smart meter

66 results back to index


pages: 433 words: 127,171

The Grid: The Fraying Wires Between Americans and Our Energy Future by Gretchen Bakke

addicted to oil, Any sufficiently advanced technology is indistinguishable from magic, autonomous vehicles, back-to-the-land, big-box store, Buckminster Fuller, demand response, dematerialisation, distributed generation, energy security, energy transition, full employment, illegal immigration, indoor plumbing, Internet of things, Kickstarter, laissez-faire capitalism, Menlo Park, Negawatt, new economy, off grid, post-oil, profit motive, Ronald Reagan, self-driving car, Silicon Valley, smart grid, smart meter, the built environment, too big to fail, washing machines reduced drudgery, Whole Earth Catalog

like a cash grab: Jack Danahy, “Smart Grid Fallout: Lessons to Learn from PG&E’s Smart Meter Lawsuit,” Smart Grid News, November 13, 2009, http://www.smartgridnews.com/story/smart-grid-fallout-lessons-learn-pge-s-smart-meter-lawsuit/2009-11-13, for individual customer complaints see: https://sites.google.com/site/nocelltowerinourneighborhood/home/wireless-smart-meter-concerns/smart-meter-consumers-anger-grows-over-higher-utility-bills. digital smart meters: Jesse Wray-McCann, “Householders Shielding Homes from Smart Meter Radiation,” Herald Sun, April 9, 2012, http://www.heraldsun.com.au/ipad/householders-shielding-homes-from-smart-meter-radiation/story-fn6bfm6w-1226321653862. commissioners’ residences: Anjeanette Damon, “Smart Meters Spawn Conspiracy Talk: They Know What You’re Watching on TV!,” Las Vegas Sun, March 8, 2012, http://m.lasvegassun.com/news/2012/mar/08/smart-meters-spawn-conspiracy-theories-they-know-w/.

CHAPTER 6: Two Birds, One Stone station after the event: Charlie Wells, “Houston Woman Thelma Taormina Pulls Gun on Electric Company Worker for Trying to Install ‘Smart Meter,’ ” New York Daily News, July 19, 2012, http://www.nydailynews.com/news/national/houston-woman-thelma-taormina-pulls-gun-electric-company-worker-install-smart-meter-article-1.1118051. which were watching Shrek 2: “Researchers Claim Smart Meters Can Reveal TV Viewing Habits,” Metering.com, September 21, 2011, http://www.metering.com/researchers-claim-smart-meters-can-reveal-tv-viewing-habits/. For the research conducted at the University of Washington, see Antonio Regalado, “Rage Against the Smart Meter,” MIT Technology Review, April 26, 2012, http://www.technologyreview.com/news/427497/rage-against-the-smart-meter/. And for readers of German: Prof. Dr.-Ing U. Greveler, Dr. B. Justus, and D. Löhr, “Hintergrund und Experimentelle Ergebnisse Zum Thema ‘Smart Meter und Datenschutz’ ” (Fachhochschule Münster University of Applied Sciences, September 20, 2011), https://web.archive.org/web/20121117073419/http://www.its.fh-muenster.de/greveler/pubs/smartmeter_sep11_v06.pdf.

The question remains the same in Boulder as in Bakersfield and Houston and Maine (with residents’ worries about the well-being of their ball-shaped organs): If smart meters or even a whole smart grid can’t be proved to benefit customers even by the very utility undertaking the upgrade, whom, then, do they benefit? Why did Xcel go to the trouble and expense of building a citywide smart grid? Why did CenterPoint visit the Taorminas seven times in attempting to give them a smart meter? Why did PG&E risk a class-action lawsuit to ensure that all the people of Bakersfield also got their new meters? The answer, of course, is that smart meters don’t benefit us, the customers. At least they don’t directly. Smart meters, and to a lesser extent other grid-smartening investments, benefit them, the utility companies. The level of expense and of risk for the utility companies is only suspicious until one realizes the stakes.


The Non-Tinfoil Guide to EMFs by Nicolas Pineault

Albert Einstein, en.wikipedia.org, Ignaz Semmelweis: hand washing, Internet of things, self-driving car, Silicon Valley, Skype, smart cities, smart grid, smart meter

Electricity Costs Utility companies tell everyone that installing a smart meter will reduce your electricity costs,486 but a lot of people have in fact experienced a sharp rise in their monthly electricity bill.487 Some smart meters are a real fire hazard and are thought to have caused hundreds if not thousands of fires in North America alone.488 Fire Hazard Dirty Electricity Smart meters create a ton of dirty electricity in your house,489 and a lot of people have reported getting sick since their installation.490 RF Radiation Smart meters emit a strong RF signal 24/7 — which is the main issue I’ll talk about… right now. Unsurprisingly, utility companies around the world are installing smart meters in areas that just don’t make sense — right on the other side of bedroom walls, near playgrounds, and even… in my own kitchen. In... 181 My... Kitchen… As you can see, the smart meter that was installed in the apartment I’m currently renting emits a strong RF signal every 30 seconds which blasts me with peaks of 5.24 V/m while I prepare dinner next to it.

When your home is connected to a smart meter, the utility company can shut down your power usage for any reason, at any time. Creating a “smart grid” where every household’s electricity use is monitored online means that it can be hacked into. A lot of people way smarter than me when it comes to cybersecurity — including a former CIA director484 — have said this is a really, really bad idea. I highly suggest renting it for $4 on the official website: takebackyourpower.net/ youtube.com © 2017 N&G Media Inc. 180 Everything That’s Wrong With Smart Meters Environment Smart meters need to be replaced every 5 to 7 years, compared to every 20 to 30 years for analog meters485 — and you’re the one paying the bill. Electricity Costs Utility companies tell everyone that installing a smart meter will reduce your electricity costs,486 but a lot of people have in fact experienced a sharp rise in their monthly electricity bill.487 Some smart meters are a real fire hazard and are thought to have caused hundreds if not thousands of fires in North America alone.488 Fire Hazard Dirty Electricity Smart meters create a ton of dirty electricity in your house,489 and a lot of people have reported getting sick since their installation.490 RF Radiation Smart meters emit a strong RF signal 24/7 — which is the main issue I’ll talk about… right now.

All that being said, these outside sources of EMFs — smart utility meters, cellular antennas and high-voltage power lines can be a real hazard to your health if you spend all of your waking hours right next to them. Here’s what to look for. Smart Meters Around two years ago, I watched a documentary produced by Josh Del Sol called “Take Back Your Power”483 — which explains exactly why switching your old analog electricity and gas meters for the wireless “smart” ones is a really bad idea. There are a lot of issues around these meters, and most of them are way beyond the scope of this guide that was supposed to be relatively short but that I realize is getting pretty beefy after all. The short version: Everything That’s Wrong With Smart Meters Privacy Civil rights Cybersecurity 483 484 Smart meters gather information from all your smart appliances, and transmits this information — how frequently you open the fridge, what’s plugged into your walls outlets, etc. — to the utility company.


Smart Grid Standards by Takuro Sato

business cycle, business process, carbon footprint, clean water, cloud computing, data acquisition, decarbonisation, demand response, distributed generation, energy security, factory automation, information retrieval, Intergovernmental Panel on Climate Change (IPCC), Internet of things, Iridium satellite, iterative process, knowledge economy, life extension, linear programming, low earth orbit, market design, MITM: man-in-the-middle, off grid, oil shale / tar sands, packet switching, performance metric, RFC: Request For Comment, RFID, smart cities, smart grid, smart meter, smart transportation, Thomas Davenport

Section 5.3.2.2 describes the metering standardization projects and efforts initiated by various organizations and groups. 5.3.1 The AMI System The AMI system is made up of the smart meter, communication module, Data Concentrator (DC), and Meter Data Management System (MDMS). The AMI system diagram is shown in Figure 5.2. At the consumer level, the energy consumption data are communicated to both the user and the utility by smart meters. Smart meters have the ability to transmit the collected data through different media. The meter data are received by the DC and sent to the MDMS. MDMS manages data storage and analyzes the consumption data to provide the information in useful form to the service provider. Detailed and timely meter information enables the service provider to support better outage detection, to rapidly address grid deficiencies, and to improve management of utility assets and asset maintenance. Smart meters can also communicate with in-home displays (IHDs) through the Home Area Network (HAN) to make consumers more aware of their energy usage.

In July 2010, DECC, Ofgem, and the Gas and Electricity Markets Authority (GEMA) jointly published a prospectus to propose the installation of electricity and gas smart metering in Great Britain. It is expected that from 2012 to 2019, more than 50 million smart meters will be installed in 30 million homes and smaller businesses in Britain [51]. In Denmark, the EDISON demonstration project has been launched to work out how the Smart Grid would integrate electric power system to meet the needs of most distributed wind power integration and the development of new energy vehicles. The Danish grid company Energinet, has invested in this project. IBM and Siemens are also involved in the construction of this project. More details of the Edison Project can be found in Chapter 4. In Italy, Enel has already deployed a large number of smart meters and the electricity consumption data are transmitted to the utilities by GSM/GPRS (General Packet Radio Service), PSTN (Public Switched Telephone Network), KNX, and so on.

IEC 61107 is a half-duplex protocol Smart Grid Standards 190 Table 5.1 Standard list of advanced metering infrastructure (AMI) Function field Standard name Short introduction Product Product Product IEC 62051 IEC 62052-11, 62052-21, 62052-31 IEC 62053 series Product IEC 62054-11, 62054-21 Product Product Transmission Transmission IEC 62058-11, 62058-21, 62058-31 IEC 61968-9 IEC 61334 EN 13757 Transmission PRIME Transmission ITU G3-PLC Transmission HomePlug Netricity PLC Transmission Transmission AMI AMI IEEE 802.15.4 IEEE 802.11 UtilityAMI high level requirements OPEN meter deliverables Electricity metering – glossary of terms General requirements, test and test conditions for electricity metering equipment (AC) Particular test requirements and test methods for electricity metering equipment Tariff and load control requirements for electricity metering Acceptance inspection requirements for electricity metering equipment Interfaces for meter reading and control Metering automation using narrowband PLC Communication systems for remote reading of meters based on M-bus Iberdrola specs-based PLC modem standard for smart meters ERDF specs-based PLC modem communication standard for smart meters HomePlug PLC standards targeting smart meter to grid applications Wireless WPANs PHY and MAC specification Wireless LAN PHY and MAC specification High-level requirements for AMI Payment Reliability IEC 62055 series IEC 62059 Data exchange IEC 62056 series Data exchange ANSI C12 series Data exchange Data exchange EN 1434-3 AEIC Guideline V2.0 Data exchange Security NEMA SG-AMI AMI-SEC (security) AMI system security requirement A comprehensive set of open and public standards for AMI Payment systems for electricity metering Dependability prediction and assessment methods for electricity metering equipment Data exchange for meter reading, tariff, and load control Standard suite of data formats, data structures, and communication protocols specified by ANSI for smart meters Data exchange and interfaces for heat meters Guideline for vendors and utilities desiring to implement ANSI C12 standards Requirements for smart meter upgradability Security requirements developed by the AMI-SEC Task Force for AMI ERDF, Électricite Réseau Distribution France and LAN, local area network.


pages: 677 words: 206,548

Future Crimes: Everything Is Connected, Everyone Is Vulnerable and What We Can Do About It by Marc Goodman

23andMe, 3D printing, active measures, additive manufacturing, Affordable Care Act / Obamacare, Airbnb, airport security, Albert Einstein, algorithmic trading, artificial general intelligence, Asilomar, Asilomar Conference on Recombinant DNA, augmented reality, autonomous vehicles, Baxter: Rethink Robotics, Bill Joy: nanobots, bitcoin, Black Swan, blockchain, borderless world, Brian Krebs, business process, butterfly effect, call centre, Charles Lindbergh, Chelsea Manning, cloud computing, cognitive dissonance, computer vision, connected car, corporate governance, crowdsourcing, cryptocurrency, data acquisition, data is the new oil, Dean Kamen, disintermediation, don't be evil, double helix, Downton Abbey, drone strike, Edward Snowden, Elon Musk, Erik Brynjolfsson, Filter Bubble, Firefox, Flash crash, future of work, game design, global pandemic, Google Chrome, Google Earth, Google Glasses, Gordon Gekko, high net worth, High speed trading, hive mind, Howard Rheingold, hypertext link, illegal immigration, impulse control, industrial robot, Intergovernmental Panel on Climate Change (IPCC), Internet of things, Jaron Lanier, Jeff Bezos, job automation, John Harrison: Longitude, John Markoff, Joi Ito, Jony Ive, Julian Assange, Kevin Kelly, Khan Academy, Kickstarter, knowledge worker, Kuwabatake Sanjuro: assassination market, Law of Accelerating Returns, Lean Startup, license plate recognition, lifelogging, litecoin, low earth orbit, M-Pesa, Mark Zuckerberg, Marshall McLuhan, Menlo Park, Metcalfe’s law, MITM: man-in-the-middle, mobile money, more computing power than Apollo, move fast and break things, move fast and break things, Nate Silver, national security letter, natural language processing, obamacare, Occupy movement, Oculus Rift, off grid, offshore financial centre, optical character recognition, Parag Khanna, pattern recognition, peer-to-peer, personalized medicine, Peter H. Diamandis: Planetary Resources, Peter Thiel, pre–internet, RAND corporation, ransomware, Ray Kurzweil, refrigerator car, RFID, ride hailing / ride sharing, Rodney Brooks, Ross Ulbricht, Satoshi Nakamoto, Second Machine Age, security theater, self-driving car, shareholder value, Silicon Valley, Silicon Valley startup, Skype, smart cities, smart grid, smart meter, Snapchat, social graph, software as a service, speech recognition, stealth mode startup, Stephen Hawking, Steve Jobs, Steve Wozniak, strong AI, Stuxnet, supply-chain management, technological singularity, telepresence, telepresence robot, Tesla Model S, The Future of Employment, The Wisdom of Crowds, Tim Cook: Apple, trade route, uranium enrichment, Wall-E, Watson beat the top human players on Jeopardy!, Wave and Pay, We are Anonymous. We are Legion, web application, Westphalian system, WikiLeaks, Y Combinator, zero day

Smith, “Hacking and Attacking Automated Homes,” Network World, June 25, 2013. 50 Hilton Hotels too: Nancy Trejos, “Hilton Lets Guests Pick Rooms, Use Smartphones as Keys,” USA Today, July 29, 2014. 51 Worldwide nearly ninety million: Michael Wolf, “3 Reasons 87 Million Smart TVs Will Be Sold in 2013,” Forbes, Feb. 25, 2013. 52 Many brands have been found: Lorenzo Franceschi-Bicchierai, “Your Smart TV Could Be Hacked to Spy on You,” Mashable, Aug. 2, 2013; Dan Goodin, “How an Internet-Connected Samsung TV Can Spill Your Deepest Secrets,” Ars Technica, Dec. 12, 2012. 53 “750,000 malicious spam”: Ellie Zolfagharifard, “Criminals Use a Fridge to Send Malicious Emails in First Ever Home Hack,” Mail Online, Jan. 17, 2014. 54 Refrigerator spam: “Spam in the Fridge,” Economist, Jan. 25, 2014. 55 In early 2014, researchers: Dan Goodin, “ ‘Internet of Things’ Is the New Windows XP—Malware’s Favorite Target,” Ars Technica, April 2, 2014. 56 As of mid-2013: Utility-Scale Smart Meter Deployments, IEE report, Aug. 2013, 3; Chris Choi, “Smart Meters Are Heading to Every Home in Britain,” ITV News, July 8, 2014. 57 Researchers in Germany: Jordan Robertson, “Your Outlet Knows: How Smart Meters Can Reveal Behavior at Home, What We Watch on TV,” Bloomberg, June 10, 2014. 58 According to an investigation: Brian Krebs, “FBI: Smart Meter Hacks Likely to Spread,” Krebs on Security, April 9, 2012. 59 Like all computers: Katie Fehrenbacher, “Smart Meter Worm Could Spread like a Virus,” Gigaom, July 31, 2009. 60 Nest’s thermostats: Rolfe Winkler, “What Google Gains from Nest Labs,” Wall Street Journal, Jan. 15, 2014. 61 “conscious home”: Marcus Wohlsen, “What Google Really Gets out of Buying Nest for $3.2 Billion,” Wired, Jan. 14, 2014. 62 Google’s Nest thermostat: Richard Lawler, “Nest Learning Thermostat Has Its Security Cracked Open by GTVHacker,” Engadget, June 23, 2014. 63 Nest’s other main product: Edward C.

In doing so, hackers can keep your appliances running at full speed, generating virtual currencies for them while sticking you with the electric bill for spinning your devices 24/7. In theory, the new smart meter in your home might catch the excessive electricity use, but of course it too can be hacked. What the Outlet Knows Smart meters will be at the core of the global IoT, and their two-way communications abilities will record and track details of electricity usage in homes and businesses in order to increase the overall efficiency and reliability of an outdated and overburdened electrical grid. As of mid-2013, smart meters had been installed in over forty-six million homes in the United States, and the U.K. anticipates their deployment throughout all of Britain by 2020. Smart-meter information, much of which is transmitted in an unencrypted format, can actually reveal details such as the brand and age of your appliances and when you are using them in which rooms of your home.

Indeed, in May 2014, WPP, the world’s largest advertising agency, announced it was teaming up with the London-based data analytics company Onzo to study ways to collect smart-meter data in order to finally “open the door of the home” to advertisers. The threats from smart meters extend well beyond their deep privacy implications, and criminals have attacked insecure smart utility devices for a variety of purposes, in particular financial fraud. In Puerto Rico, for example, Crime, Inc. employed large teams of techno-thugs to take advantage of the widespread deployment of smart meters on the island. Using software widely available in the digital underground and a simple laptop, criminal hackers began making “service calls” to both businesses and the general public. For fees ranging from $300 to $1,000 for residential customers and $3,000 for commercial clients, Crime, Inc. successfully reprogrammed the smart meters in order to save its “clients” up to 75 percent off their monthly electricity bills.


pages: 464 words: 127,283

Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia by Anthony M. Townsend

1960s counterculture, 4chan, A Pattern Language, Airbnb, Amazon Web Services, anti-communist, Apple II, Bay Area Rapid Transit, Burning Man, business process, call centre, carbon footprint, charter city, chief data officer, clean water, cleantech, cloud computing, computer age, congestion charging, connected car, crack epidemic, crowdsourcing, DARPA: Urban Challenge, data acquisition, Deng Xiaoping, digital map, Donald Davies, East Village, Edward Glaeser, game design, garden city movement, Geoffrey West, Santa Fe Institute, George Gilder, ghettoisation, global supply chain, Grace Hopper, Haight Ashbury, Hedy Lamarr / George Antheil, hive mind, Howard Rheingold, interchangeable parts, Internet Archive, Internet of things, Jacquard loom, Jane Jacobs, jitney, John Snow's cholera map, Joi Ito, Khan Academy, Kibera, Kickstarter, knowledge worker, load shedding, M-Pesa, Mark Zuckerberg, megacity, mobile money, mutually assured destruction, new economy, New Urbanism, Norbert Wiener, Occupy movement, off grid, openstreetmap, packet switching, Panopticon Jeremy Bentham, Parag Khanna, patent troll, Pearl River Delta, place-making, planetary scale, popular electronics, RFC: Request For Comment, RFID, ride hailing / ride sharing, Robert Gordon, self-driving car, sharing economy, Silicon Valley, Skype, smart cities, smart grid, smart meter, social graph, social software, social web, special economic zone, Steve Jobs, Steve Wozniak, Stuxnet, supply-chain management, technoutopianism, Ted Kaczynski, telepresence, The Death and Life of Great American Cities, too big to fail, trade route, Tyler Cowen: Great Stagnation, undersea cable, Upton Sinclair, uranium enrichment, urban decay, urban planning, urban renewal, Vannevar Bush, working poor, working-age population, X Prize, Y2K, zero day, Zipcar

John on the GigaOM blog, it’s “one of the few corporations out there that can lay claim to almost every share of the world’s current grid infrastructure, building everything from gas and wind turbines to high-voltage transmission cables to sensors and controls that monitor and manage the delivery of power to homes and businesses.”45 Targeting nearly $8.5 billion (€6 billion) in annual smart grid business by 2014, CEO Peter Löscher boasted, “We’re on the threshold of a new electric age.”46 As consumers, we think of the smart grid mostly through our growing experience with smart meters. Smart meters are to your old electric meter what a smartphone is to your grandmother’s Bakelite 1950s rotary phone. It’s a souped-up, networked upgrade that constantly reports back to the electric company a stream of data about your power consumption, including when it detects blackouts and brownouts. The more advanced models can manage power-hungry appliances in your home. In-Stat, a market research firm, projects that by 2016 fully three-quarters of American electric meters will have been converted to smart meters.47 While these are the most visible endpoints of the emerging new grid, Siemens actually sold off its smart-meter business a decade ago. Its true ambition is to become a Cisco for electricity, providing the brains inside the smart grid, the software and switches that manage the behind-the-scenes balancing act that keeps the juice flowing.

If only the peaks could be evened out, fewer peaking plants would be needed and utilities could focus more on ruthlessly fine-tuning base load plants to be as lean and clean as possible.48 Smart grids offer two tricks to even out the peaks: load shifting and load shedding. Load shifting, the gentler of the two, tries to spread demand for power away from peak periods of demand through price incentives. In their simplest form, smart meters allow businesses and consumers to see the true cost of generating electricity during periods of high demand. As they fire up those costly peaking plants, utilities simply pass the higher generating cost along to consumers. Dynamic pricing can dramatically reduce swings in demand for power and increase overall generating efficiency, but load shifting can also be automated and proactive. Smart meters that communicate directly with smart appliances might automatically reschedule a load of wash for later in the day when demand and prices are likely to fall. Even the most sophisticated load-shifting scheme will one day meet its limit.

