SCOR (supply chain operations reference) model 67 Seattle 107 SEB 157 self-sufficiency 8 selling less 123–4 senior managers 122–4, 199 see also CEOs; organisational change sensors 65–6, 106, 118, 135, 201 services 9, 41–3, 67–8, 124, 149 frugal 60–3, 216 value-added 62–3, 76, 150, 206, 209 Shapeways 51, 132 shareholders 14, 15, 76, 123–4, 180, 204–5 sharing 9–10, 193 assets 159–61, 167 customers 156–8 ideas 63–4 intellectual assets 171–2 knowledge 153 peer-to-peer 136–9 resources 56–7, 159–61, 167 sharing economy 9–10, 17, 57, 77, 80, 84–7, 108, 124 peer-to-peer sharing 136–9 sharing between companies 159–60 shipping costs 55, 59 shopping experience 121–2 SIEH hotel group 172–3 Siemens 117–18, 150, 187–9, 215, 216 Sigismondi, Pier Luigi 100 Silicon Valley 42, 98, 109, 150, 151, 162, 175 silos, breaking out of 36–7 Simple Bank 124–5 simplicity 8, 41, 64–5, 170, 194 Singapore 175 Six Sigma 11 Skillshare 85 SkyPlus 62 Small is Beautiful (Schumacher, 1973) 104–5 “small is beautiful” values 8 small and medium-sized businesses see SMBs Smart + Connected Communities 29 SMART car 119–20 SMART strategy (Siemens) 188–9 smartphones 17, 100, 106, 118, 130, 131, 135, 198 in health care 110, 111 see also apps SmartScan 29 SMBs (small and medium-sized businesses) 173, 174, 175, 176 SMS-based systems 42–3 SnapShot 116 SNCF 41–3, 156–7, 167 SoapBox 28–9 social business model 206–7 social comparison 109 social development 14 social goals 94 social learning 113 social manufacturing 47, 50–1 social media 16, 71, 85, 106, 108, 168, 174 for marketing 61, 62, 143 mining 29, 58 social pressure of 119 tools 109, 141 and transaction costs 133 see also Facebook; social networks; Twitter social networks 29, 71, 72, 132–3, 145, 146 see also Facebook; Twitter social pressure 119 social problems 82, 101–2, 141, 142, 153, 161–2, 204 social responsibility 7, 10, 14, 141, 142, 197, 204 corporate 77, 82, 94, 161 social sector, working with 161–2 “social tinkerers” 134–5 socialising education 112–14 Sofitel 173 software 72 software as a service (SaaS) 60 solar power 136, 201 sourcing, local 51–2, 56 Southwest Airlines 60 Spain 5, 6, 103 Spark 48 speed dating 175, 176 spending, on R&D 15, 22, 23, 28, 141, 149, 152, 171, 187 spiral economy 77, 87–90 SRI International 49, 52 staff see employees Stampanato, Gary 55 standards 78, 196 Starbucks 7, 140 start-ups 16–17, 40–1, 61, 89, 110, 145, 148, 150, 169, 216 investing in 137–8, 157 as partners 42, 72, 153, 175, 191, 206 see also Nest Labs; Silicon Valley Statoil 160 Steelcase 142 Stem 151 Stepner, Diana 165 Stewart, Emma 196–7 Stewart, Osamuyimen 201–2 Sto Corp 84 Stora Enso 195 storytelling 112, 113 Strategy& see Booz & Company Subramanian, Prabhu 114 substitution of resources 92 subtractive manufacturing 48 Sun Tzu 158 suppliers 67–8, 83, 148, 153, 167, 176, 192–3 collaboration with 76, 155–6 sharing with 59–60, 91 visibility 59–60 supply chain management see SCM supply chain operations reference (SCOR) model 67 supply chains 34, 36, 54, 65, 107, 137, 192–3 carbon footprint 156 costs 58, 84 decentralisation 66–7 frugal 54–60 integrating 161 small-circuit 137 sustainability 137 visibility 34, 59–60 support 135, 152 sustainability xix, 9, 12, 72, 77–80, 82, 97, 186 certification 84 as competitive advantage 80 consumers and 95, 97, 101–4 core design principle 82–4, 93, 195–6 and growth 76, 80, 104–5 perceptions of 15–16, 80, 91 recommendations for managers 90–3 regulatory demand for 78–9, 216 standard bearers of 80, 97, 215 see also Accor; circular economy; Kingfisher; Marks & Spencer; Tarkett; Unilever sustainable design 82–4 see also C2C sustainable distribution 57, 161 sustainable growth 72, 76–7 sustainable lifestyles 107–8 Sustainable Living Plan (Unilever) 94–7, 179, 203–4 sustainable manufacturing 9, 52 T “T-shaped” employees 70–1 take-back programmes 9, 75, 77, 78 Tally 196–7 Tarkett 73–7, 80, 84 TaskRabbit 85 Tata Motors 16, 119 Taylor, Frederick 71 technical design 37–8 technical support, by customers 146 technology 2, 14–15, 21–2, 26, 27 TechShop 9, 70, 134–5, 152, 166–7 telecoms sector 53, 56 Telefónica 147 telematic monitoring 116 Ternois, Laurence 42 Tesco 102 Tesla Motors 92, 172 testing 28, 42, 141, 170, 192 Texas Industries 159 Textoris, Vincent 127 TGV Lab 42–3 thermostats 98–100 thinking, entrenched 14–16 Thompson, Gav 147 Timberland 90 time 4, 7, 11, 41, 72, 129, 170, 200 constraints 36, 42 see also development cycle tinkerers 17–18, 133–5, 144, 150, 152, 153, 165–7, 168 TiVo 62 Tohamy, Noha 59–60 top-down change 177–8 top-down management 69 Total 157 total quality management (TQM) 11 total volatile organic compounds see TVOC Toyota 44, 100 Toyota Sweden 106–7 TQM (total quality management) 11 traffic 108, 116, 201 training 76, 93, 152, 167, 170, 189 transaction costs 133 transparency 178, 185 transport 46, 57, 96, 156–7 Transport for London 195 TrashTrack 107 Travelocity 174 trial and error 173, 179 Trout, Bernhardt 45 trust 7, 37, 143 TVOC (total volatile organic compounds) 74, 77 Twitter 29, 62, 135, 143, 147 U Uber 136, 163 Ubuntu 202 Uchiyama, Shunichi 50 UCLA Health 202–3 Udacity 61, 112 UK 194 budget cuts 6 consumer empowerment 103 industrial symbiosis 160 savings 115 sharing 85, 138 “un-management” 63–4, 64 Unboundary 154 Unilever 11, 31, 57, 97, 100, 142, 203–5, 215 and sustainability 94–7, 104, 179, 203–4 University of Cambridge Engineering Design Centre (EDC) 194–5 Inclusive Design team 31 Institute for Sustainability Leadership (CISL) 158–9 upcycling 77, 88–9, 93, 159 upselling 189 Upton, Eben 135–6 US 8, 38, 44, 87, 115, 133, 188 access to financial services 13, 17, 161–2 ageing population 194 ageing workforce 13 commuting 131 consumer spending 5, 6, 103 crowdfunding 137–8, 138 economic pressures 5, 6 energy use 103, 119, 196 environmental awareness 7, 102 frugal innovation in 215–16, 218 health care 13, 110, 208–13, 213 intellectual property 171 onshoring 55 regulation 8, 78, 216 sharing 85, 138–9 shifting production from China to 55, 56 tinkering culture 18, 133–4 user communities 62, 89 user interfaces 98, 99 user-friendliness 194 Utopies 91 V validators 144 value 11, 132, 177, 186, 189–90 aspirational 88–9 to customers 6–7, 21, 77, 87, 131, 203 from employees 217 shareholder value 14 value chains 9, 80, 128–9, 143, 159–60, 190, 215 value engineering 192 “value gap” 54–5 value-added services 62–3, 76, 150, 206, 209 values 6–7, 14, 178, 205 Vandebroek, Sophie 169 Vasanthakumar, Vaithegi 182–3 Vats, Tanmaya 190, 192 vehicle fleets, sharing 57, 161 Verbaken, Joop 118 vertical integration 133, 154 virtual prototyping 65 virtuous cycle 212–13 visibility 34, 59–60 visible learning 112–13 visioning sessions 193–4 visualisation 106–8 Vitality 111 Volac 158–9 Volkswagen 4, 44, 45–6, 129, 144 Volvo 62 W wage costs 48 wages, in emerging markets 55 Waitrose, local suppliers 56 Walker, James 87 walking the walk 122–3 Waller, Sam 195 Walmart 9, 18, 56, 162, 216 Walton, Sam 9 Wan Jia 144 Washington DC 123 waste 24, 87–9, 107, 159–60, 175, 192, 196 beautifying 88–9, 93 e-waste 24, 79, 87–8, 121 of energy 119 post-consumer 9, 75, 77, 78, 83 reducing 47, 74, 85, 96, 180, 209 of resources 169–70 in US health-care system 209 see also C2C; recycling; reuse water 78, 83, 104, 106, 158, 175, 188, 206 water consumption 79, 82–3, 100, 196 reducing 74, 75, 79, 104, 122–3, 174, 183 wealth 105, 218 Wear It Share It (Wishi) 85 Weijmarshausen, Peter 51 well-being 104–5 Wham-O 56 Whirlpool 36 “wicked” problems 153 wireless technologies 65–6 Wiseman, Liz 164 Wishi (Wear It Share It) 85 Witty, Andrew 35, 35–6, 37, 39, 217 W.L.