John, “How Siemens is Tackling the Smart Grid,” GigaOM, last modified June 24, 2010, http://gigaom.com/cleantech/how-siemens-is-tackling-the-smart-grid/. 46“Siemens CEO Peter Löscher: We’re on the threshold of a new electric age,” Siemens press release, December 15, 2010, http://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2010/corporate_communication/axx20101227.htm. 47“75% of US Electric Meters to be Smart Meters by 2016,” In-Stat press release, March 5, 2012, http://www.fiercetelecom.com/press-releases/75-us-electric-meters-will-be-smart-meters-2016. 48Chris Nelder, “Why baseload power is doomed,” SmartPlanet, blog, last modified March 28, 2012, http://www.smartplanet.com/blog/energy-futurist/why-baseload-power-is-doomed/445. 49Massoud Amin, “North American Electricity Infrastructure: System Security, Quality, Reliability, Availability, and Efficiency Challenges and their Societal Impacts,” in Continuing Crises in National Transmission Infrastructure: Impacts and Options for Modernization, National Science Foundation (NSF), June 2004. 50Fitze, “No Longer A One-Way Street,” 23. 51Tim Schröder, “Automation’s Ground Floor Opportunity,” Pictures of the Future, Spring 2011, 19, http://www.siemens.com/innovation/apps/pof_microsite/_pof-spring-2011/_pdf/pof_0111_strom_buildings_en.pdf. 52Eric Paulos, lecture, “Forum on Future Cities,” MIT SENSEable City Lab and the Rockefeller Foundation, Cambridge, MA, April 13, 2011, http://techtv.mit.edu/collections/senseable/videos/12305-changing-research; For a thorough treatment see Eric Paulos and James Pierce, “Citizen Energy: Towards Populist Interactive Micro-Energy Production,” n.d., http://www.paulos.net/papers/2011/Citizen_Energy_HICSS2011.pdf. 53James R.


pages: 402 words: 110,972

Nerds on Wall Street: Math, Machines and Wired Markets by David J. Leinweber

AI winter, algorithmic trading, asset allocation, banking crisis, barriers to entry, Big bang: deregulation of the City of London, business cycle, butter production in bangladesh, butterfly effect, buttonwood tree, buy and hold, buy low sell high, capital asset pricing model, citizen journalism, collateralized debt obligation, corporate governance, Craig Reynolds: boids flock, creative destruction, credit crunch, Credit Default Swap, credit default swaps / collateralized debt obligations, Danny Hillis, demand response, disintermediation, distributed generation, diversification, diversified portfolio, Emanuel Derman, en.wikipedia.org, experimental economics, financial innovation, fixed income, Gordon Gekko, implied volatility, index arbitrage, index fund, information retrieval, intangible asset, Internet Archive, John Nash: game theory, Kenneth Arrow, load shedding, Long Term Capital Management, Machine translation of "The spirit is willing, but the flesh is weak." to Russian and back, market fragmentation, market microstructure, Mars Rover, Metcalfe’s law, moral hazard, mutually assured destruction, Myron Scholes, natural language processing, negative equity, Network effects, optical character recognition, paper trading, passive investing, pez dispenser, phenotype, prediction markets, quantitative hedge fund, quantitative trading / quantitative finance, QWERTY keyboard, RAND corporation, random walk, Ray Kurzweil, Renaissance Technologies, risk tolerance, risk-adjusted returns, risk/return, Robert Metcalfe, Ronald Reagan, Rubik’s Cube, semantic web, Sharpe ratio, short selling, Silicon Valley, Small Order Execution System, smart grid, smart meter, social web, South Sea Bubble, statistical arbitrage, statistical model, Steve Jobs, Steven Levy, Tacoma Narrows Bridge, the scientific method, The Wisdom of Crowds, time value of money, too big to fail, transaction costs, Turing machine, Upton Sinclair, value at risk, Vernor Vinge, yield curve, Yogi Berra, your tax dollars at work

(Notice that “Innovative” appears twice in the figure, indicative of the rapid pace of change, and note the foundation level position for smart end-use devices.) These so-called smart meters are the enabling technology for intelligent engineering and market solutions to electric energy problems. Recall that electronic market access (first seen in the NYSE’s DOT) was the enabling technology for disintermediation, and later, the use of information technology for algorithmic trading. Similarly, these smart meters will allow utilities, small producers, and consumers to bring the benefits of ubiquitous computation and market solutions to creating a more efficient, less polluting, low-carbon electric industry. These smart meters exist now. GridPoint in Arlington, Virginia, is the lead dog firm in this space. It was selected as a technology pioneer by the heavies at the Davos World Economic Forum in 2007, as a top innovator by MIT’s Technology Review, and by the Department of Energy for its model energy-efficient homes.

., plug-in hybrid electric vehicles [PHEVs] and fuel cells). For consumers, the platform provides protection from power outages, increases energy efficiency through online energy management, and integrates renewable energy, paving the way for the commercial success of solar and wind energy sources. The initial application for smart meters was simple: remote meter reading. This was the motivation for the utility vendors to install them to the limited extent that this has been done. But with greater capabilities in the newer versions the smart meters enable a much greater and more sophisticated set of applications. This could lead to savings to customers, as well as utilities, and for reductions in emissions that benefit everyone. From Efficiency to Control to Markets The first wave of energy conservation technologies was about energy efficiency, reducing the power demand by building better machines to plug into the wall, but with the same dumb old meter spinning outside.

It was selected as a technology pioneer by the heavies at the Davos World Economic Forum in 2007, as a top innovator by MIT’s Technology Review, and by the Department of Energy for its model energy-efficient homes. What Apple is to music players, GridPoint is to smart meters. An overview for the controller is shown in Figure 14.3. Figure 14.3 GridPoint’s smart grid platform is designed to align the interests of electric utilities, consumers, and the environment through an intelligent network of distributed energy resources that controls load, stores energy, and produces power. Algo trading for electrons is coming. Source: GridPoint (www.gridpoint.com). 334 Nerds on Wall Str eet GridPoint explains how its simple blue box on the wall addresses all the key issues in our electricity future: The platform applies information technology to the electric grid to enable distributed energy resources to perform the same as central-station generation.


pages: 304 words: 90,084

Net Zero: How We Stop Causing Climate Change by Dieter Helm

3D printing, autonomous vehicles, Berlin Wall, blockchain, Boris Johnson, carbon footprint, clean water, congestion charging, coronavirus, COVID-19, Covid-19, decarbonisation, deindustrialization, demand response, Deng Xiaoping, Donald Trump, fixed income, food miles, Francis Fukuyama: the end of history, Haber-Bosch Process, hydrogen economy, Intergovernmental Panel on Climate Change (IPCC), Internet of things, market design, means of production, North Sea oil, off grid, oil shale / tar sands, oil shock, peak oil, planetary scale, price mechanism, quantitative easing, remote working, reshoring, Ronald Reagan, smart meter, South China Sea, sovereign wealth fund, statistical model, Thomas Malthus

There would be lots of decentralised renewables generation, possibly some nuclear power stations (both large and small), smart meters, smart devices, interconnected homes and the internet-of-things, autonomous electric cars and perhaps hydrogen-powered vehicles and electric trains. Travel, especially by air, would be much reduced, and holidays would be much more local, as would quite a lot of food production. There would probably be more remote working, including from home using video links, as many people had to do during the Covid-19 lockdowns. Confronted with transitioning to this low-carbon world, now think about the existing network infrastructures. The electricity system is designed around ever-larger power stations (coal, nuclear and now gas) transmitting electricity to the local distribution networks and then your home. As yet, smart meters are not fully in place (and some do not fully work); there is no clear understanding of how to use (and who can use) the data; and smart appliances are a long way off becoming universal.

As yet, smart meters are not fully in place (and some do not fully work); there is no clear understanding of how to use (and who can use) the data; and smart appliances are a long way off becoming universal. The reason this smart technology is not in place is because the communications infrastructure is not up to the job, and nor will it be for the whole country for perhaps another decade. You cannot run a smart meter or enable your smart devices unless you have good internet and mobile connectivity. The road system is designed entirely around petrol and diesel vehicles. It is anything but smart, and incapable of supporting the roll-out of smart cars and autonomous vehicles. Charging points for electric vehicles are still notable by their absence even in major conurbations. Where they are available, the roads are often so congested that getting to a charge point can be a challenge in itself.

It is just another example of polluters (you and me) not being willing to pay to clean up the mess we are creating. We cannot have a decarbonised economy without the supporting green networks, and we cannot convert from fossil fuel networks to low-carbon ones unless the investment is made. We cannot invest without savings and a credible guarantee that customers and taxpayers will actually pay up. We could have an electricity charging system like Norway and its associated smart meters;[2] we could have a high-speed electric railway system like France; and of course we could have fast fibre like Spain. This would have one other advantage: it would be no regrets. We need all of this anyway. A net zero national infrastructure plan A net zero plan starts with these core infrastructures as the backbone of the low-carbon economy. It starts with an overall network infrastructure plan and then works backwards to the necessary investments.


pages: 219 words: 61,720

American Made: Why Making Things Will Return Us to Greatness by Dan Dimicco

2013 Report for America's Infrastructure - American Society of Civil Engineers - 19 March 2013, Affordable Care Act / Obamacare, American energy revolution, American Society of Civil Engineers: Report Card, Bakken shale, barriers to entry, Bernie Madoff, carbon footprint, clean water, crony capitalism, currency manipulation / currency intervention, David Ricardo: comparative advantage, decarbonisation, fear of failure, full employment, Google Glasses, hydraulic fracturing, invisible hand, job automation, knowledge economy, laissez-faire capitalism, Loma Prieta earthquake, low earth orbit, manufacturing employment, oil shale / tar sands, Ponzi scheme, profit motive, Report Card for America’s Infrastructure, Ronald Reagan, Silicon Valley, smart grid, smart meter, sovereign wealth fund, The Wealth of Nations by Adam Smith, too big to fail, uranium enrichment, Washington Consensus, Works Progress Administration

Sharan noted how the Obama administration allocated a little over $4 billion in stimulus money to building the smart grid, which is an important piece of infrastructure for our future. The plan was to install 20 million “smart meters” over five years. Smart meters are simply digital versions of the old spinning electric meter. Power companies nationwide employ tens of thousands of people who do nothing but read the meters. With smart meters, utility companies don’t need meter readers anymore. As Sharan put it: “In five years, 20 million manually read meters are expected to disappear, taking with them some 28,000 meter-reading jobs. In other words, instead of creating jobs, smart metering will probably result in net job destruction.”25 Sharan calculated that installing 20 million new smart meters over five years would create about 1,600 new installation jobs. Unfortunately, most of the smart meters are made overseas. The meters will require people who know how to maintain and service them, but that would create a few hundred jobs at most.


pages: 492 words: 153,565

Countdown to Zero Day: Stuxnet and the Launch of the World's First Digital Weapon by Kim Zetter

Ayatollah Khomeini, Brian Krebs, crowdsourcing, data acquisition, Doomsday Clock, drone strike, Edward Snowden, facts on the ground, Firefox, friendly fire, Google Earth, information retrieval, John Markoff, Julian Assange, Kickstarter, Loma Prieta earthquake, Maui Hawaii, MITM: man-in-the-middle, pre–internet, RAND corporation, Silicon Valley, skunkworks, smart grid, smart meter, South China Sea, Stuxnet, undersea cable, uranium enrichment, Vladimir Vetrov: Farewell Dossier, WikiLeaks, Y2K, zero day

Emergency generators would kick in at some critical facilities, but generators aren’t a viable solution for a prolonged outage, and in the case of nuclear power plants, a switch to generator power triggers an automatic, gradual shutdown of the plant, per regulations. One way to target electricity is to go after the smart meters electric utilities have been installing in US homes and businesses by the thousands, thanks in part to a $3 billion government smart-grid program, which has accelerated the push of smart meters without first ensuring that the technology is secure. One of the main problems security researchers have found with the system is that smart meters have a remote-disconnect feature that allows utility companies to initiate or cut off power to a building without having to send a technician. But by using this feature an attacker could seize control of the meters to disconnect power to thousands of customers in a way that would not be easily recoverable.

But by using this feature an attacker could seize control of the meters to disconnect power to thousands of customers in a way that would not be easily recoverable. In 2009, a researcher named Mike Davis developed a worm that did just this. Davis was hired by a utility in the Pacific Northwest to examine the security of smart meters the company planned to roll out to customers. As with the Siemens PLCs that Beresford examined, Davis found that the smart meters were promiscuous and would communicate with any other smart meters in their vicinity as long as they used the same communication protocol. They would even accept firmware updates from other meters. All an attacker needed to update the firmware on a meter was a network encryption key. But since all the meters the company planned to install had the same network key embedded in their firmware, an attacker only had to compromise one meter to extract the key and use it to deliver malicious updates to other meters.

Some vendors now use multiple network keys on their meters, assigning a different key for different neighborhoods to limit the damage an attacker could do with a single key. But the remote disconnect is still a problem with most smart meters, since an attacker who breaches a utility’s central server could do what Davis’s worm did, but in a much simpler way. “Were [the remote disconnect] not in there, none of this would really be all that much of an issue,” Davis says. “In my opinion, if it’s got the remote disconnect relay in it, whether it’s enabled or not … it’s a real big, ugly issue.” Going after smart meters is an effective way to cut electricity. But an even more effective and widespread attack would be to take out generators that feed the grid or the transmission systems that deliver electricity to customers.


pages: 133 words: 42,254

Big Data Analytics: Turning Big Data Into Big Money by Frank J. Ohlhorst

algorithmic trading, bioinformatics, business intelligence, business process, call centre, cloud computing, create, read, update, delete, data acquisition, DevOps, fault tolerance, linked data, natural language processing, Network effects, pattern recognition, performance metric, personalized medicine, RFID, sentiment analysis, six sigma, smart meter, statistical model, supply-chain management, Watson beat the top human players on Jeopardy!, web application

Thanks to the consolidation of global trading environments and the increased use of programmed trading, the volume of transactions being collected and analyzed is doubling or tripling. Transaction volumes also fluctuate much faster, much wider, and much more unpredictably. Competition among firms is creating more data, simply because sampling for trading decisions is occurring more frequently and at faster intervals. Smart instrumentation. The use of smart meters in energy grid systems, which shifts meter readings from monthly to every 15 minutes, can translate into a multithousandfold increase in data generated. Smart meter technology extends beyond just power usage and can measure heating, cooling, and other loads, which can be used as an indicator of household size at any given moment. Mobile telephony. With the advances in smartphones and connected PDAs, the primary data generated from these devices have grown beyond caller, receiver, and call length.

Many industries fall under the umbrella of new data creation and digitization of existing data, and most are becoming appropriate sources for Big Data resources. Those industries include the following: Transportation, logistics, retail, utilities, and telecommunications. Sensor data are being generated at an accelerating rate from fleet GPS transceivers, RFID (radio-frequency identification) tag readers, smart meters, and cell phones (call data records); these data are used to optimize operations and drive operational BI to realize immediate business opportunities. Health care. The health care industry is quickly moving to electronic medical records and images, which it wants to use for short-term public health monitoring and long-term epidemiological research programs. Government. Many government agencies are digitizing public records, such as census information, energy usage, budgets, Freedom of Information Act documents, electoral data, and law enforcement reporting.

See Data mining Mobile devices Modeling Moore’s Law Mozenda N NAS National Oceanic and Atmospheric Administration (NOAA) National Science Foundation (NSF) Natural language recognition New York Times Noisy data NoSQL (Not only SQL) O Object-based storage systems OLAP systems OOZIE OpenHeatMap Open source technologies availability options pilot projects See also Hadoop Organizational structure Outsourcing P Parallel processing Patents Pentaho Performance measurement Performance-security tradeoff Perlowitz, Bill Pharmaceutical companies Pig Pilot projects Planning Point-of-sale (POS) data Predictive analysis Privacy Problem identification Processing Project management processes Project planning Public information sources Purging of data Q Queries R RAM-based devices Real-time analytics Recruitment of data analytics personnel Red Hat Relational database management system (RDBMS) Research and development (R&D) Resource description framework (RDF) Results Retailers anomalies Big Data use click-stream data data sources goal setting in-memory processing technology organizational culture Retention of data Return on investment (ROI) Risk analysis S SANS SAP Scale-out storage solutions Scaling Scenarios Schmidt, Erik Science Scope of project Scrubbing programs Security backup systems challenges compliance issues data classification data retention intellectual property rules technologies Semantics event-driven data distribution support mapping of technologies trends Semistructured data Sensor data filtering growth of types Silos Sloan Digital Sky Survey Small and medium businesses (SMBs) Smart meters Smartphones Snapshots Social media Software. See Technologies Sources of data. See Data sources Space program Specificity of information Speed-accuracy tradeoff Spring Data SQL limitations NoSQL Integration scaling Stale data Statistical applications Storage Storm Structured data Success, measurement of Supplementary information Supply chain T Tableau Public Taxonomies Team members Technologies application platforms Cassandra cloud computing commodity hardware decision making processing power security storage Web-based tools worst practices See also Hadoop Telecommunications Text analytics Thin provisioning T-Mobile Training Transportation Trends Trusted applications Turk Twitter U United Parcel Service (UPS) Unstructured data complexity of defined forms growth of project goal setting social media’s collection technologies varieties of U.S. census User analysis Utilities sector V Value, extraction of Variety Velocity Vendor lock-in Veracity Videos Video surveillance Villanustre, Flavio Visualization Volume W Walt Disney Company Watson Web-based technologies Web sites click-stream data logs traffic distribution White-box systems Worst practices Wyle Laboratories X XML Y Yahoo


pages: 565 words: 151,129

The Zero Marginal Cost Society: The Internet of Things, the Collaborative Commons, and the Eclipse of Capitalism by Jeremy Rifkin

"Robert Solow", 3D printing, active measures, additive manufacturing, Airbnb, autonomous vehicles, back-to-the-land, big-box store, bioinformatics, bitcoin, business process, Chris Urmson, clean water, cleantech, cloud computing, collaborative consumption, collaborative economy, Community Supported Agriculture, Computer Numeric Control, computer vision, crowdsourcing, demographic transition, distributed generation, en.wikipedia.org, Frederick Winslow Taylor, global supply chain, global village, Hacker Ethic, industrial robot, informal economy, Intergovernmental Panel on Climate Change (IPCC), intermodal, Internet of things, invisible hand, Isaac Newton, James Watt: steam engine, job automation, John Markoff, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Julian Assange, Kickstarter, knowledge worker, longitudinal study, Mahatma Gandhi, manufacturing employment, Mark Zuckerberg, market design, mass immigration, means of production, meta analysis, meta-analysis, natural language processing, new economy, New Urbanism, nuclear winter, Occupy movement, off grid, oil shale / tar sands, pattern recognition, peer-to-peer, peer-to-peer lending, personalized medicine, phenotype, planetary scale, price discrimination, profit motive, QR code, RAND corporation, randomized controlled trial, Ray Kurzweil, RFID, Richard Stallman, risk/return, Ronald Coase, search inside the book, self-driving car, shareholder value, sharing economy, Silicon Valley, Skype, smart cities, smart grid, smart meter, social web, software as a service, spectrum auction, Steve Jobs, Stewart Brand, the built environment, The Nature of the Firm, The Structural Transformation of the Public Sphere, The Wealth of Nations by Adam Smith, The Wisdom of Crowds, Thomas Kuhn: the structure of scientific revolutions, Thomas L Friedman, too big to fail, transaction costs, urban planning, Watson beat the top human players on Jeopardy!, web application, Whole Earth Catalog, Whole Earth Review, WikiLeaks, working poor, zero-sum game, Zipcar

New studies, however, including one conducted by my global consulting group, show that with the shift to a Third Industrial Revolution infrastructure, it is conceivable to increase aggregate energy efficiency to 40 percent or more in the next 40 years, amounting to a dramatic increase in productivity beyond what the economy experienced in the twentieth century.8 The Internet of Things The enormous leap in productivity is possible because the emerging Internet of Things is the first smart-infrastructure revolution in history: one that will connect every machine, business, residence, and vehicle in an intelligent network comprised of a Communications Internet, Energy Internet, and Logistics Internet, all embedded in a single operating system. In the United States alone, 37 million digital smart meters are now providing real-time information on electricity use.9 Within ten years, every building in America and Europe, as well as other countries around the world, will be equipped with smart meters. And every device—thermostats, assembly lines, warehouse equipment, TVs, washing machines, and computers—will have sensors connected to the smart meter and the Internet of Things platform. In 2007, there were 10 million sensors connecting every type of human contrivance to the Internet of Things. In 2013, that number was set to exceed 3.5 billion, and even more impressive, by 2030 it is projected that 100 trillion sensors will connect to the IoT.10 Other sensing devices, including aerial sensory technologies, software logs, radio frequency identification readers, and wireless sensor networks, will assist in collecting Big Data on a wide range of subjects from the changing price of electricity on the grid, to logistics traffic across supply chains, production flows on the assembly line, services in the back and front office, as well as up-to-the-moment tracking of consumer activities.11 As mentioned in chapter 1, the intelligent infrastructure, in turn, will feed a continuous stream of Big Data to every business connected to the network, which they can then process with advanced analytics to create predictive algorithms and automated systems to improve their thermodynamic efficiency, dramatically increase their productivity, and reduce their marginal costs across the value chain to near zero.

It is estimated that IT solutions—using social media—could drive the cost of solar down by 75 percent, making it cheaper than coal.31 The Cleanweb Movement in the United States is getting Big Data help from a new federal government initiative called Green Button. The program, which was launched in 2011, encourages power and utility companies to voluntarily provide easy access to real-time energy usage data now available for the first time because of the installation of millions of smart meters in homes and businesses. Smart meters are vital data collection points in the Energy Internet infrastructure. That data can be downloaded by the companies’ customers so they can have the information they need to more efficiently manage their energy use. In less than a year, the number of customers with instant access to their own energy use data ballooned to 31 million.32 Companies like Opower, Itron, First Fuel, Efficiency 2.0, EcoDog, Belkin, and Honest Buildings are scurrying to develop new applications and Web services that can use Green Button data to empower users to take control of their own energy future.33 This wealth of data on individual energy usage is now being leveraged through social media.

The local electricity microgrid is powered by a bank of solar panels connected to a brick substation. Inside the substation are batteries that allow the village to store power during the night or when there is cloud cover. A small computer transmits data back to the company’s offices in Jaipur. Wires on wooden poles transmit the electricity from the substation to scores of homes around the village, providing green electricity for more than 200 residents. Each home is equipped with a smart meter that informs the user how much electricity is being used and what it is costing at different times of the day.38 Green electricity is far less expensive than electricity from India’s national grid, and it eliminates the burning of highly polluting kerosene that is responsible for respiratory and heart diseases common throughout India. A local mother interviewed by the Guardian described how electricity has transformed the life of the village.


pages: 469 words: 132,438

Taming the Sun: Innovations to Harness Solar Energy and Power the Planet by Varun Sivaram

addicted to oil, Albert Einstein, asset-backed security, autonomous vehicles, bitcoin, blockchain, carbon footprint, cleantech, collateralized debt obligation, Colonization of Mars, decarbonisation, demand response, disruptive innovation, distributed generation, diversified portfolio, Donald Trump, Elon Musk, energy security, energy transition, financial innovation, fixed income, global supply chain, global village, Google Earth, hive mind, hydrogen economy, index fund, Indoor air pollution, Intergovernmental Panel on Climate Change (IPCC), Internet of things, M-Pesa, market clearing, market design, mass immigration, megacity, mobile money, Negawatt, off grid, oil shock, peer-to-peer lending, performance metric, renewable energy transition, Richard Feynman, ride hailing / ride sharing, Ronald Reagan, Silicon Valley, Silicon Valley startup, smart grid, smart meter, sovereign wealth fund, Tesla Model S, time value of money, undersea cable, wikimedia commons

By 2020, the overall number of devices composing the “Internet of Things” is on track to reach 50 billion—double the number in 2015.45 These devices can be remotely controlled (for example, via a smartphone app), changing their instantaneous energy consumption. The same applies to the power-intensive equipment in large buildings, which increasingly is controlled through smart building energy management control systems. Second, utilities are rolling out “smart meters” that measure household power consumption on a much more granular basis than every month—some measure it every hour, minute, or even second. These meters can communicate with the grid to help both grid operators and customers find out what the other needs. Over half of American households have smart meters now. Although the torrents of data pouring in from these meters have overwhelmed some utilities, others have started to manage power flows on the distribution grid intelligently to meet local customer needs.46 Third, two-way communications networks and software solutions are emerging that can be overlain on the new hardware to orchestrate effective demand response by managing distributed energy resources in concert.

Comello,“Emerging Clean Energy Technology Investment Trends,” Nature Climate Change 7 (2017), doi: 10.1038/nclimate3306. 45.  Federal Trade Commission (FTC), Internet of Things: Privacy & Security in a Connected World (Washington, DC, November 2013, https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf). 46.  Jeff St. John, “US Smart Meter Deployments to Hit 70M in 2016, 90M in 2020,” Greentech Media, October 26, 2016, https://www.greentechmedia.com/articles/read/US-Smart-Meter-Deployments-to-Hit-70M-in-2016-90M-in-2020. 47.  Aghaei and Alizadeh, “Demand Response in Smart Electricity Grids Equipped with Renewable Energy Sources: A Review.” 48.  Christopher Findlay, “Strength in Numbers: Merging Small Generators as Virtual Power Plants,” Living Energy 4 (2011), http://www.energy.siemens.com/us/pool/hq/energy-topics/publications/living-energy/pdf/issue-04/Living-Energy-4-Virtual-Power-Plants.pdf. 49.  

Utilities then oversize system components so that in the worst case—say, on a hot summer day with very high power demand from air conditioning—a substation or power line can deliver as much electricity as customers instantaneously need, even if that equipment is underutilized most of the year. Finally, most utilities have very little live information about how much power flows over the distribution grid. Until very recently, when some U.S. utilities began to roll out smart meters, they had no idea how much energy each customer consumed until a meter reader paid a monthly visit. These features make the power grid more expensive than it needs to be, and its sprawling infrastructure has innumerable points of potential failure that threaten the whole system. Utilities, meanwhile, have no incentive to move away from this paradigm. Quite the opposite, in fact—the arcane way in which they make money is by collecting ever-higher customer payments to finance grid infrastructure projects and skimming some profit off the top to return to their investors; this paradigm gives utilities every incentive to continue building out the grid.


pages: 304 words: 82,395

Big Data: A Revolution That Will Transform How We Live, Work, and Think by Viktor Mayer-Schonberger, Kenneth Cukier

23andMe, Affordable Care Act / Obamacare, airport security, barriers to entry, Berlin Wall, big data - Walmart - Pop Tarts, Black Swan, book scanning, business intelligence, business process, call centre, cloud computing, computer age, correlation does not imply causation, dark matter, double entry bookkeeping, Eratosthenes, Erik Brynjolfsson, game design, IBM and the Holocaust, index card, informal economy, intangible asset, Internet of things, invention of the printing press, Jeff Bezos, Joi Ito, lifelogging, Louis Pasteur, Mark Zuckerberg, Menlo Park, Moneyball by Michael Lewis explains big data, Nate Silver, natural language processing, Netflix Prize, Network effects, obamacare, optical character recognition, PageRank, paypal mafia, performance metric, Peter Thiel, post-materialism, random walk, recommendation engine, self-driving car, sentiment analysis, Silicon Valley, Silicon Valley startup, smart grid, smart meter, social graph, speech recognition, Steve Jobs, Steven Levy, the scientific method, The Signal and the Noise by Nate Silver, The Wealth of Nations by Adam Smith, Thomas Davenport, Turing test, Watson beat the top human players on Jeopardy!

On data used by Nazis in the Netherlands—William Seltzer and Margo Anderson, “The Dark Side of Numbers: The Role of Population Data Systems in Human Rights Abuses,” Social Research 68 (2001), pp. 481–513. [>] On IBM and the Holocaust—Edwin Black, IBM and the Holocaust (Crown, 2003). On the amount of data smart meters collect—See Elias Leake Quinn, “Smart Metering and Privacy: Existing Law and Competing Policies; A Report for the Colorado Public Utility Commission,” Spring 2009 (http://www.w4ar.com/Danger_of_Smart_Meters_Colorado_Report.pdf). See also Joel M. Margolis, “When Smart Grids Grow Smart Enough to Solve Crimes,” Neustar, March 18, 2010 (http://energy.gov/sites/prod/files/gc prod/documents/Neustar_Comments_DataExhibitA.pdf) [>] Fred Cate on notice and consent—Fred H. Cate, “The Failure of Fair Information Practice Principles,” in Jane K.

Washington Post, July 19, 2010 (http://projects.washingtonpost.com/top-secret-america/articles/a-hidden-world-growing-beyond-control/print/). Query, Tim. “Grade Inflation and the Good-Student Discount.” Contingencies Magazine, American Academy of Actuaries, May-June 2007 (http://www.contingencies.org/mayjun07/tradecraft.pdf). Quinn, Elias Leake. “Smart Metering and Privacy: Existing Law and Competing Policies; A Report for the Colorado Public Utility Commission.” Spring 2009 (http://www.w4ar.com/Danger_of_Smart_Meters_Colorado_Report.pdf). Reshef, David, et al. “Detecting Novel Associations in Large Data Sets.” Science (2011), pp. 1518–24. Rosenthal, Jonathan. “Banking Special Report.” The Economist, May 19, 2012, pp. 7–8. Rosenzweig, Phil. “Robert S. McNamara and the Evolution of Modern Management.” Harvard Business Review, December 2010, pp. 87–93 (http://hbr.org/2010/12/robert-s-mcnamara-and-the-evolution-of-modern-management/ar/pr).


pages: 348 words: 97,277

The Truth Machine: The Blockchain and the Future of Everything by Paul Vigna, Michael J. Casey

3D printing, additive manufacturing, Airbnb, altcoin, Amazon Web Services, barriers to entry, basic income, Berlin Wall, Bernie Madoff, bitcoin, blockchain, blood diamonds, Blythe Masters, business process, buy and hold, carbon footprint, cashless society, cloud computing, computer age, computerized trading, conceptual framework, Credit Default Swap, crowdsourcing, cryptocurrency, cyber-physical system, dematerialisation, disintermediation, distributed ledger, Donald Trump, double entry bookkeeping, Edward Snowden, Elon Musk, Ethereum, ethereum blockchain, failed state, fault tolerance, fiat currency, financial innovation, financial intermediation, global supply chain, Hernando de Soto, hive mind, informal economy, intangible asset, Internet of things, Joi Ito, Kickstarter, linked data, litecoin, longitudinal study, Lyft, M-Pesa, Marc Andreessen, market clearing, mobile money, money: store of value / unit of account / medium of exchange, Network effects, off grid, pets.com, prediction markets, pre–internet, price mechanism, profit maximization, profit motive, ransomware, rent-seeking, RFID, ride hailing / ride sharing, Ross Ulbricht, Satoshi Nakamoto, self-driving car, sharing economy, Silicon Valley, smart contracts, smart meter, Snapchat, social web, software is eating the world, supply-chain management, Ted Nelson, the market place, too big to fail, trade route, transaction costs, Travis Kalanick, Turing complete, Uber and Lyft, uber lyft, unbanked and underbanked, underbanked, universal basic income, web of trust, zero-sum game

Handled properly, with computer-driven modeling, this should result in far greater resource efficiency. With the aid of sophisticated software monitoring, automated smart meters, and optimized, price-driven timing for individual device use, localized in-home “nanogrids” can receive a high-tech level of micromanagement that puts public utilities’ region-wide load-management strategies to shame. The revolution that started with smart thermostats like Nest and Ecobee is poised to go a lot further. But this low-cost, low-carbon-footprint future depends on two things: decentralized control of the energy system (of power generation, distribution, and consumption) and the capacity to design and run an intelligent system of interconnected smart meters and Internet-connected appliances and devices that respond to price signals. It’s a big IoT play, in other words.

The community was motivated by a desire to give environmentally conscious consumers and users the capacity to know they are buying clean, locally generated power as opposed to just helping pay their utility buy renewable credits that fund green energy production elsewhere in the United States. In the Transactive Grid, building owners install solar panels that are then linked together with those of their neighbors in a distribution network, using affordable smart meters and storage units, as well as inverters that allow the grid’s owners to sell power back to the public grid. The magic sauce, though, comes from a private blockchain that regulates the sharing of power among the smart meters, whose data is logged into that distributed ledger. And in the summer of 2017, LO3 took the process a step further by developing an “exergy token” to drive market mechanisms within and among decentralized microgrids such as Brooklyn’s. (Exergy is a vital concept for measuring energy efficiency and containing wasteful practices; it doesn’t just measure the amount of energy generated but also the amount of useful work produced per each given amount of energy produced.)

And in the field of solar energy, a team that Michael’s leading is exploring a model that would capture usage rights to energy generated in a communally owned microgrid as a way to funnel collateralized financing to off-grid communities that don’t have well-established legal and property title systems. Already, a team composed of IoT startup Filament, Nasdaq, and a team from IDEO Colab has found a way to integrate signals from a smart meter device with a blockchain so as to prove that a uniquely identified photovoltaic panel has produced and delivered a verifiable, measurable amount of solar power. In effect, that proven flow of power could be registered as a kind of certified claim to solar energy, which can then be traded or collateralized. Then, if we were to connect a device such as Filament’s with a digital payments and smart-contract system, along with an on/off “kill” switch to regulate access to that power, a form of remotely executable “smart property” is created.


pages: 332 words: 100,601

Rebooting India: Realizing a Billion Aspirations by Nandan Nilekani

Airbnb, Atul Gawande, autonomous vehicles, barriers to entry, bitcoin, call centre, cashless society, clean water, cloud computing, collaborative consumption, congestion charging, DARPA: Urban Challenge, dematerialisation, demographic dividend, Edward Snowden, en.wikipedia.org, energy security, financial exclusion, Google Hangouts, illegal immigration, informal economy, Khan Academy, Kickstarter, knowledge economy, land reform, law of one price, M-Pesa, Mahatma Gandhi, Marc Andreessen, Mark Zuckerberg, mobile money, Mohammed Bouazizi, more computing power than Apollo, Negawatt, Network effects, new economy, offshore financial centre, price mechanism, price stability, rent-seeking, RFID, Ronald Coase, school choice, school vouchers, self-driving car, sharing economy, Silicon Valley, Skype, smart grid, smart meter, software is eating the world, source of truth, Steve Jobs, The Nature of the Firm, transaction costs, WikiLeaks

Such sensors can also act as an early warning system in case of a power outage so that the problem can be rapidly identified and fixed remotely before it snowballs into a massive blackout like the ones that hit north India in 2012—the largest in recorded history.10 For consumers, smart meters can track electricity usage, transmitting information back to the power companies and to the consumers themselves. Consumers know exactly how much electricity they have been using, and this information can help prevent billing disputes. Utility companies can also start implementing time-of-day pricing schemes, charging customers a higher rate during times of peak load on the system. Pilot studies show that providing usage data to homeowners results in an average drop of 3–5 per cent in household electricity consumption.11 By allowing utilities to record usage patterns, smart meters also make it easier to detect theft and misuse. Italy has been a pioneer in the smart meter field; over 30 million smart meters have been brought into service since 2001, and 85 per cent of all Italian households now use smart meters to manage their electricity.12 The ability to monitor power sources in real time allows utilities to respond to demand-and-supply forces rapidly and with much greater accuracy.

Italy has been a pioneer in the smart meter field; over 30 million smart meters have been brought into service since 2001, and 85 per cent of all Italian households now use smart meters to manage their electricity.12 The ability to monitor power sources in real time allows utilities to respond to demand-and-supply forces rapidly and with much greater accuracy. This makes it possible to integrate smaller and intermittent sources of power, such as wind turbines and rooftop solar panels, into the power supply system. In the future, smart grids can also accommodate the draw on energy by electric cars being recharged. Power utilities can use smart grids to improve their operational efficiency for maximal utilization of existing energy sources, as well as the integration of renewable energy sources into the system. Energy efficiency has in fact been dubbed the ‘fifth fuel’, and Amory Lovins of the Rocky Mountain Institute has coined the term ‘negawatt’ to describe power saved through efficiency or conservation.13 Energy efficiency is being driven by innovations across multiple areas.14 Renewable energy sources, in particular solar energy, have boosted the available energy supply, and consumers can now act as small producers and storers, in effect ‘decentralizing’ the power grid.15 Storage is getting cheaper—the batteries that power Tesla’s electric cars may soon be made available for the home as well.16 Smart systems are managing power consumption more efficiently.


pages: 1,373 words: 300,577

The Quest: Energy, Security, and the Remaking of the Modern World by Daniel Yergin

"Robert Solow", addicted to oil, Albert Einstein, Asian financial crisis, Ayatollah Khomeini, banking crisis, Berlin Wall, bioinformatics, borderless world, BRICs, business climate, carbon footprint, Carmen Reinhart, cleantech, Climategate, Climatic Research Unit, colonial rule, Colonization of Mars, corporate governance, cuban missile crisis, data acquisition, decarbonisation, Deng Xiaoping, Dissolution of the Soviet Union, diversification, diversified portfolio, Elon Musk, energy security, energy transition, Exxon Valdez, facts on the ground, Fall of the Berlin Wall, fear of failure, financial innovation, flex fuel, global supply chain, global village, high net worth, hydraulic fracturing, income inequality, index fund, informal economy, interchangeable parts, Intergovernmental Panel on Climate Change (IPCC), James Watt: steam engine, John von Neumann, Kenneth Rogoff, life extension, Long Term Capital Management, Malacca Straits, market design, means of production, megacity, Menlo Park, Mikhail Gorbachev, Mohammed Bouazizi, mutually assured destruction, new economy, Norman Macrae, North Sea oil, nuclear winter, off grid, oil rush, oil shale / tar sands, oil shock, Paul Samuelson, peak oil, Piper Alpha, price mechanism, purchasing power parity, rent-seeking, rising living standards, Robert Metcalfe, Robert Shiller, Robert Shiller, Ronald Coase, Ronald Reagan, Sand Hill Road, shareholder value, Silicon Valley, Silicon Valley startup, smart grid, smart meter, South China Sea, sovereign wealth fund, special economic zone, Stuxnet, technology bubble, the built environment, The Nature of the Firm, the new new thing, trade route, transaction costs, unemployed young men, University of East Anglia, uranium enrichment, William Langewiesche, Yom Kippur War

The best-known subset is grouped around advanced metering infrastructure, otherwise known as the smart meter. Current meters, which in some sense have been around all the way back to the days of Samuel Insull, may be read once a month. The smart meter, by contrast, is a two-way device packed with much more capability. It eliminates the need for meter reading by sending information directly back to the utility, which thus knows in great detail what is happening to its load in real time. At the same time, it provides homeowners with situational awareness about how much electricity they are using at any given moment. With the addition of a home-area network, that knowledge can be broken down appliance by appliance, so that the smart refrigerator or the smart television can talk to the smart meter. With all this knowledge—whether displayed on a control box, on the Internet, or on their cell phone—homeowners can turn things down or even turn them off to save money.

With all this knowledge—whether displayed on a control box, on the Internet, or on their cell phone—homeowners can turn things down or even turn them off to save money. The smart meter could, when overall demand is at the highest, enable the utility to reduce usage inside the house. For instance, during a heat wave that is straining the power system, the utility could reach out to people’s thermostats (with their approval) and raise the average setting from 68 degrees to 73 degrees. (Some utilities are partway there with “paging” devices that enable them to cycle off air-conditioning every 15 minutes out of every hour.) If the electric car becomes common, the smart meter would also play a crucial role in managing recharging so that it is done late at night, off-peak, when demand is the lightest. The smart meter can do one more thing: verify energy savings. That could be essential if the utility is “paying” people to be more energy efficient.

The second is to promote greater energy efficiency overall, which both saves energy and cuts down on CO2 emissions. This all sounds very compelling. Actual implementation is challenging. The first-mover among countries is Italy, which completed installing “smart meters 1.0” for 80 percent of its load in 2006. One reason Italy moved so early was to manage demand; another, to reduce electricity theft. But Italy’s experience shows that integrating these new technologies is complex. Somebody has to pay for it, and it is not cheap. Then there is the critical matter of pricing. To get the maximum value from a smart meter system, consumers have to save money by reducing their consumption during times of peak demand. But that requires “dynamic pricing,” which is another way of saying paying different rates at different times of day. With dynamic pricing, electricity costs you less if you run your dishwasher at eleven p.m. and not at seven p.m. during peak demand.


pages: 271 words: 79,367

The Switch: How Solar, Storage and New Tech Means Cheap Power for All by Chris Goodall

3D printing, additive manufacturing, decarbonisation, demand response, Elon Musk, energy transition, first square of the chessboard / second half of the chessboard, Haber-Bosch Process, hydrogen economy, Internet of things, M-Pesa, Negawatt, off grid, Peter Thiel, smart meter, standardized shipping container, Tim Cook: Apple, wikimedia commons

A megawatt hour saved by OhmConnect is identical to a megawatt hour generated by a highly polluting power station that is turned on especially to capture the very high prices paid at times of stress. When they get the alert, customers can then choose to reduce their demand by turning off air conditioning or pool pumps, which are big users of electricity, or any other appliances in their home. Ninety per cent of Californian homes have so-called ‘smart’ meters that collect information on electricity usage minute by minute and send it back to utilities or companies like OhmConnect. The app looks at the pattern of usage over the last days and weeks and estimates whether the homeowner has run the house with a lower than expected amount of electricity during the ‘OhmHour’. If so, a payment is made; the user gets 80 per cent of the price that his ‘negawatts’ (negative watts) have been sold for and OhmConnect keeps the rest.

Peak demand is between 3 and 4 per cent lower than it would otherwise be if prices were the same all the day. Interestingly, in winter electricity use declined over the whole day, not just the peak and there was little, if any, switching between periods of high and low prices. How does a utility such as the one in Ontario know when homes are using a lot of electricity? The answer is that it will have to install smart meters for all homes. Similar devices are gradually being put in UK homes to prepare for time-of-use tariffs. These meters can be set up to measure the amount of electricity used at differing times of the day and therefore calculate bills using the tariff for each slot. A householder or a business might be offered very low prices when the sun is shining or the wind is blowing. Some of the same effects on electricity consumption that were observed in the Canadian studies were seen in a survey of 1,000 domestic electricity customers in London in 2013.

As its sales have expanded in Germany it has set up a new subsidiary in order that the owners of its battery packs can buy and sell renewable energy to each other through a central marketplace. When I have too much electricity and you have too little, Sonnen’s platform sells you my excess. If it has been a cloudy December day all across Germany, the company buys in wind power or electricity from anaerobic digestion plants to fill the gap. All this is handled automatically via its central software platform and the smart meters that tell it second by second how much power your PV system is generating and how much is actually being used in the home. The promise to members of the scheme is that the electricity bought in by the utility from other generators will cost about €0.23 a kilowatt hour, a discount of about 25 per cent on current German prices (but still somewhat more expensive that fossil fuel-generated electricity in the UK).


pages: 525 words: 142,027

CIOs at Work by Ed Yourdon

8-hour work day, Apple's 1984 Super Bowl advert, business intelligence, business process, call centre, cloud computing, crowdsourcing, distributed generation, Donald Knuth, Flash crash, Googley, Grace Hopper, Infrastructure as a Service, Innovator's Dilemma, inventory management, Julian Assange, knowledge worker, Mark Zuckerberg, Nicholas Carr, rolodex, shareholder value, Silicon Valley, six sigma, Skype, smart grid, smart meter, software as a service, Steve Ballmer, Steve Jobs, Steven Levy, the new new thing, the scientific method, WikiLeaks, Y2K, Zipcar

For example, there may be customers that are generating their own power through solar panels. We’re putting smart meters on everyone’s home so we can tell them—in the future—how much electricity they’re using at different times of the day. If customers want to be more efficient, these smart meters have the intelligence to tell them when they’re using a lot and determine what it is that’s driving usage up. Yourdon: I assume that’s just one small part of the overall buzzword of the “smart grid” that you folks in your industry are looking forward to over the next 10 or 20 years? Blalock: Absolutely. There is lots of transformation coming in that area, and we will be leaders in helping move in that direction. I could talk forever about the things that we see coming, but I do think mobility and business analytics are going to be huge. I think the smart meters and the electric vehicles are two technologies, not necessarily in IT that are going to revolutionize our business in the way people are going to use electricity.