 

pages: 310 words: 34,482

Makers at Work: Folks Reinventing the World One Object or Idea at a Time by Steven Osborn

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

3D printing, A Pattern Language, additive manufacturing, air freight, Airbnb, augmented reality, autonomous vehicles, barriers to entry, Baxter: Rethink Robotics, c2.com, computer vision, crowdsourcing, dumpster diving, en.wikipedia.org, Firefox, future of work, Google Chrome, Google Glasses, Google Hangouts, Hacker Ethic, Internet of things, Iridium satellite, Khan Academy, Kickstarter, Mason jar, means of production, Minecraft, minimum viable product, Network effects, Oculus Rift, patent troll, popular electronics, Rodney Brooks, Shenzhen was a fishing village, side project, Silicon Valley, Skype, slashdot, social software, software as a service, special economic zone, speech recognition, subscription business, telerobotics, urban planning, web application, Y Combinator

Linder: Rod used to run CSAIL, the Computer Science and Artificial Intelligence Lab at MIT. He was cofounder, chairman and CTO of iRobot. You know, Roombas, Packbots and all that. In 2008 he started Heartland Robotics. Rod was looking for a design engineer-type of person to work on the user interface. I ended up being employee number ten and the lead user interface guy, at what is now Rethink Robotics, on the product they now call Baxter— but which at that point in time didn’t really exist. Well, it existed in theory, I guess. Heartland was starting to build it, which was pretty exciting. From that point on, I wasn’t sure if I would end up at MIT, but it didn’t matter because I was doing pretty cool stuff with Rod. Pattie did end up accepting me. So I went to MIT because I thought there would be plenty of time to start companies and not so many opportunities to go to MIT.