Ellyn: Well, the big one, of course, is the “smart grid.” The problem with that title is that it implies that there is a stupid grid. Yourdon: [laughter] Ellyn: The grid is highly automated now. This is a re-automation of the grid. For example, at one time (this predates me) Detroit Edison had 140 engineers that just operated it. Today it’s done with just a dozen or fewer. As we go into more grid automation and smart meters and we can debate how smart they are, but meters to the extent that homeowners adopt a lot of home automation, and that remains to be seen, but there are a lot of people who are juiced about it. And we start to bring on a fair amount of electrical cars; electric vehicles; and the automation, billing, and management that is going to be in here. It’s a big deal for our industry, a big deal. Great opportunities.

For example, the San Diego Fire Department used Twitter as a mechanism for allowing citizens to report in brush fires and these terrible fires that they have in the fall with everything getting very dry. And that’s actionable and it conveys information back to the organization that they would otherwise not have known. Is there anything of that nature that might be relevant for you? Bohlen: I think that is something that is available, because if you think about it today, we typically learn first about outages through telephone services. That’s beginning to change with the smart meters. That’s a whole new revolution beginning to occur, where you get instantaneous data. Our challenge is to figure out, “Do we want it every 15 minutes? Do we want it every 30 minutes?” Then the question is, “If we get that data every 15 minutes from 1.1 million customers, what do we do with it? What do we want them to do with it? How long do we keep it?” That’s where analytics will really come into play.


Innovation and Its Enemies by Calestous Juma

3D printing, additive manufacturing, agricultural Revolution, Asilomar, Asilomar Conference on Recombinant DNA, autonomous vehicles, big-box store, business cycle, Cass Sunstein, clean water, collective bargaining, colonial rule, computer age, creative destruction, Daniel Kahneman / Amos Tversky, deskilling, disruptive innovation, energy transition, Erik Brynjolfsson, financial innovation, global value chain, Honoré de Balzac, illegal immigration, Intergovernmental Panel on Climate Change (IPCC), Internet of things, invention of movable type, invention of the printing press, Joseph Schumpeter, knowledge economy, loss aversion, Marc Andreessen, means of production, Menlo Park, mobile money, New Urbanism, Nicholas Carr, pensions crisis, phenotype, Ray Kurzweil, refrigerator car, Second Machine Age, self-driving car, smart grid, smart meter, stem cell, Steve Jobs, technological singularity, The Future of Employment, Thomas Kuhn: the structure of scientific revolutions, Travis Kalanick

The tensions revolve around issues such as privacy, security, pricing, and access to energy.69 Much of the debate is about the health impacts of non-ionizing electromagnetic radiation and parallels earlier debates related to cell phone towers. For example, the advocacy group Stop Smart Meters says that because of the installation of smart meters, “bills are skyrocketing, health effects and safety violations are being reported, and privacy in our homes is being violated.” It cautions that “children, pregnant women, seniors, those with immune deficiencies, medical conditions, pacemakers, and implants are particularly at risk.” According to the organization, the risks extend to animals and plants. Newspaper reports of the health effects of smart meters include headaches, interrupted sleep, dizziness, agitation, fatigue, skin rashes, ringing in the ears, leg cramps, and forgetfulness. But underlying these concerns are larger issues related to the inclusion of the public in control of utilities.70 The DC-AC debate appears to have been settled.

For a discussion of the complexities surrounding such issues, see Shelley McKellar, “Negotiating Risk: The Failed Development of Atomic Hearts in America, 1967–1977,” Technology and Culture 54, no. 1 (2013): 1–39. 69. Timothy Kostyk and Joseph Herkert, “Societal Implications of the Emerging Smart Grid,” Communication of the ACM 55, no. 11 (2012): 34–36. 70. David J. Hesse and Jonathan S. Coley, “Wireless Smart Meters and Public Acceptance: The Environment, Limited Choices, and Precautionary Politics,” Public Understanding of Science 23, no. 6 (2014): 688–702. Chapter 7 1. For a comprehensive review of the technical history of the industry, see Roger Thévenot, A History of Refrigeration throughout the World, trans. J. C. Fidler (Paris: International Institute of Refrigeration, 1979). 2. Oscar E. Anderson, Refrigeration in America: A History of a New Technology and Its Impact (Princeton, NJ: Princeton University Press), 8. 3.

See also names of individual states cold storage legislation, 196 support for domestic oils, 115 Status quo bias, 35 Steam-traction engines, 124 Steckel, Richard, 339n48 Steel, use in plows, 123 Steering wheels, 295 Stem cells, 15, 92 Stevenson, Robert Louis, 148 Stigmatization (demonization). See also Romanticization of alternating current, 144, 158–167, 171 of coffee, 45, 66 of margarine, 103 of new technologies, 8 product analogies and, 308–309 of technological innovation, 309 of telephone, 165–166, 309 of transgenic fish, 274 Stockholm, coffeehouses in, 62 Stop Smart Meters, 172–173 Storage goods, 186 Strasbourg, first printing of Bible in, 76 Street lighting, 146, 147, 149 Stupidity, Pessoa on, 280 Sublime Porte (Bâb-ı Âli), 83 Subramaniam, Chidambaran, 283 Subsidies to fishing industry, 259 Subsistence farming, 122 Substantial equivalence, 10 Success dynamics of, in scientific research, 327n115 factors affecting, 29–30 Succession in technological evolution, 326n106 Sufis, 47–48, 328n11 Sulfur dioxide, 190 Sulfuric acid, 179 Sultan of Cairo, 49 al-Sunbati, Ahmad ibn ’Abd al-Haqq, 50 Supermarkets, opposition to stocking of transgenic fish, 271, 273, 279 Supreme Court on antimargarine laws, 105 Diamond v.


Smart Cities, Digital Nations by Caspar Herzberg

Asian financial crisis, barriers to entry, business climate, business cycle, business process, carbon footprint, clean water, cloud computing, corporate social responsibility, Dean Kamen, demographic dividend, Edward Glaeser, Edward Snowden, hive mind, Internet of things, knowledge economy, Masdar, megacity, New Urbanism, packet switching, QR code, remote working, RFID, rising living standards, risk tolerance, Ronald Reagan, shareholder value, Silicon Valley, Silicon Valley startup, smart cities, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, smart meter, social software, special economic zone, Stephen Hawking, telepresence, too big to fail, trade route, transcontinental railway, upwardly mobile, urban planning, urban sprawl, women in the workforce, working poor, X Prize

Although it was designed to help U.S. veterans who had been injured in combat, the prototype lost support and has not been manufactured since 2013. 6 Quoted from “The Adventure of the Copper Beeches,” Arthur Conan Doyle, 1893. 7 Independent researchers have demonstrated how devices such as smart meters and traffic sensors are vulnerable in the event of improper programming and encryption, human error, or taking advantage of the sheer number of devices that must be protected throughout a network. See Nicole Perlroth, “Smart Technology May Be Vulnerable to Hackers,” New York Times, April 21, 2015, http://bits.blogs.nytimes.com/2015/04/21/smartcity-technology-may-be-vulnerable-to-hackers/. Dan Kaplan, “Black Hat: Assessing Smart Meters for Hacker Footprints, Vulnerabilities,” SC Magazine, July 25, 2012, http://www.scmagazine.com/black-hat-assessing-smartmeters-for-hacker-footprints-vulnerabilities/article/251947/. 8 In addition to Cisco’s dedicated focus on security, there are many independent groups highlighting the vulnerabilities of devices and how consumers can protect themselves, e.g.

An innovator and his team have provided the world with a great technological advance, but it remains to be seen if global markets and political calculations will help in the creation of necessary supply chains.2 The “smart villages” of India, which must overcome the severe water shortage in that nation, will depend on exactly this sort of problem-solving. As for cities, the pursuit of a smart water delivery system is in the works in many of them, and it takes many forms. Some will rely on sensors to restrict waste. Others are exploring smart metering, which can more efficiently deliver water to agricultural and urban centers. Reading Diamandis and other thinkers who see the potential for exponential growth of technological solutions can drive away years of bad news. But is this “techno-optimism at its worst,” as one reviewer of Abundance complained?3 Probably not. The future will not be a particularly orderly place. The technology of the new smart cities will solve a great many problems, but it will introduce many new ones as well.


pages: 552 words: 168,518

MacroWikinomics: Rebooting Business and the World by Don Tapscott, Anthony D. Williams

accounting loophole / creative accounting, airport security, Andrew Keen, augmented reality, Ayatollah Khomeini, barriers to entry, Ben Horowitz, bioinformatics, Bretton Woods, business climate, business process, buy and hold, car-free, carbon footprint, Charles Lindbergh, citizen journalism, Clayton Christensen, clean water, Climategate, Climatic Research Unit, cloud computing, collaborative editing, collapse of Lehman Brothers, collateralized debt obligation, colonial rule, commoditize, corporate governance, corporate social responsibility, creative destruction, crowdsourcing, death of newspapers, demographic transition, disruptive innovation, distributed generation, don't be evil, en.wikipedia.org, energy security, energy transition, Exxon Valdez, failed state, fault tolerance, financial innovation, Galaxy Zoo, game design, global village, Google Earth, Hans Rosling, hive mind, Home mortgage interest deduction, information asymmetry, interchangeable parts, Internet of things, invention of movable type, Isaac Newton, James Watt: steam engine, Jaron Lanier, jimmy wales, Joseph Schumpeter, Julian Assange, Kevin Kelly, Kickstarter, knowledge economy, knowledge worker, Marc Andreessen, Marshall McLuhan, mass immigration, medical bankruptcy, megacity, mortgage tax deduction, Netflix Prize, new economy, Nicholas Carr, oil shock, old-boy network, online collectivism, open borders, open economy, pattern recognition, peer-to-peer lending, personalized medicine, Ray Kurzweil, RFID, ride hailing / ride sharing, Ronald Reagan, Rubik’s Cube, scientific mainstream, shareholder value, Silicon Valley, Skype, smart grid, smart meter, social graph, social web, software patent, Steve Jobs, text mining, the scientific method, The Wisdom of Crowds, transaction costs, transfer pricing, University of East Anglia, urban sprawl, value at risk, WikiLeaks, X Prize, young professional, Zipcar

“If you ask the gas company to do an analysis of people’s water heaters and then to ask me, ‘Robin, do you want us to turn it down and save yourself $40 over the year?’ I’ll say, ‘Of course.’” To date, 8.3 million homes in America have been equipped with smart meters covering 6 percent of the population. The number is set to grow to 33 million by 2011, while the worldwide total will reach about 155 million.12 Cisco Systems estimates that by the time it all gets built out, the energy grid will be one thousand times larger than today’s Internet.13 Meanwhile, a vast and growing number of companies are already lining up to offer consumers tools to help them make sense of the smart meter data. Typically leadership does not come from the companies that dominated the old industrial era of energy, but from a new generation of companies that understand the age of networked intelligence.

Like other tech players in the emerging energy economy, Google is actively lobbying for open standards so that consumers are able to buy smart appliances, thermostats, or energy monitors from different companies and have them talk to each other. Personal Carbon Markets Pilots under way in Europe show how far the open-source grid concept could go. Homes across Europe, including Manchester, Birmingham, Bristol, Ruse (Bulgaria), and Cluj (Romania), have been equipped with advanced smart meters and sensor networks that track energy usage, efficiency, and overall household emissions to generate a real-time carbon footprint. Users pull up a Web-based interface to analyze the sources of their emissions, compare their home with the neighborhood, forecast household savings, or control their energy use remotely from a PC or a mobile phone.14 Like Google’s PowerMeter, the system developed by the Manchester City Council and its partners is an open platform, which means it can be seamlessly integrated with other applications for mobiles, TV, and social networks.

The mere fact that neighborhood trading schemes and personal carbon allowances are even being debated is a sign that the efforts under way to make our infrastructure more intelligent and interactive will pay large dividends. As we argued in the previous chapter, it’s easier to remain aloof about climate change when the connections between our actions and the climate seem vague and hard to measure. But it becomes harder to simply ignore one’s personal responsibility when the smart meter on your wall not only shows you your real-time carbon footprint, but also compares your score to the neighborhood average and offers you tips on how to improve. Coupled with a real price for carbon, this new transparency and interactivity provides the fuel for truly creative responses to some of the world’s great challenges. And while the focus is on energy and climate change today, there are equivalent opportunities in many other sectors.


pages: 154 words: 48,340

What We Need to Do Now: A Green Deal to Ensure a Habitable Earth by Chris Goodall

blockchain, carbon footprint, decarbonisation, energy transition, food miles, Haber-Bosch Process, Intergovernmental Panel on Climate Change (IPCC), Kickstarter, moral hazard, Naomi Klein, smart grid, smart meter

Orkney already demonstrates that, by matching supply and demand in small areas, abundant renewables can become even more cost-effective. Orkney was pushed into experimenting because of the limited capacity of its connection to the mainland grid. Many islands around the world are following a similar path. Whether it be Hawai’i or the Isles of Scilly off the Cornish coast, the focus is on developing energy self-sufficiency by using advanced digital technologies, such as smart meters, to reduce dependence on energy from outside the area. Other places are beginning to notice these lessons. Many schemes now focus on trying to make ‘virtual islands’ in local areas. These also try to align the usage of electricity to its availability within a specific town or even smaller area. Often called microgrids, these schemes operate in areas such as university campuses or remote areas with poor connections to the standard electricity grid.

Centrica is employing a technology developed in the US by a business called LO3. The LO3 microgrid in Brooklyn, New York, is often seen as a model for others around the world. There, a variety of homes and businesses buy and sell electricity from each other. A cinema with solar panels supplies power to a home down the street, while a bakery imports from a battery in the house across the road. Buildings with smart meters record electricity usage every second and communicate the information to the LO3 network. This enables management of supply and demand and settlement of bills for the sale of electricity by one participant to another. If demand is temporarily too great, an effective microgrid system can turn off or turn down flexible uses of energy, such as electric vehicle charging or air conditioning. Members of the Brooklyn microgrid can buy and sell electricity with each other automatically over a blockchain network.


pages: 501 words: 145,943

If Mayors Ruled the World: Dysfunctional Nations, Rising Cities by Benjamin R. Barber

Affordable Care Act / Obamacare, American Legislative Exchange Council, Berlin Wall, bike sharing scheme, borderless world, Boris Johnson, Bretton Woods, British Empire, car-free, carbon footprint, Cass Sunstein, Celebration, Florida, clean water, corporate governance, crowdsourcing, David Brooks, desegregation, Detroit bankruptcy, digital Maoism, disintermediation, edge city, Edward Glaeser, Edward Snowden, Etonian, failed state, Fall of the Berlin Wall, feminist movement, Filter Bubble, George Gilder, ghettoisation, global pandemic, global village, Hernando de Soto, Howard Zinn, illegal immigration, In Cold Blood by Truman Capote, income inequality, informal economy, information retrieval, Jane Jacobs, Jaron Lanier, Jeff Bezos, London Interbank Offered Rate, Mark Zuckerberg, market fundamentalism, Marshall McLuhan, Masdar, megacity, microcredit, Mikhail Gorbachev, mortgage debt, mutually assured destruction, new economy, New Urbanism, Nicholas Carr, Norman Mailer, nuclear winter, obamacare, Occupy movement, Panopticon Jeremy Bentham, Peace of Westphalia, Pearl River Delta, peer-to-peer, planetary scale, plutocrats, Plutocrats, profit motive, Ralph Waldo Emerson, RFID, Richard Florida, Ronald Reagan, self-driving car, Silicon Valley, Skype, smart cities, smart meter, Steve Jobs, Stewart Brand, Telecommunications Act of 1996, The Death and Life of Great American Cities, The Fortune at the Bottom of the Pyramid, The Wealth of Nations by Adam Smith, Tobin tax, Tony Hsieh, trade route, UNCLOS, UNCLOS, unpaid internship, urban sprawl, War on Poverty, zero-sum game

The resolution declared: “The United Nations Agenda 21 plan of radical so-called ‘sustainable development’ views the American way of life of private property ownership, single family homes, private car ownership and individual travel choices, and privately owned farms all as destructive to the environment.”14 Nor was this just right-wing rhetoric: the cities group Local Governments for Sustainability (ICLEI, described in some detail in Chapter 5) has become a particular target of Americans apprehensive about a loss of sovereignty. Simple conservation tools promoted by ICLEI, “smart meters” for example, have inspired an almost lunatic sense of peril. Such meters help measure electricity in the home and distribute its use to nonpeak hours, saving money and electricity for consumers and city budgets alike. Yet in Roanoke, Virginia, a protester insisted, “the real job of smart meters is to spy on you and control you—when you can and cannot use electrical appliances.”15 The Roanoke Board of Supervisors eventually voted to retain the city’s ICLEI funding, but only by a 3–2 vote. Thus does deeply entrenched preoccupation with sovereignty become an instrument of opposition to the most innocent forms of global cooperation.

The protection of civilians and regime change were good causes, but what transpired was the violation of Libyan sovereignty with many untoward consequences, including the murder of an American ambassador, the unleashing of forces of chaos, militia rule, and revanchist terrorism in Libya, Mali, Algeria, and elsewhere in the Sahel that good-willed democratic forces were unable to control. See “The West Must Be Honest about Its Role in Libya’s Violent Chaos,” The Guardian, September 16, 2012. 14. R. Burdett and D. Sudjic, eds., Living in the Endless City, London: Phaidon, 2011. 15. Leslie Kaufman and Kate Zernike, “Activists Fight Green Projects, Seeing U.N. Plot,” New York Times, February 3, 2012. The paranoia about smart meters is ironic in light of the newly revealed global surveillance by the U.S. National Security Agency. 16. Charlie Savage, “Order on Interpol Work Inside U.S. Irks Conservatives,” New York Times, December 31, 2009. 17. Jean-Jacque Rousseau, The Social Contract, Book I, Chapter 8; ed. and trans. Victor Gourevitch, in The Social Contract and Later Political Writings, Cambridge: Cambridge University Press, 1997, pp. 53–54. 18.

See Virtues and vices of cities vs. countryside Villaraigosa, Antonio, 97, 145 Virtues and vices of cities vs. countryside, 29–49; American views of, 33–35; in arts and literature, 30–31, 37–39; backwardness of rural life, 37, 38, 40, 43, 48; capital cities in, 32–33, 35; cosmopolitan view, 36–37; decentrists on, 35–36, 45; dialectical view of, 41–43; European views of, 33; freedom and liberation, 30, 40; loss and decadence, 29–31; normative view of, 40–41; nostalgia for rural idyll, 29–31; opposing narratives on, 39–40; parks and public spaces, 44–48; and urban cowboys, 31–32 Voting: deliberative, 350, 390n28; online, 260 Walled towns, 60 Water: proximity to, 14–15, 60; safe drinking, 183, 206; smart meters for, 246 Wealth of cities, 55–58 Weapons of mass destruction, 128–129 Web. See Internet Weber, Max, 15, 42, 65 Weidman, Elaine, 247 Weiner, Anthony, 88 “We’re Number One!,” 115–116 Whitman, Walt, 3, 43, 53, 271–272, 281–282, 284–286 WICI (Women in Cities International), 122–123 “Wiki-government,” 266 Wiki-logic, 249, 252, 264 Wilderness, 64–65 Williams, Hank, Jr., 32 Williams, Raymond, 31, 39, 41, 191 Wilson, Robert, 272, 288 Wilson, William Julius, 221 Women: as mayors, 238–240; and microfinance, 230 Women in Cities International (WICI), 122–123 WOMEX (World Music Expo), 290 Workplaces, 63–64 World Conference of Mayors for Peace through Inner-city Solidarity, 122–123 World Economic Forum (Davos), 118–119 World Mayors Summit on Climate (Mexico City 2010), 6 World Music Expo (WOMEX), 290 World Wide Web.


pages: 422 words: 104,457

Dragnet Nation: A Quest for Privacy, Security, and Freedom in a World of Relentless Surveillance by Julia Angwin

AltaVista, Ayatollah Khomeini, barriers to entry, bitcoin, Chelsea Manning, Chuck Templeton: OpenTable:, clean water, crowdsourcing, cuban missile crisis, data is the new oil, David Graeber, Debian, Edward Snowden, Filter Bubble, Firefox, GnuPG, Google Chrome, Google Glasses, informal economy, Jacob Appelbaum, John Markoff, Julian Assange, Marc Andreessen, market bubble, market design, medical residency, meta analysis, meta-analysis, mutually assured destruction, Panopticon Jeremy Bentham, prediction markets, price discrimination, randomized controlled trial, RFID, Robert Shiller, Ronald Reagan, security theater, Silicon Valley, Silicon Valley startup, Skype, smart meter, Steven Levy, Upton Sinclair, WikiLeaks, Y2K, zero-sum game, Zimmermann PGP

companies are building facial recognition technology into phones and cameras: Emily Steel and Julia Angwin, “Device Raises Fear of Facial Profiling,” Wall Street Journal, July 13, 2011, http://online.wsj.com/article/SB10001424052702303678704576440253307985070.html. technology to monitor your location: Keith Barry, “Insurance Company Telematics Trade Perks for Privacy,” Wired, August 19, 2011, http://www.wired.com/autopia/2011/08/insurance-company-telematics-trade-perks-for-privacy/. wireless “smart” meters: Jim Marston and Joshua Hart, “Should Consumers Participate in Their Utility’s Smart-Meter Program?,” Wall Street Journal, April 12, 2013, http://online.wsj.com/article/SB10001424127887323415304578368683701371280.html. Google has developed Glass: “Glass,” Google Inc., accessed July 22, 2013, http://www.google.com/glass/start/. The confidentiality of personal information: “Protecting Your Answers,” United States Census, 2010, https://www.census.gov/2010census/about/protect.php.

Looking up “blood sugar” could tag you as a possible diabetic by companies that profile people based on their medical condition and then provide drug companies and insurers access to that information. Searching for a bra could trigger an instant bidding war among lingerie advertisers at one of the many online auction houses. And new tracking technologies are just around the corner: companies are building facial recognition technology into phones and cameras, technology to monitor your location is being embedded into vehicles, wireless “smart” meters that gauge the power usage of your home are being developed, and Google has developed Glass, tiny cameras embedded in eyeglasses that allow people to take photos and videos without lifting a finger. * * * Skeptics say: What’s wrong with all of our data being collected by unseen watchers? Who is being harmed? Admittedly, it can be difficult to demonstrate personal harm from a data breach. If Sharon or Bilal is denied a job or insurance, they may never know which piece of data caused the denial.


Big Data at Work: Dispelling the Myths, Uncovering the Opportunities by Thomas H. Davenport

Automated Insights, autonomous vehicles, bioinformatics, business intelligence, business process, call centre, chief data officer, cloud computing, commoditize, data acquisition, disruptive innovation, Edward Snowden, Erik Brynjolfsson, intermodal, Internet of things, Jeff Bezos, knowledge worker, lifelogging, Mark Zuckerberg, move fast and break things, move fast and break things, Narrative Science, natural language processing, Netflix Prize, New Journalism, recommendation engine, RFID, self-driving car, sentiment analysis, Silicon Valley, smart grid, smart meter, social graph, sorting algorithm, statistical model, Tesla Model S, text mining, Thomas Davenport

These included: • Telecom firms, which had lots of data, but for some reason did not take advantage of it (perhaps because they had historically been a regulated monopoly or because they were busy with mergers and acquisitions) Chapter_02.indd 43 03/12/13 11:42 AM 44 big data @ work • Media and entertainment firms, which underachieved because they had decision cultures based on intuition and gut feel, and didn’t know how to assess whether people were looking at their content or not • Retailers had great data from point-of-sale systems, but most have underachieved with it until recently; Tesco and to some degree Walmart have been higher achievers • Traditional banks have massive amounts of data on the money their customers consume and save, but for the most part they have been underachievers in helping those customers make sense of it all and presenting targeted marketing offers to them • Electric utilities have been talking about the “smart grid” for a while, but are still a long way from achieving it; apart from some limited rollouts of smart metering devices and time-of-day ­pricing, very little thus far has happened in the United States This environment has changed dramatically with the advent of big data. Many of the also-ran industries in the previous generation of analytics can be leaders in the big data race, although in order to do so they need to change their behaviors and attitudes. Big data will be available in their business and industry, but the laggards need to work harder to take advantage of it than they did with traditional analytics.

Companies adopting production-class big data environments need faster and lower-cost ways to process large amounts of Chapter_05.indd 126 03/12/13 1:04 PM Technology for Big Data   127 Figure 5-3 A big data technology ecosystem Web logs HDFS Images and videos Operational systems Social media Documents and PDFs MapReduce Data warehouses Data marts and ODS Source: SAS Best Practices. atypical data. Think of the computing horsepower needed by energy companies to process data streaming from smart meters, or by retailers tracking in-store smartphone navigation paths, or LinkedIn’s ­reconciliation of millions of colleague recommendations. Or consider a gaming software company’s ability to connect consumers with their friends via online video games. “Before big data, our legacy architecture was fairly typical,” an executive explained in an interview. “Like most companies, we had data warehouses and lots of ETL programs and our data was very latent.


pages: 49 words: 12,968

Industrial Internet by Jon Bruner

autonomous vehicles, barriers to entry, commoditize, computer vision, data acquisition, demand response, en.wikipedia.org, factory automation, Google X / Alphabet X, industrial robot, Internet of things, job automation, loose coupling, natural language processing, performance metric, Silicon Valley, slashdot, smart grid, smart meter, statistical model, web application

Reading electricity usage every 15 minutes — a 2,880-fold increase in resolution from the monthly data it was getting from human meter-readers — the utility can detect power outages and quality problems immediately, and have detailed data on scale and location. In one case, Sumner says, meters in one neighborhood started to show voltage drops that suggested a transformer needed to be replaced. It was early spring and electricity demand was low; without smart meters, the problem would have manifested itself in the summertime when customers turned on their air conditioners. “Had we not done anything with it, we would have had a catastrophic failure,” he says. “Previously, we didn’t know what was going on at the customer level,” Sumner says. “Imagine trying to operate a highway system if all you have are monthly traffic readings for a few spots on the road.


The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences by Rob Kitchin

Bayesian statistics, business intelligence, business process, cellular automata, Celtic Tiger, cloud computing, collateralized debt obligation, conceptual framework, congestion charging, corporate governance, correlation does not imply causation, crowdsourcing, discrete time, disruptive innovation, George Gilder, Google Earth, Infrastructure as a Service, Internet Archive, Internet of things, invisible hand, knowledge economy, late capitalism, lifelogging, linked data, longitudinal study, Masdar, means of production, Nate Silver, natural language processing, openstreetmap, pattern recognition, platform as a service, recommendation engine, RFID, semantic web, sentiment analysis, slashdot, smart cities, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, smart grid, smart meter, software as a service, statistical model, supply-chain management, the scientific method, The Signal and the Noise by Nate Silver, transaction costs

There are several ways in which automated data are being generated, some of which are a by-product of a system rather than its primary purpose. Automated surveillance As surveillance technologies have become digital in nature and networked together it has become possible to automate various aspects of monitoring systems, and to add new techniques, to more effectively and efficiently track and trace the usage of different systems and places. An example of a manual form of surveillance that is increasingly becoming automated is smart metering. Here, automatic meter reading (AMR) technology is used to monitor and communicate utility usage without the need for manual reading (Hancke et al. 2013). Moreover, it can do these tasks on a continuous basis enabling a supplier to track usage in real-time, which has utility in matching demand with supply and in finding faults/leakage in a system. It also offers a means to undertake automated billing, reducing staff overheads.

They have also proposed: individuals entering into partnerships with developers wherein they can more proactively select what data they are willing to release, to whom, and under what circumstances; companies providing users access to their own data in a usable format for their own benefit; and that companies ‘share the wealth’ in the monetisation of personal data (Tene and Polonetsky 2012; Rubinstein 2013). An example of such a co-beneficial sharing of the wealth of data are smart grids where data generated by smart meters concerning household electricity consumption are used by the power company to produce supply efficiencies, with households supplied with apps that enable them to monitor their own use and adapt behaviour to save money. Industry, by and large, wants either the present provisions to continue or to be relaxed, with privacy administered through market-led regulation that does not stifle the economic leveraging of data.


pages: 309 words: 93,958

22 Days in May: The birth of the Lib Dem - Conservative coalition by Laws, David

first-past-the-post, income inequality, pension reform, smart grid, smart meter

The priority is to increase bank lending to small businesses to create and protect jobs and boost the recovery, with discussion between our two parties to identify the most effective way of achieving this; other measures will include a bank levy; an independent commission on structural reform of the banking system reporting within a year; and over the longer term efforts to recover the taxpayer money that has been invested in the banks. • Specific measures to fulfil our joint ambitions for a low carbon and carbon friendly economy, including: the establishment of a smart grid and the roll-out of smart meters; the full establishment of feed-in tariff systems in electricity – as well as maintenance of banded ROCs; measures to promote a huge increase in energy from waste through anaerobic digestion; the creation of a green investment bank; the provision of home energy improvement paid for by the savings from lower energy bills; retention of energy performance certificates while scrapping HIPs; measures to encourage marine energy; the establishment of an emissions performance standard that will prevent coal-fired power stations being built unless they are equipped with sufficient CCS to meet the emissions performance standard; the establishment of a high-speed rail network; the cancellation of the third runway at Heathrow; the refusal of additional runways at Gatwick and Stansted; and the replacement of the Air Passenger Duty with a per flight duty; the provision of a floor price for carbon, as well as efforts to persuade the EU to move towards full auctioning of ETS permits; measures to make the import or possession of illegal timber a criminal offence; measures to promote green spaces and wildlife corridors in order to halt the loss of habitats and restore biodiversity; mandating a national recharging network for electric and plug-in hybrid vehicles; continuation of the present Government’s proposals for public sector investment in CCS technology for four coal-fired power stations; and a specific commitment to reduce central government carbon emissions by 10 per cent within 12 months.

• Further regulation of CCTV. • Ending of storage of internet and email records without good reason. • A new mechanism to prevent the proliferation of unnecessary new criminal offences. 11. Environment The parties agree to implement a full programme of measures to fulfil our joint ambitions for a low carbon and eco-friendly economy, including: • The establishment of a smart grid and the roll-out of smart meters. • The full establishment of feed-in tariff systems in electricity – as well as the maintenance of banded ROCs. • Measures to promote a huge increase in energy from waste through anaerobic digestion. • The creation of a green investment bank. • The provision of home energy improvement paid for by the savings from lower energy bills. • Retention of energy performance certificates while scrapping HIPs


pages: 606 words: 157,120

To Save Everything, Click Here: The Folly of Technological Solutionism by Evgeny Morozov

3D printing, algorithmic trading, Amazon Mechanical Turk, Andrew Keen, augmented reality, Automated Insights, Berlin Wall, big data - Walmart - Pop Tarts, Buckminster Fuller, call centre, carbon footprint, Cass Sunstein, choice architecture, citizen journalism, cloud computing, cognitive bias, creative destruction, crowdsourcing, data acquisition, Dava Sobel, disintermediation, East Village, en.wikipedia.org, Fall of the Berlin Wall, Filter Bubble, Firefox, Francis Fukuyama: the end of history, frictionless, future of journalism, game design, Gary Taubes, Google Glasses, illegal immigration, income inequality, invention of the printing press, Jane Jacobs, Jean Tirole, Jeff Bezos, jimmy wales, Julian Assange, Kevin Kelly, Kickstarter, license plate recognition, lifelogging, lone genius, Louis Pasteur, Mark Zuckerberg, market fundamentalism, Marshall McLuhan, moral panic, Narrative Science, Nelson Mandela, Nicholas Carr, packet switching, PageRank, Parag Khanna, Paul Graham, peer-to-peer, Peter Singer: altruism, Peter Thiel, pets.com, placebo effect, pre–internet, Ray Kurzweil, recommendation engine, Richard Thaler, Ronald Coase, Rosa Parks, self-driving car, Silicon Valley, Silicon Valley ideology, Silicon Valley startup, Skype, Slavoj Žižek, smart meter, social graph, social web, stakhanovite, Steve Jobs, Steven Levy, Stuxnet, technoutopianism, the built environment, The Chicago School, The Death and Life of Great American Cities, the medium is the message, The Nature of the Firm, the scientific method, The Wisdom of Crowds, Thomas Kuhn: the structure of scientific revolutions, Thomas L Friedman, transaction costs, urban decay, urban planning, urban sprawl, Vannevar Bush, WikiLeaks

But ought we to consider other aspects of the Santa Monica initiative? To return to Albert Hirschman’s futility-perversity-jeopardy triad, the first of those concerns doesn’t seem to be a problem. Unless they find a way to easily circumvent it, drivers will likely comply with the smart metering system; there’s no good reason to deem the scheme futile—at least not yet. A charge of perversity, too, is hard to substantiate: it’s not obvious how smart sensor-based metering could worsen the parking situation. What about jeopardy? Is there a “previous, precious accomplishment,” to use Hirschman’s language, that smart metering endangers? There is, of course, the standard set of criticisms associated with situational crime prevention discussed at length in Chapter 6. Perhaps, if we universalize this scheme and prohibit citizens from breaking the law everywhere, we’ll end up with morally deficient citizens who won’t do the right thing unless the technological infrastructure explicitly robs them of the opportunity to do the wrong thing.

Victorian Trains and Montana Huts In a way, various smart systems like the one in Santa Monica suffer from the same problem as self-tracking: if quantification gives us an opportunity to save three gallons of water without questioning how this water gets into our bathrooms to begin with, then perhaps the savings are not as significant as we believe and maybe they even detract from our seeking more innovative ways of reforming the water system. In this sense, the Santa Monica scheme is futile (in Hirschman’s sense) in that it doesn’t really alter how drivers and citizens relate to the problems of parking and congestion. Potentially, the scheme is also perverse, especially if it gives us citizens who no longer feel the need to show concern for other drivers, the city, or the environment whenever smart meters and other forms of policing are missing. Such schemes thwart the development of what we earlier called “narrative imagination” and what some design theorists call “system thinking”—an intellectual approach that grants complexity to both the causes and effects of a problem and, instead of reducing the roots of that problem to a handful of easily identifiable and controllable factors, seeks to redescribe them in the language of relations, structures, and processes.


pages: 571 words: 105,054

Advances in Financial Machine Learning by Marcos Lopez de Prado

algorithmic trading, Amazon Web Services, asset allocation, backtesting, bioinformatics, Brownian motion, business process, Claude Shannon: information theory, cloud computing, complexity theory, correlation coefficient, correlation does not imply causation, diversification, diversified portfolio, en.wikipedia.org, fixed income, Flash crash, G4S, implied volatility, information asymmetry, latency arbitrage, margin call, market fragmentation, market microstructure, martingale, NP-complete, P = NP, p-value, paper trading, pattern recognition, performance metric, profit maximization, quantitative trading / quantitative finance, RAND corporation, random walk, risk-adjusted returns, risk/return, selection bias, Sharpe ratio, short selling, Silicon Valley, smart cities, smart meter, statistical arbitrage, statistical model, stochastic process, survivorship bias, transaction costs, traveling salesman

Snir, M. et al. (1998): MPI: The Complete Reference. Volume 1, The MPI-1 Core. MIT Press. Song, J. H. et al. (2014): “Exploring irregular time series through non-uniform fast Fourier transform.” Proceedings of the 7th Workshop on High Performance Computational Finance, IEEE Press. Todd, A. et al. (2014): “Insights from Smart Meters: The potential for peak hour savings from behavior-based programs.” Lawrence Berkeley National Laboratory. Available at https://www4.eere.energy.gov/seeaction/system/files/documents/smart_meters.pdf. Wu, K. et al. (2013): “A big data approach to analyzing market volatility.” Algorithmic Finance. Vol. 2, No. 3, pp. 241–267. Wu, L. et al. (2016): “Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma. IEEE Transactions on Big Data, Vol. 2, No. 3, pp. 262–275.


Data and the City by Rob Kitchin,Tracey P. Lauriault,Gavin McArdle

A Declaration of the Independence of Cyberspace, bike sharing scheme, bitcoin, blockchain, Bretton Woods, Chelsea Manning, citizen journalism, Claude Shannon: information theory, clean water, cloud computing, complexity theory, conceptual framework, corporate governance, correlation does not imply causation, create, read, update, delete, crowdsourcing, cryptocurrency, dematerialisation, digital map, distributed ledger, fault tolerance, fiat currency, Filter Bubble, floating exchange rates, global value chain, Google Earth, hive mind, Internet of things, Kickstarter, knowledge economy, lifelogging, linked data, loose coupling, new economy, New Urbanism, Nicholas Carr, open economy, openstreetmap, packet switching, pattern recognition, performance metric, place-making, RAND corporation, RFID, Richard Florida, ride hailing / ride sharing, semantic web, sentiment analysis, sharing economy, Silicon Valley, Skype, smart cities, Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia, smart contracts, smart grid, smart meter, social graph, software studies, statistical model, TaskRabbit, text mining, The Chicago School, The Death and Life of Great American Cities, the market place, the medium is the message, the scientific method, Toyota Production System, urban planning, urban sprawl, web application

Such data-driven technologies include: urban control rooms, e-government systems, city operating systems, coordinated emergency 2 R. Kitchin, T. P. Lauriault and G. McArdle response systems, intelligent transport systems, integrated ticketing, real-time passenger information, smart parking, fleet and logistics management, city dashboards, predictive policing, digital surveillance, energy smart grids, smart meters, smart lighting, sensor networks, building management systems and a wide plethora of locative and spatial media. Collectively these technologies are generating an ever-growing tsunami of indexical data (uniquely linked to people, objects, territories, transactions) that can be repurposed in diverse ways – for example, in predictive profiling and social sorting of citizens and neighbourhoods, creating urban models and simulations, for policing and security purposes, etc.

London and New York: Continuum. Mackenzie, A. (2016) ‘Code traffic: Code repositories, crowds and urban life’, in R. Kitchin and S. Perng (eds), Code and the City. London and New York: Routledge, pp. 72–87. Marcus, G.E. and Saka, E. (2006) ‘Assemblage’, Theory, Culture & Society 23(2–3): 101–106. Marres, N. (2012) ‘On some uses and abuses of topology in the social analysis of technology (or the problem with smart meters)’, Theory, Culture & Society 29(4–5): 288–310. Martin, L. and Secor, A.J. (2014) ‘Towards a post-mathematical topology’, Progress in Human Geography 38(3): 420–438. McFarlane, C. (2009) ‘Translocal assemblages: Space, power and social movements’, Geoforum 40(4): 561–567. McLuhan, M. (1994) Understanding Media: The Extensions of Man. Cambridge, MA: MIT Press. Munkres, J.R. (2000) Topology. Upper Saddle River, NJ: Prentice Hall.


pages: 118 words: 35,663

Smart Machines: IBM's Watson and the Era of Cognitive Computing (Columbia Business School Publishing) by John E. Kelly Iii

AI winter, call centre, carbon footprint, crowdsourcing, demand response, discovery of DNA, disruptive innovation, Erik Brynjolfsson, future of work, Geoffrey West, Santa Fe Institute, global supply chain, Internet of things, John von Neumann, Mars Rover, natural language processing, optical character recognition, pattern recognition, planetary scale, RAND corporation, RFID, Richard Feynman, smart grid, smart meter, speech recognition, Turing test, Von Neumann architecture, Watson beat the top human players on Jeopardy!

They use probability theory to identify the mostly likely effects of the variables then perform a series of analyses or simulations, based on a subset of the possibilities, to determine the most likely outcomes. Previously, using less sophisticated techniques, it might take days of computation to arrive at a useful result; now it can be done in seconds. In addition, as models are tested against real-world outcomes, they learn and get better over time. To see how stochastic optimization works, consider an electricity grid. Today, many electrical-distribution systems are outfitted with smart meters that make it possible for consumers and operators of the system to know how much energy is being used in real time. Based on that information, consumers can make informed choices about their consumption levels, and operators can predict with a reasonable certainty what demand will be at a specific time. But what happens if the weather changes suddenly or there’s a failure in the system and power is in short supply?


pages: 121 words: 36,908

Four Futures: Life After Capitalism by Peter Frase

Airbnb, basic income, bitcoin, business cycle, call centre, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, cryptocurrency, deindustrialization, Edward Snowden, Erik Brynjolfsson, Ferguson, Missouri, fixed income, full employment, future of work, high net worth, income inequality, industrial robot, informal economy, Intergovernmental Panel on Climate Change (IPCC), iterative process, job automation, John Maynard Keynes: Economic Possibilities for our Grandchildren, litecoin, mass incarceration, means of production, Occupy movement, pattern recognition, peak oil, plutocrats, Plutocrats, post-work, postindustrial economy, price mechanism, private military company, Ray Kurzweil, Robert Gordon, Second Machine Age, self-driving car, sharing economy, Silicon Valley, smart meter, TaskRabbit, technoutopianism, The Future of Employment, Thomas Malthus, Tyler Cowen: Great Stagnation, universal basic income, Wall-E, Watson beat the top human players on Jeopardy!, We are the 99%, Wolfgang Streeck

As an alternative, some cities are experimenting with various schemes for pricing street parking, often under the influence of UCLA parking theorist Donald Shoup.21 One of Shoup’s key themes is that urban governments should avoid under-pricing street parking, because to do so leads to Soviet-style shortages as described above, along with tedious rationing rules such as two-hour limits and the like. Under the influence of this theory, the city of Los Angeles decided to implement a wireless smart-metering system called LA Express Park. Sensors are installed in the pavement below each space, and they detect the presence of cars in a given area. The computerized system then automatically adjusts the price of parking depending on how many spaces are filled. When spaces are in high demand, the price can rise as high as $6 per hour, and when many spaces are available they can be as cheap as 50 cents.


pages: 443 words: 112,800

The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World by Jeremy Rifkin

"Robert Solow", 3D printing, additive manufacturing, Albert Einstein, American ideology, barriers to entry, borderless world, carbon footprint, centre right, collaborative consumption, collaborative economy, Community Supported Agriculture, corporate governance, decarbonisation, distributed generation, en.wikipedia.org, energy security, energy transition, global supply chain, hydrogen economy, income inequality, industrial cluster, informal economy, Intergovernmental Panel on Climate Change (IPCC), invisible hand, Isaac Newton, job automation, knowledge economy, manufacturing employment, marginal employment, Martin Wolf, Masdar, megacity, Mikhail Gorbachev, new economy, off grid, oil shale / tar sands, oil shock, open borders, peak oil, Ponzi scheme, post-oil, purchasing power parity, Ray Kurzweil, Ronald Reagan, scientific worldview, Silicon Valley, Simon Kuznets, Skype, smart grid, smart meter, Spread Networks laid a new fibre optics cable between New York and Chicago, supply-chain management, the market place, The Wealth of Nations by Adam Smith, Thomas Malthus, too big to fail, transaction costs, trickle-down economics, urban planning, urban renewal, Yom Kippur War, Zipcar

These employment estimates are small, however, in comparison to the jobs that will be created with the €1 trillion the European Commission now projects is needed for public and private investment over the next ten years to bring the distributed smart grid network online across the world’s largest economy.41 Today’s idea of a distributed smart grid was not what most of the major ICT companies had in mind when they first began to talk about intelligent utility networks. Their early vision was for a centralized smart grid. The companies foresaw digitalizing the existing power grid, with the placement of smart meters and censors, to allow utility companies to collect information remotely, including keeping up-to-the-minute information on electricity flows. The goal was to improve the efficiency of moving electricity across the grid, reduce the costs of maintenance, and keep more accurate records on customer usage. Their plans were reformist but not revolutionary. As far as I knew, there was little discussion about using Internet technology to transform the power grid into an interactive info-energy network that would allow millions of people to generate their own renewable energy and share electrons with one another.

CPS and the city have already saved 142 megawatts of electricity in the past two years and have set a target of a 771-megawatt reduction in electricity use by 2020. Building on their already significant achievement in renewable energy generation of 910 megawatts, San Antonio expects to generate 1,500 megawatts of renewable energy by 2020.30 CPS is also beginning to assemble a smart grid, with a two-year initiative to install 40,000 smart meters in buildings across the metropolitan region. CPS has also entered into an agreement with GM to provide power charging stations for the Chevy Volt.31 All in all, San Antonio is on its way toward a TIR economy. COUNTERINTUITIVE COMMERCE The most important challenge facing CPS is transforming its business model and management style to accommodate the requirements of a new distributed-energy era managed by Internet communication technology.


Virtual Competition by Ariel Ezrachi, Maurice E. Stucke

Airbnb, Albert Einstein, algorithmic trading, barriers to entry, cloud computing, collaborative economy, commoditize, corporate governance, crony capitalism, crowdsourcing, Daniel Kahneman / Amos Tversky, David Graeber, demand response, disintermediation, disruptive innovation, double helix, Downton Abbey, Erik Brynjolfsson, experimental economics, Firefox, framing effect, Google Chrome, index arbitrage, information asymmetry, interest rate derivative, Internet of things, invisible hand, Jean Tirole, John Markoff, Joseph Schumpeter, Kenneth Arrow, light touch regulation, linked data, loss aversion, Lyft, Mark Zuckerberg, market clearing, market friction, Milgram experiment, multi-sided market, natural language processing, Network effects, new economy, offshore financial centre, pattern recognition, prediction markets, price discrimination, price stability, profit maximization, profit motive, race to the bottom, rent-seeking, Richard Thaler, ride hailing / ride sharing, road to serfdom, Robert Bork, Ronald Reagan, self-driving car, sharing economy, Silicon Valley, Skype, smart cities, smart meter, Snapchat, social graph, Steve Jobs, supply-chain management, telemarketer, The Chicago School, The Myth of the Rational Market, The Wealth of Nations by Adam Smith, too big to fail, transaction costs, Travis Kalanick, turn-by-turn navigation, two-sided market, Uber and Lyft, Uber for X, uber lyft, Watson beat the top human players on Jeopardy!, women in the workforce, yield management

Emerging Trends The relevance and usefulness of real-time data are becoming increasingly difficult to ignore. Our “real” and “online” environments are converging, and digitalization will seemingly track individuals before their birth to their death.67 These developments may improve our welfare well beyond online commerce. For instance, health ser vices could provide faster response and monitoring through automated data collection. Smart meters and appliances can help optimize our electricity usage. Even our local authorities can optimize their ser vices by carefully collecting and using data from various sources.68 In the context of our discussion, one distinct trend is the shift from brick-and-mortar stores to online sites. We see this already with Amazon’s sprawling platform. E-commerce, as a percentage of total retail, is increasing.69 As a recent White House report noted, Americans are using the Internet to shop in rapidly growing numbers, suggesting that consumers believe they are getting a good deal on the Internet, regardless of any differences in the pricing practices of online and offline retailers.

It will become more proactive—making recommendations on entertainment, commenting on the music we listen to or the books we are reading. By complimenting and cajoling, sharing thoughts with us on recent events, sending personalized notes on special occasions, reminding us of presents, suggesting popular gifts trending among the recipient’s friends, and informing us about information from our smart meters and smart sensors, it will ingrain itself in our lives. We will wonder how we ever managed without a digital personal assistant. While we appreciate this free ser vice, we will not know its exact cost. When it joins our chats to make suggestions, or at times makes suggestions counter to those made by other helpers, we may not know whether it is being helpful or simply manipulating our behav ior.


pages: 170 words: 49,193

The People vs Tech: How the Internet Is Killing Democracy (And How We Save It) by Jamie Bartlett

Ada Lovelace, Airbnb, Amazon Mechanical Turk, Andrew Keen, autonomous vehicles, barriers to entry, basic income, Bernie Sanders, bitcoin, blockchain, Boris Johnson, central bank independence, Chelsea Manning, cloud computing, computer vision, creative destruction, cryptocurrency, Daniel Kahneman / Amos Tversky, Dominic Cummings, Donald Trump, Edward Snowden, Elon Musk, Filter Bubble, future of work, gig economy, global village, Google bus, hive mind, Howard Rheingold, information retrieval, Internet of things, Jeff Bezos, job automation, John Maynard Keynes: technological unemployment, Julian Assange, manufacturing employment, Mark Zuckerberg, Marshall McLuhan, Menlo Park, meta analysis, meta-analysis, mittelstand, move fast and break things, move fast and break things, Network effects, Nicholas Carr, off grid, Panopticon Jeremy Bentham, payday loans, Peter Thiel, prediction markets, QR code, ransomware, Ray Kurzweil, recommendation engine, Renaissance Technologies, ride hailing / ride sharing, Robert Mercer, Ross Ulbricht, Sam Altman, Satoshi Nakamoto, Second Machine Age, sharing economy, Silicon Valley, Silicon Valley ideology, Silicon Valley startup, smart cities, smart contracts, smart meter, Snapchat, Stanford prison experiment, Steve Jobs, Steven Levy, strong AI, TaskRabbit, technological singularity, technoutopianism, Ted Kaczynski, the medium is the message, the scientific method, The Spirit Level, The Wealth of Nations by Adam Smith, The Wisdom of Crowds, theory of mind, too big to fail, ultimatum game, universal basic income, WikiLeaks, World Values Survey, Y Combinator

The Bank of England should create its own ‘official’ cryptocurrency, which could be used by vendors for fast and efficient payments – but in a way that’s regulated. FUTURE GOVERNMENT The technologies in this book might be currently undermining democracy, but they also offer exciting opportunities to dramatically improve the way that government works. We need a bold programme of reform, which brings democracies up to speed. First, there’s scope for government departments to make better and more efficient decisions using data and AI. Smart meters could help save energy bills for people, welfare payments could be better targeted and police resources better allocated – provided this is all done ethically, with public involvement and with humans in the loop. Similarly, powerful AI used in the public interest could yield remarkable benefits in health research, spending decisions, intelligence, strategy and much more. Beyond that, technology like blockchain could dramatically improve how people can hold their governments to account.


pages: 219 words: 63,495

50 Future Ideas You Really Need to Know by Richard Watson

23andMe, 3D printing, access to a mobile phone, Albert Einstein, artificial general intelligence, augmented reality, autonomous vehicles, BRICs, Buckminster Fuller, call centre, clean water, cloud computing, collaborative consumption, computer age, computer vision, crowdsourcing, dark matter, dematerialisation, digital Maoism, digital map, Elon Musk, energy security, failed state, future of work, Geoffrey West, Santa Fe Institute, germ theory of disease, global pandemic, happiness index / gross national happiness, hive mind, hydrogen economy, Internet of things, Jaron Lanier, life extension, Mark Shuttleworth, Marshall McLuhan, megacity, natural language processing, Network effects, new economy, oil shale / tar sands, pattern recognition, peak oil, personalized medicine, phenotype, precision agriculture, profit maximization, RAND corporation, Ray Kurzweil, RFID, Richard Florida, Search for Extraterrestrial Intelligence, self-driving car, semantic web, Skype, smart cities, smart meter, smart transportation, statistical model, stem cell, Stephen Hawking, Steve Jobs, Steven Pinker, Stewart Brand, strong AI, Stuxnet, supervolcano, telepresence, The Wisdom of Crowds, Thomas Malthus, Turing test, urban decay, Vernor Vinge, Watson beat the top human players on Jeopardy!, web application, women in the workforce, working-age population, young professional

the condensed idea Locally produced and distributed energy timeline 1816 First energy company established in USA 1821 First electric motor 1839 Discovery of photovoltaic effect 1882 First hydroelectric power plant 1888 Tesla invents AC alternator 1892 General Electric founded 1980 First US wind farm 2030 Wind farms start to be demolished 2035 Most homes engaged in local energy trading 2040 Personal energy harvesters become mandatory 13 Smart cities Stuff that was once “dumb” is becoming smart. Pipes, roads, buildings and even whole cities are no exception. Whether it’s smart meters for water supply, appliances that work out when it’s best to be switched on, or dynamic tolling for roads, we can expect more efficiency, less waste, faster fixing and more pricing that’s responsive to real-time demand. Back in the 1990s, David Gelernter, a professor of computer science at Yale University, wrote a book called Mirror Worlds. In it he described a world that had a digital reflection.


Demystifying Smart Cities by Anders Lisdorf

3D printing, artificial general intelligence, autonomous vehicles, bitcoin, business intelligence, business process, chief data officer, clean water, cloud computing, computer vision, continuous integration, crowdsourcing, data is the new oil, digital twin, distributed ledger, don't be evil, Elon Musk, en.wikipedia.org, facts on the ground, Google Glasses, income inequality, Infrastructure as a Service, Internet of things, Masdar, microservices, Minecraft, platform as a service, ransomware, RFID, ride hailing / ride sharing, risk tolerance, self-driving car, smart cities, smart meter, software as a service, speech recognition, Stephen Hawking, Steve Jobs, Steve Wozniak, Stuxnet, Thomas Bayes, Turing test, urban sprawl, zero-sum game

Consequently, much of current smart city initiatives have focused on this area.Water – Without sufficient clean water, humans cannot sustain life. This means that any gains in efficiency or quality are particularly valuable for the city. Since water is a scarce resource, minimizing waste is also often a focus area. McKinsey estimates that water consumption can be lowered by 20–30%. This can be done with smart meters and leakage control. Energy – Is a fundamental need for almost every function of the city, and cities are main consumers of energy on a global scale. Similar to water, energy is a scarce resource that we try to reduce with initiatives like dynamic electricity pricing and smart lighting solutions that turn light on and off depending on need. Waste – Removal of waste is central to making a city livable and healthy.


pages: 252 words: 70,424

The Self-Made Billionaire Effect: How Extreme Producers Create Massive Value by John Sviokla, Mitch Cohen

business cycle, Cass Sunstein, Colonization of Mars, corporate raider, Daniel Kahneman / Amos Tversky, Elon Musk, Frederick Winslow Taylor, game design, global supply chain, James Dyson, Jeff Bezos, John Harrison: Longitude, Jony Ive, loss aversion, Mark Zuckerberg, market design, old-boy network, paper trading, RAND corporation, randomized controlled trial, Richard Thaler, risk tolerance, self-driving car, Silicon Valley, smart meter, Steve Ballmer, Steve Jobs, Steve Wozniak, Tony Hsieh, Toyota Production System, young professional

You know when you have a Producer in the room. We conducted an interview recently with a candidate whose Producer status was unmistakable. When asked about a business he would like to pursue, he outlined a consulting practice aimed at helping organizations manage the risks of damage to the electric grid. Over the course of a twenty-minute conversation, he explained his view that the current thrust of investment in smart meters and at-the-source energy use management was overemphasized (as he put it, a relatively small problem with relatively limited profit potential) and that the real opportunity centered around the aging utilities’ infrastructure, grid damage caused by intensifying natural disasters, security concerns, and the risks that massive failure poses to all types of organizations—federal governments, local municipalities, insurance companies, as well as utilities, and other businesses.


pages: 244 words: 66,977

Subscribed: Why the Subscription Model Will Be Your Company's Future - and What to Do About It by Tien Tzuo, Gabe Weisert

3D printing, Airbnb, airport security, Amazon Web Services, augmented reality, autonomous vehicles, blockchain, Build a better mousetrap, business cycle, business intelligence, business process, call centre, cloud computing, cognitive dissonance, connected car, death of newspapers, digital twin, double entry bookkeeping, Elon Musk, factory automation, fiat currency, Internet of things, inventory management, iterative process, Jeff Bezos, Kevin Kelly, Lean Startup, Lyft, manufacturing employment, minimum viable product, natural language processing, Network effects, Nicholas Carr, nuclear winter, pets.com, profit maximization, race to the bottom, ride hailing / ride sharing, Sand Hill Road, shareholder value, Silicon Valley, skunkworks, smart meter, social graph, software as a service, spice trade, Steve Ballmer, Steve Jobs, subscription business, Tim Cook: Apple, transport as a service, Uber and Lyft, uber lyft, Y2K, Zipcar

THE INTERNET OF THINGS Over the past five years, thousands of manufacturing businesses around the world have quietly been investing huge sums of money into sensors and connectivity. They’ve been hard at work putting sensors into everything they make: doors, chairs, pipes, tiles, windows, tables, sidewalks, rebar, lights, shoes, bottles, tires, bricks, etc. According to various predictions, by 2020 we’re expected to have more than a billion smart meters, 100 million connected lightbulbs, more than 150 million 4G-connected cars, 200 million smart home units, several billion smart clothing units, more than 90 million wearables. And what do these sensors allow these products to do? Collect and transmit data—lots of it. All of these products will be beaming information back into centralized servers, so companies can start using analytic platforms to look for patterns and ways to improve things (you want to talk big data?


pages: 265 words: 70,788

The Wide Lens: What Successful Innovators See That Others Miss by Ron Adner

barriers to entry, call centre, Clayton Christensen, inventory management, iterative process, Jeff Bezos, Lean Startup, M-Pesa, minimum viable product, mobile money, new economy, RAND corporation, RFID, smart grid, smart meter, spectrum auction, Steve Ballmer, Steve Jobs, Steven Levy, supply-chain management, Tim Cook: Apple, transaction costs

In contrast to the usual problems of emergence that we have examined, the problem here is one of scalability: the light is green as long as there is no traffic; but once traffic picks up, we have a flashing red light on our blueprint. The good news here is that around the world governments and utilities are investing to deploy smart-grid technologies to help circumvent this problem. “Smart grid” is a catchall term for a host of technologies that can respond to, and even predict, the individual demands placed on the electric system and adjust load and distribution accordingly. These include smart meters that adjust the price charged for electricity in real time, smart automation that can turn electric equipment and appliances on or off depending on the load on the grid, and smart distribution that can help ensure that local power lines are not overloaded. The better news is that this technology is already available. But the harsh reality is that it is expensive to acquire and time intensive to deploy.


pages: 267 words: 72,552

Reinventing Capitalism in the Age of Big Data by Viktor Mayer-Schönberger, Thomas Ramge

accounting loophole / creative accounting, Air France Flight 447, Airbnb, Alvin Roth, Atul Gawande, augmented reality, banking crisis, basic income, Bayesian statistics, bitcoin, blockchain, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, Cass Sunstein, centralized clearinghouse, Checklist Manifesto, cloud computing, cognitive bias, conceptual framework, creative destruction, Daniel Kahneman / Amos Tversky, disruptive innovation, Donald Trump, double entry bookkeeping, Elon Musk, en.wikipedia.org, Erik Brynjolfsson, Ford paid five dollars a day, Frederick Winslow Taylor, fundamental attribution error, George Akerlof, gig economy, Google Glasses, information asymmetry, interchangeable parts, invention of the telegraph, inventory management, invisible hand, James Watt: steam engine, Jeff Bezos, job automation, job satisfaction, joint-stock company, Joseph Schumpeter, Kickstarter, knowledge worker, labor-force participation, land reform, lone genius, low cost airline, low cost carrier, Marc Andreessen, market bubble, market design, market fundamentalism, means of production, meta analysis, meta-analysis, Moneyball by Michael Lewis explains big data, multi-sided market, natural language processing, Network effects, Norbert Wiener, offshore financial centre, Parag Khanna, payday loans, peer-to-peer lending, Peter Thiel, Ponzi scheme, prediction markets, price anchoring, price mechanism, purchasing power parity, random walk, recommendation engine, Richard Thaler, ride hailing / ride sharing, Sam Altman, Second Machine Age, self-driving car, Silicon Valley, Silicon Valley startup, six sigma, smart grid, smart meter, Snapchat, statistical model, Steve Jobs, technoutopianism, The Future of Employment, The Market for Lemons, The Nature of the Firm, transaction costs, universal basic income, William Langewiesche, Y Combinator

The one abundance we have is informational, and as collecting, conveying, and processing data become easier and less expensive, we will have more of it to use. The future of our economy lies in the clever exploitation of our informational surplus, and data-rich markets are the mechanisms and the places where we can achieve this. When artificial intelligence and Big Data meet the social reality of human coordination, we can become more sustainable. Spurred by “smart meter” technology, for example, energy markets will become data-rich, transitioning from their inefficient and fragile current state, in which a limited number of large producers provide energy for many, toward a much thicker market in which a huge number of diverse participants, including home-based producers of energy (think solar) and storage (think batteries), can better coordinate with each other.


pages: 374 words: 94,508

Infonomics: How to Monetize, Manage, and Measure Information as an Asset for Competitive Advantage by Douglas B. Laney

3D printing, Affordable Care Act / Obamacare, banking crisis, blockchain, business climate, business intelligence, business process, call centre, chief data officer, Claude Shannon: information theory, commoditize, conceptual framework, crowdsourcing, dark matter, data acquisition, digital twin, discounted cash flows, disintermediation, diversification, en.wikipedia.org, endowment effect, Erik Brynjolfsson, full employment, informal economy, intangible asset, Internet of things, linked data, Lyft, Nash equilibrium, Network effects, new economy, obamacare, performance metric, profit motive, recommendation engine, RFID, semantic web, smart meter, Snapchat, software as a service, source of truth, supply-chain management, text mining, uber lyft, Y2K, yield curve

Operational Data This is information about customers, suppliers, partners, and employees that is readily accessible in online transaction processing and/or online analytical databases. It typically includes transactional data, contact data, process data, and reference data such as master data. Enterprises often have the opportunity to collect even more information during the course of business via sensors or process monitoring such as: Log data, Smart meters, Internet-connected devices (e.g., IoT), Voice/phone, Security camera feeds, RFID, and Wireless signals. For example, XO Communications now analyzes 500 discrete customer data elements including call patterns, late or delinquent payments, and other vital signs. After just a four-month implementation, XO reduced customer churn by 47 percent, protecting $15 million in revenue.10 And Memorial Healthcare System integrated information from eight hundred disparate databases for greater visibility into vendor activities, resulting in a 40 percent reduction in vendor invoice cycle times that led to vendor discounts totaling over $2 million.11 Dark Data This is information collected during the course of business that remains in archives, is not generally accessible, or is not structured sufficiently for analysis.


pages: 297 words: 95,518

Ten Technologies to Save the Planet: Energy Options for a Low-Carbon Future by Chris Goodall

barriers to entry, carbon footprint, congestion charging, decarbonisation, energy security, Indoor air pollution, Intergovernmental Panel on Climate Change (IPCC), Kickstarter, land tenure, load shedding, New Urbanism, oil shock, profit maximization, Silicon Valley, smart grid, smart meter, statistical model, undersea cable

Individual households can also be encouraged to reduce demand on a signal from the national grid. More and more countries intend to provide homes with “smart” electricity meters that can be remotely instructed to switch appliances off or that can limit total household power use to a set level—say, 3 kilowatts. Already, some French homes are fitted with meters that restrict energy consumption to this level. In Italy, almost all the customers of the main electricity company have smart meters and can reduce their bills by switching their electricity use to the times of day when prices are lowest. More advanced meters could be used to switch off non-critical machines such as dishwashers and washing machines at moments when wind power drops. The technology is already available to do this. A signal carried over the mobile phone network might trigger an electronic on/off switch at the wall socket of those electric appliances that use large amounts of electricity.


pages: 400 words: 88,647

Frugal Innovation: How to Do Better With Less by Jaideep Prabhu Navi Radjou

3D printing, additive manufacturing, Affordable Care Act / Obamacare, Airbnb, Albert Einstein, barriers to entry, Baxter: Rethink Robotics, Bretton Woods, business climate, business process, call centre, Capital in the Twenty-First Century by Thomas Piketty, carbon footprint, cloud computing, collaborative consumption, collaborative economy, Computer Numeric Control, connected car, corporate social responsibility, creative destruction, crowdsourcing, disruptive innovation, Elon Musk, financial exclusion, financial innovation, global supply chain, IKEA effect, income inequality, industrial robot, intangible asset, Internet of things, job satisfaction, Khan Academy, Kickstarter, late fees, Lean Startup, low cost airline, low cost carrier, M-Pesa, Mahatma Gandhi, megacity, minimum viable product, more computing power than Apollo, new economy, payday loans, peer-to-peer lending, Peter H. Diamandis: Planetary Resources, precision agriculture, race to the bottom, reshoring, risk tolerance, Ronald Coase, self-driving car, shareholder value, sharing economy, Silicon Valley, Silicon Valley startup, six sigma, smart grid, smart meter, software as a service, standardized shipping container, Steve Jobs, supply-chain management, TaskRabbit, The Fortune at the Bottom of the Pyramid, The Nature of the Firm, transaction costs, Travis Kalanick, unbanked and underbanked, underbanked, women in the workforce, X Prize, yield management, Zipcar

He believes that, much like the telecoms sector after its liberalisation, Europe’s energy-sector deregulation will create competition, and push firms towards more frugal, distributed energy systems. Digitisation involves the convergence of energy technologies and digital tools that help to create connected homes and buildings. This convergence, Mestrallet believes, will help customers use energy more responsibly and cost-effectively (thanks to smart meters) and even enable some to produce their own energy (with advanced home-energy storage technologies). Deregulation is not the only reason utility firms such as GDF Suez are investing in decentralised and digitised energy-production systems. The bigger motivation is to respond to a structural economic trend not seen since the first world war: the deceleration of energy consumption in developed countries.


Industry 4.0: The Industrial Internet of Things by Alasdair Gilchrist

3D printing, additive manufacturing, Amazon Web Services, augmented reality, autonomous vehicles, barriers to entry, business intelligence, business process, chief data officer, cloud computing, connected car, cyber-physical system, deindustrialization, DevOps, digital twin, fault tolerance, global value chain, Google Glasses, hiring and firing, industrial robot, inflight wifi, Infrastructure as a Service, Internet of things, inventory management, job automation, low cost airline, low skilled workers, microservices, millennium bug, pattern recognition, peer-to-peer, platform as a service, pre–internet, race to the bottom, RFID, Skype, smart cities, smart grid, smart meter, smart transportation, software as a service, stealth mode startup, supply-chain management, trade route, undersea cable, web application, WebRTC, Y2K

The networking of these digital things will also provide a huge spinoff for telecom companies and Internet service providers who will have to provide the traffic transportation between devices. Indeed, telecom companies are predicting huge increases in the number of SIMS and data modems integrated into all sorts of remote devices, such as vending machines, connected cars, trucks for fleet management, smart meters, and even remote health monitoring equipment, by 2020. Automation is the way forward and, as we have just seen, it relies heavily on effective M2M in the process chain. M2M should play a large part in the business convergence and digital transformation process, as it not only improves productivity through overall equipment effectiveness but also allows for new and innovative business models.


pages: 279 words: 90,888

The Lost Decade: 2010–2020, and What Lies Ahead for Britain by Polly Toynbee, David Walker

banking crisis, battle of ideas, Boris Johnson, call centre, car-free, centre right, collective bargaining, congestion charging, corporate governance, crony capitalism, David Attenborough, Dominic Cummings, Donald Trump, Downton Abbey, energy transition, Etonian, first-past-the-post, G4S, gender pay gap, gig economy, Gini coefficient, global village, high net worth, housing crisis, income inequality, industrial robot, Intergovernmental Panel on Climate Change (IPCC), James Dyson, manufacturing employment, mass immigration, moral panic, mortgage debt, North Sea oil, offshore financial centre, payday loans, pension reform, quantitative easing, Right to Buy, Saturday Night Live, selection bias, smart meter, Uber for X, urban renewal, working-age population

In 2019 only one in fourteen UK properties was connected to a full fibre line, and BT’s growth rate (5 million connections over ten years) was perilously slow. But, of course, it was a private company, with profits to cosset (£7.4 billion in 2018–19). Labour took its cue, making broadband coverage a theme in the 2019 election. For a decade the government hesitated and stood back, unwilling to think afresh about privatisation or its regulation. It refused to require train operators to speed up wi-fi provision or to link household smart meters with a data network. ‘Talks beset by infighting,’ reported the Financial Times, as O2, Vodafone, EE and Three tried to escape an Ofcom injunction to ensure 95 per cent of the UK’s landmass was covered. In a confused tangle of rebates on licences and opaque bargaining with the regulator, the companies’ disunity and the government’s unwillingness to push were exposed. To get from research to improved productivity takes time and may involve circumambulation, but a path connects the two.


Falter: Has the Human Game Begun to Play Itself Out? by Bill McKibben

23andMe, Affordable Care Act / Obamacare, Airbnb, American Legislative Exchange Council, Anne Wojcicki, artificial general intelligence, Bernie Sanders, Bill Joy: nanobots, Burning Man, call centre, carbon footprint, Charles Lindbergh, clean water, Colonization of Mars, computer vision, David Attenborough, Donald Trump, double helix, Edward Snowden, Elon Musk, ending welfare as we know it, energy transition, Flynn Effect, Google Earth, Hyperloop, impulse control, income inequality, Intergovernmental Panel on Climate Change (IPCC), Jane Jacobs, Jaron Lanier, Jeff Bezos, job automation, life extension, light touch regulation, Mark Zuckerberg, mass immigration, megacity, Menlo Park, moral hazard, Naomi Klein, Nelson Mandela, obamacare, off grid, oil shale / tar sands, pattern recognition, Peter Thiel, plutocrats, Plutocrats, profit motive, Ralph Waldo Emerson, Ray Kurzweil, Robert Mercer, Ronald Reagan, Sam Altman, self-driving car, Silicon Valley, Silicon Valley startup, smart meter, Snapchat, stem cell, Stephen Hawking, Steve Jobs, Steve Wozniak, Steven Pinker, strong AI, supervolcano, technoutopianism, The Wealth of Nations by Adam Smith, traffic fines, Travis Kalanick, urban sprawl, Watson beat the top human players on Jeopardy!, Y Combinator, Y2K, yield curve

In fact, if people do increase their use as expected, she says her investors will get “a fifty-percent return, unleveraged.” With a colleague, Joe Philip, who is Indian American and had been working at the renewable energy start-up SunEdison, Poindexter put together a small round of financing in 2015, and they started their first project in the Kumasi region, under the Black Star Energy label. (Check out the Ghanaian flag and you’ll get the name.) None of it was easy. American-style smart meters, at fifty bucks a pop, were way too expensive, for instance, so Philip and his team built their own, at a buck apiece, with chips ordered from Amazon. Kumasi, the regional capital, where Black Star’s headquarters was located, had grid power as unreliable as everyplace else in Ghana, making the office almost impossible to work in. “You’d get twenty-four hours on, then twelve off,” said Philip.


pages: 572 words: 94,002

Reset: How to Restart Your Life and Get F.U. Money: The Unconventional Early Retirement Plan for Midlife Careerists Who Want to Be Happy by David Sawyer

Airbnb, Albert Einstein, asset allocation, beat the dealer, bitcoin, Cal Newport, cloud computing, cognitive dissonance, crowdsourcing, cryptocurrency, David Attenborough, David Heinemeier Hansson, Desert Island Discs, diversification, diversified portfolio, Edward Thorp, Elon Musk, financial independence, follow your passion, gig economy, hiring and firing, index card, index fund, invention of the wheel, knowledge worker, loadsamoney, low skilled workers, Mahatma Gandhi, Mark Zuckerberg, meta analysis, meta-analysis, mortgage debt, passive income, passive investing, Paul Samuelson, pension reform, risk tolerance, Robert Shiller, Robert Shiller, Ronald Reagan, Silicon Valley, Skype, smart meter, Snapchat, stakhanovite, Steve Jobs, Tim Cook: Apple, Vanguard fund, Y Combinator

Case study: The Sawyers’ Efficiency RESET Here’s how we did it, and you can, too: See The LAHs: £300. Reduce bollocks purchases (lattes, meals at the health club and work lunches): £200. Ditch childcare (while both working full-time hours): £150. Ditch cleaner (DIY: easy after the physical declutter): £80. Ditch shared office (while retaining an office facility): £65. Renegotiate utility bill (gaining a smart meter): £35. Renegotiate mobile phone bills (while upgrading to 4G): £30. Petrol (through a reduced commute and increased use of our bikes): £25. Renegotiate landline/broadband (doubling speed): £10. Renegotiate life insurance (while increasing cover): £5. Total Monthly Savings: £900. Remember The LAHs? Cuddington and Sandiway – that “double-village” I grew up in – lie halfway between Manchester and Liverpool.


pages: 348 words: 102,438

Green and Prosperous Land: A Blueprint for Rescuing the British Countryside by Dieter Helm

3D printing, Airbnb, barriers to entry, British Empire, clean water, conceptual framework, corporate social responsibility, decarbonisation, deindustrialization, demographic transition, Diane Coyle, digital map, facts on the ground, food miles, Haber-Bosch Process, illegal immigration, Internet of things, Kickstarter, land reform, mass immigration, New Urbanism, North Sea oil, precision agriculture, quantitative easing, smart meter, sovereign wealth fund, the built environment, urban planning, urban sprawl

What about bringing back the house sparrow, by carefully focusing on both building design to create nesting sites and also their food supplies? There are many more people in cities so there are many more people to join in and benefit from a great resurrection of key species, and in the process the return of habitats.10 We mandate all sorts of requirements for buildings, from energy efficiency to smart meters and aesthetics, but fail to do so for nature. Indeed, many building regulations damage natural capital. The new green spaces Part of this return of nature to our towns and cities is about public spaces and public initiatives. But much of the wildlife potential is in the hands of private companies and individuals. In the peregrine case, every major skyscraper could have built-in nesting sites and roosts for birds.


pages: 903 words: 235,753

The Stack: On Software and Sovereignty by Benjamin H. Bratton

1960s counterculture, 3D printing, 4chan, Ada Lovelace, additive manufacturing, airport security, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, algorithmic trading, Amazon Mechanical Turk, Amazon Web Services, augmented reality, autonomous vehicles, basic income, Benevolent Dictator For Life (BDFL), Berlin Wall, bioinformatics, bitcoin, blockchain, Buckminster Fuller, Burning Man, call centre, carbon footprint, carbon-based life, Cass Sunstein, Celebration, Florida, charter city, clean water, cloud computing, connected car, corporate governance, crowdsourcing, cryptocurrency, dark matter, David Graeber, deglobalization, dematerialisation, disintermediation, distributed generation, don't be evil, Douglas Engelbart, Douglas Engelbart, Edward Snowden, Elon Musk, en.wikipedia.org, Eratosthenes, Ethereum, ethereum blockchain, facts on the ground, Flash crash, Frank Gehry, Frederick Winslow Taylor, future of work, Georg Cantor, gig economy, global supply chain, Google Earth, Google Glasses, Guggenheim Bilbao, High speed trading, Hyperloop, illegal immigration, industrial robot, information retrieval, Intergovernmental Panel on Climate Change (IPCC), intermodal, Internet of things, invisible hand, Jacob Appelbaum, Jaron Lanier, Joan Didion, John Markoff, Joi Ito, Jony Ive, Julian Assange, Khan Academy, liberal capitalism, lifelogging, linked data, Mark Zuckerberg, market fundamentalism, Marshall McLuhan, Masdar, McMansion, means of production, megacity, megastructure, Menlo Park, Minecraft, MITM: man-in-the-middle, Monroe Doctrine, Network effects, new economy, offshore financial centre, oil shale / tar sands, packet switching, PageRank, pattern recognition, peak oil, peer-to-peer, performance metric, personalized medicine, Peter Eisenman, Peter Thiel, phenotype, Philip Mirowski, Pierre-Simon Laplace, place-making, planetary scale, RAND corporation, recommendation engine, reserve currency, RFID, Robert Bork, Sand Hill Road, self-driving car, semantic web, sharing economy, Silicon Valley, Silicon Valley ideology, Slavoj Žižek, smart cities, smart grid, smart meter, social graph, software studies, South China Sea, sovereign wealth fund, special economic zone, spectrum auction, Startup school, statistical arbitrage, Steve Jobs, Steven Levy, Stewart Brand, Stuxnet, Superbowl ad, supply-chain management, supply-chain management software, TaskRabbit, the built environment, The Chicago School, the scientific method, Torches of Freedom, transaction costs, Turing complete, Turing machine, Turing test, undersea cable, universal basic income, urban planning, Vernor Vinge, Washington Consensus, web application, Westphalian system, WikiLeaks, working poor, Y Combinator

As discussed in the Cloud chapter, the interweaving of multiple and incongruous sovereign claims often hinges on how emergent platforms problematize and repurpose existing platforms (such as the intercontinental highway network and its federal stewards), and by how existing platforms steer that emergence toward its own publics. Moreover, the psychological anguish of relinquishing driver status would likely ensure whatever policies are initially put in place may be irrational and absurd. Today the populist backlash against smart meters installed in residences as end points of more efficiently managed energy networks is nothing compared to the resistance (both legitimate and delusional) that will meet the sunsetting of human-driven automobiles. In important ways, however, the moral high ground may be with the robots. Gary Marcus writes, “Eventually (though not yet) automated vehicles will be able to drive better, and more safely than you can; no drinking, no distraction, better reflexes, and better awareness (via networking) of other vehicles.

See also land versus sea beyond the line, 30 French versus English concepts of, 380n15 search, 112, 118, 136–138, 202–203, 332, 342 “Search for Artificial Stellar Sources of Infra-Red Radiation” (Dyson), 106 Seasteading Institute, 180 secession, 177, 306–307, 309–314, 336, 447n43 second planetary computer, 300–301 secular disenchantment, 426n46 Securities and Exchange Commission, Regulation National Market System, 451n63 securitized entertainment, 156 security imagine no lines/imagine nothing but lines, 324, 355 interfacial security regimes, 345 post-Oklahoma City Bombing architecture, 322–323 trading for, 445n37 utopia of, 311, 321–325 security Apps, 241 seeing like a state, 8, 106, 120, 333 self, the care of, 126, 261 dissolution of, 263 fabrication of, 126 mirror reflection of, 253, 264 quantification of, 258–263 self-knowledge through numbers, 261 technologies of, 348 self-identity of the User, 258, 261, 263, 274, 345, 362 self-image geographic, 144 human, 71, 253 of the User, 253, 261 self-knowledge through numbers, 261 self-mapping swarms, 265 self-realization, 129 self-reflection of the User, 252–253 semantics of the address, 193 semantic web, 202–203 “sensing like a state,” 340 sensing networks, 303 sensors blanketing Earth, 97, 180, 192, 198, 295 design questions, 342 forming a Cloud of machine sensation, 340 future of, 342 mobile phones as, 342 as User/User as, 340 September 11, 2001, terrorist attacks, 321, 363 Serres, Michel, 1, 19, 75, 210, 222–223, 238 Shanghai World Expo (2010), 257–258, 285, 289 Shannon information, 205, 296–297 Shannon's law (Shannon-Hartley Theorem), 92, 393n52 Shaping Things (Sterling), 201 signaling, 148 “Silicon Valley's Ultimate Exit” (Srinivasan), 312–314 Simondon, Gilbert, 272, 405n26 Singleton, Benedict, 43–44, 288 singularity, 401n51 Siri for iOS, 277, 286 skeuomorphic interface designs, 139, 224, 339 skin. See also Earth designability of, 352–353 everywhere is, 355 human, 88 question of, 392n42 Sky Ear (Haque), 392n40 SkyGrabber, 401n45 Sleep Dealer (Rivera), 308 Smarr, Larry, 267–270, 285, 288 smart cities, 147–148, 160–162, 179, 181 smart dust, 201 smart grids, 92–96, 393n53 smart meters, resistance to, 283 smart space design questions, 201 smart surfaces, 198 Smart2020 (Climate Group), 93–94 Smithson, Robert, 53, 86, 178 Snow Crash (Stephenson), 400n42 Snowden, Edward, 35, 121, 287, 405n16 social body, inside/outside of, 22 social capital/social debt, 127 social imaginary, 233 socialism, 332 socialist pricing problem, 333, 369 social media, 9, 262–263, 428n58, 431n70 social nudity, 285 social space, 125–128, 169, 424n41 social systems City layer as, 157–159 classlessness in, 439n65 inclusion/exclusion in, 308–309, 311–312, 317 social-technical form, emergence of a new, 176 social Turingism, 80 social wallet, 127 software architecture, 166 constructing new civilizations, 181 design, 254–255 envelopes, 167 interfaciality, 167 language versus technology dichotomy, 60 law as code, 327 mixed programs, designing for, 168–172 and sovereignty, 20, 303 translegal forms, 355–356 software espionage, 398n21 software program, 43 software-space coprogramming, 237–238 solar energy, 106 Soleri, Paolo, 178–179 solidification and liquefaction, 379n9.


pages: 471 words: 109,267

The Verdict: Did Labour Change Britain? by Polly Toynbee, David Walker

banking crisis, Big bang: deregulation of the City of London, Bob Geldof, Boris Johnson, call centre, central bank independence, congestion charging, Corn Laws, Credit Default Swap, decarbonisation, deglobalization, deindustrialization, Etonian, failed state, first-past-the-post, Frank Gehry, gender pay gap, Gini coefficient, high net worth, hiring and firing, illegal immigration, income inequality, Intergovernmental Panel on Climate Change (IPCC), knowledge economy, labour market flexibility, market bubble, mass immigration, millennium bug, moral panic, North Sea oil, Northern Rock, offshore financial centre, pension reform, plutocrats, Plutocrats, Ponzi scheme, profit maximization, purchasing power parity, Right to Buy, shareholder value, Skype, smart meter, stem cell, The Spirit Level, too big to fail, University of East Anglia, working-age population, Y2K

The geopolitics of carbon shifted east and the EU became sensitive to its dependency after Russia started using its gas and oil as a diplomatic tool: why manoeuvre tanks when you can turn off the taps? By 2015 the UK would depend on imports of gas for 75 per cent of supply, and the regulator Ofgem said the UK gas market faced a cliff edge in 2015. To secure supply and cut carbon, Ofgem said the UK should invest £200 billion by 2020 in smart meters, transmission, renewable heating, wind and nuclear. The challenge was ideological as much as practical because cutting carbon meant more state action. Liberalized gas markets simply did not give firms enough incentive to invest – even the CBI agreed with that. Of course the UK still sat on top of millions of tonnes of potentially usable carbon. Coal was a sore subject for Labour. They wanted to mine it, as a gesture to their heartlands, but only ‘cleanly’.


pages: 403 words: 111,119

Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist by Kate Raworth

"Robert Solow", 3D printing, Asian financial crisis, bank run, basic income, battle of ideas, Berlin Wall, bitcoin, blockchain, Branko Milanovic, Bretton Woods, Buckminster Fuller, business cycle, call centre, Capital in the Twenty-First Century by Thomas Piketty, Cass Sunstein, choice architecture, clean water, cognitive bias, collapse of Lehman Brothers, complexity theory, creative destruction, crowdsourcing, cryptocurrency, Daniel Kahneman / Amos Tversky, David Ricardo: comparative advantage, dematerialisation, disruptive innovation, Douglas Engelbart, Douglas Engelbart, en.wikipedia.org, energy transition, Erik Brynjolfsson, Ethereum, ethereum blockchain, Eugene Fama: efficient market hypothesis, experimental economics, Exxon Valdez, Fall of the Berlin Wall, financial deregulation, Financial Instability Hypothesis, full employment, global supply chain, global village, Henri Poincaré, hiring and firing, Howard Zinn, Hyman Minsky, income inequality, Intergovernmental Panel on Climate Change (IPCC), invention of writing, invisible hand, Isaac Newton, John Maynard Keynes: Economic Possibilities for our Grandchildren, Joseph Schumpeter, Kenneth Arrow, Kenneth Rogoff, Kickstarter, land reform, land value tax, Landlord’s Game, loss aversion, low skilled workers, M-Pesa, Mahatma Gandhi, market fundamentalism, Martin Wolf, means of production, megacity, mobile money, Mont Pelerin Society, Myron Scholes, neoliberal agenda, Network effects, Occupy movement, off grid, offshore financial centre, oil shale / tar sands, out of africa, Paul Samuelson, peer-to-peer, planetary scale, price mechanism, quantitative easing, randomized controlled trial, Richard Thaler, Ronald Reagan, Second Machine Age, secular stagnation, shareholder value, sharing economy, Silicon Valley, Simon Kuznets, smart cities, smart meter, Social Responsibility of Business Is to Increase Its Profits, South Sea Bubble, statistical model, Steve Ballmer, The Chicago School, The Great Moderation, the map is not the territory, the market place, The Spirit Level, The Wealth of Nations by Adam Smith, Thomas Malthus, Thorstein Veblen, too big to fail, Torches of Freedom, trickle-down economics, ultimatum game, universal basic income, Upton Sinclair, Vilfredo Pareto, wikimedia commons

And since that record is stored on every computer in the network, it acts as a public ledger that cannot be altered, corrupted or deleted, making it a highly secure digital backbone for the future of e-commerce and transparent governance. One fast-rising digital currency that uses blockchain technology is Ethereum, which, among its many possible applications, is enabling electricity microgrids to set up peer-to-peer trading in renewable energy. These microgrids allow every nearby home, office or institution with a smart meter, Internet connection, and solar panel on its roof to hook in and sell or buy surplus electrons as they are generated, all automatically recorded in units of the digital currency. Such decentralised networks – ranging from a neighbourhood block to a whole city – build community resilience against blackouts and cut long-distance energy transmission losses at the same time. What’s more, the information embedded in every Ethereum transaction allows network members to put their values into action in the microgrid market, for example by opting to buy electricity from the nearest or greenest suppliers, or only from those that are community-owned or not-for-profit.59 And this is just one example of its potential.


pages: 457 words: 125,329

Value of Everything: An Antidote to Chaos The by Mariana Mazzucato

"Robert Solow", activist fund / activist shareholder / activist investor, Affordable Care Act / Obamacare, Airbnb, bank run, banks create money, Basel III, Berlin Wall, Big bang: deregulation of the City of London, bonus culture, Bretton Woods, business cycle, butterfly effect, buy and hold, Buy land – they’re not making it any more, capital controls, Capital in the Twenty-First Century by Thomas Piketty, Carmen Reinhart, carried interest, cleantech, Corn Laws, corporate governance, corporate social responsibility, creative destruction, Credit Default Swap, David Ricardo: comparative advantage, debt deflation, European colonialism, fear of failure, financial deregulation, financial innovation, Financial Instability Hypothesis, financial intermediation, financial repression, full employment, G4S, George Akerlof, Google Hangouts, Growth in a Time of Debt, high net worth, Hyman Minsky, income inequality, index fund, informal economy, interest rate derivative, Internet of things, invisible hand, Joseph Schumpeter, Kenneth Arrow, Kenneth Rogoff, knowledge economy, labour market flexibility, laissez-faire capitalism, light touch regulation, liquidity trap, London Interbank Offered Rate, margin call, Mark Zuckerberg, market bubble, means of production, money market fund, negative equity, Network effects, new economy, Northern Rock, obamacare, offshore financial centre, Pareto efficiency, patent troll, Paul Samuelson, peer-to-peer lending, Peter Thiel, profit maximization, quantitative easing, quantitative trading / quantitative finance, QWERTY keyboard, rent control, rent-seeking, Sand Hill Road, shareholder value, sharing economy, short selling, Silicon Valley, Simon Kuznets, smart meter, Social Responsibility of Business Is to Increase Its Profits, software patent, stem cell, Steve Jobs, The Great Moderation, The Spirit Level, The Wealth of Nations by Adam Smith, Thomas Malthus, Tobin tax, too big to fail, trade route, transaction costs, two-sided market, very high income, Vilfredo Pareto, wealth creators, Works Progress Administration, zero-sum game

In the ICT and digital sectors, more thinking is required about the appropriate tax system for companies like Uber and Airbnb, which would never have existed without publicly funded technology such as GPS and the Internet and which exploited network effects to create their potentially highly profitable first-mover advantages. It should be clear that many people - not just company employees - have contributed to their competitive advantage. How we govern technology affects who shares in the benefits. The digital revolution requires participatory democracy, keeping the citizen, not big business or big government, at the centre of technological change. Take smart meters, for example; Morozov argues that if they are closed boxes transferring information, ‘what we are doing is essentially introducing more and more closed systems which simply seek to capture rent from infrastructure that has been funded by us, without letting us the citizens take advantage of the same infrastructure for our own purposes and our own monitoring of the government, whether it is the city, or the national government'.7 With this in mind, we can move beyond the idea of public goods as ‘corrections', that is being limited to areas that need fixing (due to positive externalities that they generate), to being ‘objectives'.


pages: 510 words: 120,048

Who Owns the Future? by Jaron Lanier

3D printing, 4chan, Affordable Care Act / Obamacare, Airbnb, augmented reality, automated trading system, barriers to entry, bitcoin, book scanning, Burning Man, call centre, carbon footprint, cloud computing, commoditize, computer age, crowdsourcing, David Brooks, David Graeber, delayed gratification, digital Maoism, Douglas Engelbart, en.wikipedia.org, Everything should be made as simple as possible, facts on the ground, Filter Bubble, financial deregulation, Fractional reserve banking, Francis Fukuyama: the end of history, George Akerlof, global supply chain, global village, Haight Ashbury, hive mind, if you build it, they will come, income inequality, informal economy, information asymmetry, invisible hand, Jaron Lanier, Jeff Bezos, job automation, John Markoff, Kevin Kelly, Khan Academy, Kickstarter, Kodak vs Instagram, life extension, Long Term Capital Management, Marc Andreessen, Mark Zuckerberg, meta analysis, meta-analysis, Metcalfe’s law, moral hazard, mutually assured destruction, Network effects, new economy, Norbert Wiener, obamacare, packet switching, Panopticon Jeremy Bentham, Peter Thiel, place-making, plutocrats, Plutocrats, Ponzi scheme, post-oil, pre–internet, race to the bottom, Ray Kurzweil, rent-seeking, reversible computing, Richard Feynman, Ronald Reagan, scientific worldview, self-driving car, side project, Silicon Valley, Silicon Valley ideology, Silicon Valley startup, Skype, smart meter, stem cell, Steve Jobs, Steve Wozniak, Stewart Brand, Ted Nelson, The Market for Lemons, Thomas Malthus, too big to fail, trickle-down economics, Turing test, Vannevar Bush, WikiLeaks, zero-sum game

Chapter 22. Who Will Do What? 1. http://www.slate.com/articles/technology/technology/2012/05/facebook_ipo_has_social_networking_supplanted_real_innovation_in_silicon_valley_.html. Chapter 26. Financial Identity 1. See Tim Wu’s book The Master Switch (New York: Knopf, 2010). Chapter 28. The Interface to Reality 1. http://www.firstround.com/our_focus/. 2. http://www.naturalnews.com/036476_smart_meters_hacking_privacy.html. Chapter 29. Creepy 1. See http://www.fellowgeek.com/a-US-security-firm-hacked-by-Anonymous-ix1113.html and http://www.esecurityplanet.com/hackers/panda-security-hacked-lulzsec-is-your-website-safe.html. 2. http://cs-www.cs.yale.edu/homes/freeman/lifestreams.html. 3. See http://totalrecallbook.com/. Seventh Interlude: Limits Are for Mortals 1. David Brooks, “The Creative Monopoly,” New York Times, April 23, 2012. 2. http://blakemasters.tumblr.com/post/21169325300/peter-thiels-cs183-startup-class-4-notes-essay. 3. http://www.dailydot.com/society/facebook-mourning-jenna-ness-death/. 4. http://www.slate.com/articles/health_and_science/human_nature/2009/01/night_of_the_living_dad.html. 5. http://www.huffingtonpost.com/2012/08/21/tupac-hologram-elvis-presley-marilyn-monroe_n_1818715.html. 6.


pages: 440 words: 128,813

Heat Wave: A Social Autopsy of Disaster in Chicago by Eric Klinenberg

carbon footprint, citizen journalism, deindustrialization, fixed income, ghettoisation, informal economy, Intergovernmental Panel on Climate Change (IPCC), Jane Jacobs, longitudinal study, loose coupling, mass immigration, megacity, New Urbanism, postindustrial economy, smart grid, smart meter, The Chicago School, The Death and Life of Great American Cities, The Structural Transformation of the Public Sphere, urban renewal, War on Poverty

“The situational awareness of the system might allow operators to reconfigure the system, either before or after the event, to maintain service,” Leonardo Dueñas-Osorio, an engineering professor at Rice University who is developing resilience metrics for critical infrastructure systems, told me. “As a hurricane approaches, operators could ‘island’ areas that look like they will get the most damage. This breaks the system into small clusters and prevents cascading failures. It gives the operators more control, more capacity to keep the power going or get it back.” Smart meters also enable consumers to go online anytime to learn when and how they use energy and how much they’re spending. Already there’s evidence that customers with this information are adjusting their behavior accordingly: easing off on air conditioning, drying their clothes at night. But reducing individual demand through such neoliberal programming will only go so far. Only a major public investment program will allow the United States to create smarter, more resilient, and more flexibly sourced energy systems.


Autonomous Driving: How the Driverless Revolution Will Change the World by Andreas Herrmann, Walter Brenner, Rupert Stadler

Airbnb, Airbus A320, augmented reality, autonomous vehicles, blockchain, call centre, carbon footprint, cleantech, computer vision, conceptual framework, connected car, crowdsourcing, cyber-physical system, DARPA: Urban Challenge, data acquisition, demand response, digital map, disruptive innovation, Elon Musk, fault tolerance, fear of failure, global supply chain, industrial cluster, intermodal, Internet of things, Jeff Bezos, Lyft, manufacturing employment, market fundamentalism, Mars Rover, Masdar, megacity, Pearl River Delta, peer-to-peer rental, precision agriculture, QWERTY keyboard, RAND corporation, ride hailing / ride sharing, self-driving car, sensor fusion, sharing economy, Silicon Valley, smart cities, smart grid, smart meter, Steve Jobs, Tesla Model S, Tim Cook: Apple, uber lyft, upwardly mobile, urban planning, Zipcar

Therefore, at least three service classes are defined for 5G: (1) Conventional broadband applications, also termed enhanced mobile broadband (eMBB), e.g. for video streaming and downloading map material. (2) Time-critical, reliable applications, e.g. for automated and autonomous driving. (3) Sensor applications with an extremely high number of devices and very low electricity consumption, e.g. smart metering. In Europe, some carmakers, telecommunications companies and network operators have already jointly formulated their requirements for 5G technology, which will successively flow into the standardisation committees. The 5G standardisation started in 2016 and is to be completed by 2019. The main challenge consists of creating a shared interface between the car platform and the 5G network. Another aspect is that a patent strategy must be agreed upon between the automotive and mobile-telephony industries.


pages: 458 words: 135,206

CTOs at Work by Scott Donaldson, Stanley Siegel, Gary Donaldson

Amazon Web Services, bioinformatics, business intelligence, business process, call centre, centre right, cloud computing, computer vision, connected car, crowdsourcing, data acquisition, distributed generation, domain-specific language, glass ceiling, orbital mechanics / astrodynamics, pattern recognition, Pluto: dwarf planet, QR code, Richard Feynman, Ruby on Rails, shareholder value, Silicon Valley, Skype, smart grid, smart meter, software patent, thinkpad, web application, zero day, zero-sum game

We simply don't have the time or resources to get deeply engaged with industry standards bodies. Those can be all consuming and we've got a company to run. We have a tremendous amount of interaction with customers and the technologists within the customer base. That's where most of our new product ideas come from. S. Donaldson: What are examples of some of the partners that you deal with? Tolnar: Examples would be smart metering companies, they're in our space, but in an adjacent space. Other partners could include Siemens, SAIC, and Schneider Electric. They're in adjacent space with very little overlap. What we always try to do is make a build-buy-partner decision. If we've got a sustainable differentiation in intellectual property, we will typically build. If not, and we see it could become a crowded space or already is a crowded space, then we typically make a partner decision.


pages: 497 words: 150,205

European Spring: Why Our Economies and Politics Are in a Mess - and How to Put Them Right by Philippe Legrain

3D printing, Airbnb, Asian financial crisis, bank run, banking crisis, barriers to entry, Basel III, battle of ideas, Berlin Wall, Big bang: deregulation of the City of London, Boris Johnson, Bretton Woods, BRICs, British Empire, business cycle, business process, capital controls, Capital in the Twenty-First Century by Thomas Piketty, Carmen Reinhart, Celtic Tiger, central bank independence, centre right, cleantech, collaborative consumption, collapse of Lehman Brothers, collective bargaining, corporate governance, creative destruction, credit crunch, Credit Default Swap, crony capitalism, currency manipulation / currency intervention, currency peg, debt deflation, Diane Coyle, disruptive innovation, Downton Abbey, Edward Glaeser, Elon Musk, en.wikipedia.org, energy transition, eurozone crisis, fear of failure, financial deregulation, first-past-the-post, forward guidance, full employment, Gini coefficient, global supply chain, Growth in a Time of Debt, hiring and firing, hydraulic fracturing, Hyman Minsky, Hyperloop, immigration reform, income inequality, interest rate derivative, Intergovernmental Panel on Climate Change (IPCC), Irish property bubble, James Dyson, Jane Jacobs, job satisfaction, Joseph Schumpeter, Kenneth Rogoff, Kickstarter, labour market flexibility, labour mobility, liquidity trap, margin call, Martin Wolf, mittelstand, moral hazard, mortgage debt, mortgage tax deduction, North Sea oil, Northern Rock, offshore financial centre, oil shale / tar sands, oil shock, open economy, peer-to-peer rental, price stability, private sector deleveraging, pushing on a string, quantitative easing, Richard Florida, rising living standards, risk-adjusted returns, Robert Gordon, savings glut, school vouchers, self-driving car, sharing economy, Silicon Valley, Silicon Valley startup, Skype, smart grid, smart meter, software patent, sovereign wealth fund, Steve Jobs, The Death and Life of Great American Cities, The Wealth of Nations by Adam Smith, too big to fail, total factor productivity, Tyler Cowen: Great Stagnation, working-age population, Zipcar

But technology also offers exciting new opportunities to make better use of our existing assets. Smart electricity meters in your home could turn the washing machine off and the heating down at peak times when prices are high and also allow you to sell surplus electricity to the grid from solar panels or a wind turbine on your roof. A global pioneer is Italy’s Enel, the state-owned energy utility, which has deployed more than 30 million smart meters to its customers since 2001.552 The internet is also making it easier to connect people who want to rent out rooms, cars and all sorts of other things with those who want to borrow them – a new sharing economy that offers huge potential for growth. Airbnb, a company based in San Francisco, allows people to rent out accommodation for the night; by the end of 2013 ten million people had used its services, many of them in Europe.553 It now has several European rivals: Wimdu and 9flats, both based in Berlin, and London-based onefinestay, which also offers upmarket services.


Mastering Blockchain, Second Edition by Imran Bashir

3D printing, altcoin, augmented reality, autonomous vehicles, bitcoin, blockchain, business process, carbon footprint, centralized clearinghouse, cloud computing, connected car, cryptocurrency, data acquisition, Debian, disintermediation, disruptive innovation, distributed ledger, domain-specific language, en.wikipedia.org, Ethereum, ethereum blockchain, fault tolerance, fiat currency, Firefox, full stack developer, general-purpose programming language, gravity well, interest rate swap, Internet of things, litecoin, loose coupling, MITM: man-in-the-middle, MVC pattern, Network effects, new economy, node package manager, Oculus Rift, peer-to-peer, platform as a service, prediction markets, QR code, RAND corporation, Real Time Gross Settlement, reversible computing, RFC: Request For Comment, RFID, ride hailing / ride sharing, Satoshi Nakamoto, single page application, smart cities, smart contracts, smart grid, smart meter, supply-chain management, transaction costs, Turing complete, Turing machine, web application, x509 certificate

Moreover, advancements in technology such as the availability of IPv6, smaller and powerful processors, and better internet access have also played a vital role in the popularity of IoT. The benefits of IoT range from cost saving to enabling businesses to make vital decisions and thus improve performance based on the data provided by the IoT devices. Even in domestic usage IoT equipped home appliances can provide valuable data for cost saving. For example, smart meters for energy monitoring can provide valuable information on how the energy is being used and can convey that back to the service provider. Raw data from millions of things (IoT devices) is analyzed and provides meaningful insights that help in making timely and efficient business decisions. The usual IoT model is based on a centralized paradigm where IoT devices usually connect to a cloud infrastructure or central servers to report and process the relevant data back.


pages: 470 words: 148,730

Good Economics for Hard Times: Better Answers to Our Biggest Problems by Abhijit V. Banerjee, Esther Duflo

"Robert Solow", 3D printing, affirmative action, Affordable Care Act / Obamacare, Airbnb, basic income, Bernie Sanders, business cycle, call centre, Capital in the Twenty-First Century by Thomas Piketty, Cass Sunstein, charter city, correlation does not imply causation, creative destruction, Daniel Kahneman / Amos Tversky, David Ricardo: comparative advantage, decarbonisation, Deng Xiaoping, Donald Trump, Edward Glaeser, en.wikipedia.org, endowment effect, energy transition, Erik Brynjolfsson, experimental economics, experimental subject, facts on the ground, fear of failure, financial innovation, George Akerlof, high net worth, immigration reform, income inequality, Indoor air pollution, industrial cluster, industrial robot, information asymmetry, Intergovernmental Panel on Climate Change (IPCC), Jane Jacobs, Jean Tirole, Jeff Bezos, job automation, Joseph Schumpeter, labor-force participation, land reform, loss aversion, low skilled workers, manufacturing employment, Mark Zuckerberg, mass immigration, Network effects, new economy, New Urbanism, non-tariff barriers, obamacare, offshore financial centre, open economy, Paul Samuelson, place-making, price stability, profit maximization, purchasing power parity, race to the bottom, RAND corporation, randomized controlled trial, Richard Thaler, ride hailing / ride sharing, Robert Gordon, Ronald Reagan, school choice, Second Machine Age, secular stagnation, self-driving car, shareholder value, short selling, Silicon Valley, smart meter, social graph, spinning jenny, Steve Jobs, technology bubble, The Chicago School, The Future of Employment, The Market for Lemons, The Rise and Fall of American Growth, The Wealth of Nations by Adam Smith, total factor productivity, trade liberalization, transaction costs, trickle-down economics, universal basic income, urban sprawl, very high income, War on Poverty, women in the workforce, working-age population, Y2K

The reason could be that he does not know about LEDs, or that he forgets to buy them when he goes to the shop, or that he cannot make up his mind about just how much a premium he is willing to pay for the LEDs because he has a hard time putting a number on how much he really cares about preventing climate change. Would such a person be better or worse off if the government banned non-LED bulbs? Or if bans seem too extreme, the government could “nudge” people gently toward choices that are better for the environment. For example, smart meters now afford the possibility of charging higher prices for electricity during peak hours, compensated by lower prices the rest of the time; this would be better for the environment. A recent study in Sacramento, California, found that only 20 percent of users actively chose such plans when they were made available.23 And yet when a plan like this was made the default for (randomly chosen) users who then had the option of switching back to the traditional plan, 90 percent of them stayed on it, and those who stayed indeed used less energy.


pages: 505 words: 147,916

Adventures in the Anthropocene: A Journey to the Heart of the Planet We Made by Gaia Vince

3D printing, agricultural Revolution, bank run, car-free, carbon footprint, citizen journalism, clean water, congestion charging, crowdsourcing, decarbonisation, deindustrialization, energy security, failed state, Google Earth, Haber-Bosch Process, hive mind, informal economy, Intergovernmental Panel on Climate Change (IPCC), Kickstarter, load shedding, M-Pesa, Mars Rover, Masdar, megacity, mobile money, off grid, oil shale / tar sands, out of africa, Peter Thiel, phenotype, planetary scale, Ray Kurzweil, Silicon Valley, Skype, smart cities, smart grid, smart meter, South China Sea, sovereign wealth fund, stem cell, supervolcano, sustainable-tourism

Other cities are using intelligent sensors for regulating utilities, designing flood-defence systems, regulating traffic lights and flow, reducing emergency vehicle response times, speeding baggage flows through airports, locating parking spaces for drivers, optimising waste management, reducing peak-load demand on electric grids and even cutting crime rates. Masdar, a new city being built in the desert of Abu Dhabi, has many of these elements designed into it from the start. The entire city is on a raised platform so that the smart-metered services – from waste to water – can be monitored and accessed from underneath. Masdar plans to be carbon neutral and is powered by an enormous solar station and wind farms, with buildings that incorporate smart shading, solar panels and architecture to maximise cooling breezes. The city, which aims to be completed by 2020, is car-free with above- and below-ground driverless electric transport pods that operate like a personal rapid transit system.


pages: 522 words: 162,310

Fantasyland: How America Went Haywire: A 500-Year History by Kurt Andersen

affirmative action, Albert Einstein, animal electricity, anti-communist, Any sufficiently advanced technology is indistinguishable from magic, augmented reality, back-to-the-land, Bernie Sanders, British Empire, Burning Man, California gold rush, Celebration, Florida, centre right, cognitive dissonance, Columbine, corporate governance, Credit Default Swap, David Brooks, delayed gratification, dematerialisation, disintermediation, disruptive innovation, Donald Trump, Donner party, Downton Abbey, Edward Snowden, Electric Kool-Aid Acid Test, failed state, Ferguson, Missouri, God and Mammon, Gordon Gekko, greed is good, high net worth, illegal immigration, invisible hand, Isaac Newton, John von Neumann, Kickstarter, large denomination, Mark Zuckerberg, market fundamentalism, McMansion, Mikhail Gorbachev, Minecraft, moral panic, mutually assured destruction, new economy, New Urbanism, Norman Mailer, placebo effect, pre–internet, Ralph Waldo Emerson, RAND corporation, Ronald Reagan, Silicon Valley, smart meter, Snapchat, South Sea Bubble, Steve Jobs, Ted Kaczynski, the scientific method, Thomas Kuhn: the structure of scientific revolutions, trade route, transcontinental railway, urban renewal, Whole Earth Catalog, WikiLeaks, Y2K, young professional

And when the stories the right tells aren’t fantastical enough, Jones goes all the way: he doesn’t just oppose firearms regulation, he has been a Sandy Hook truther, insisting two years after the massacre that it was “a synthetic completely fake [event] with actors.” The evil lurks everywhere. Life is a horror movie. “What’s coming to take over,” he says, “is your smart car taxing you by the mile, what’s coming to get you is the smart meter frying you in your house, what’s coming to get you is fluoride in the water, what’s coming to get you is cancer viruses in the vaccines, what’s coming to get us is the soft-kill New World Order.” The advertising on Jones’s various media platforms illustrates the overlaps among regions of make-believe. Marketing Infidel body armor (“excellent protection that stops AK-47s”) makes obvious sense.


Engineering Security by Peter Gutmann

active measures, algorithmic trading, Amazon Web Services, Asperger Syndrome, bank run, barriers to entry, bitcoin, Brian Krebs, business process, call centre, card file, cloud computing, cognitive bias, cognitive dissonance, combinatorial explosion, Credit Default Swap, crowdsourcing, cryptocurrency, Daniel Kahneman / Amos Tversky, Debian, domain-specific language, Donald Davies, Donald Knuth, double helix, en.wikipedia.org, endowment effect, fault tolerance, Firefox, fundamental attribution error, George Akerlof, glass ceiling, GnuPG, Google Chrome, iterative process, Jacob Appelbaum, Jane Jacobs, Jeff Bezos, John Conway, John Markoff, John von Neumann, Kickstarter, lake wobegon effect, Laplace demon, linear programming, litecoin, load shedding, MITM: man-in-the-middle, Network effects, Parkinson's law, pattern recognition, peer-to-peer, Pierre-Simon Laplace, place-making, post-materialism, QR code, race to the bottom, random walk, recommendation engine, RFID, risk tolerance, Robert Metcalfe, Ruby on Rails, Sapir-Whorf hypothesis, Satoshi Nakamoto, security theater, semantic web, Skype, slashdot, smart meter, social intelligence, speech recognition, statistical model, Steve Jobs, Steven Pinker, Stuxnet, telemarketer, text mining, the built environment, The Death and Life of Great American Cities, The Market for Lemons, the payments system, Therac-25, too big to fail, Turing complete, Turing machine, Turing test, web application, web of trust, x509 certificate, Y2K, zero day, Zimmermann PGP

Trying to explain that the target platform has 15% of an ARM7 TDMI and 18K RAM available and that no operation can tie up the CPU for more than 2ms before it’s killed by the system watchdog won’t have much effect. This became particularly problematic when smart meters started to become widespread and regulators imposed requirements for certificate-based signed messaging and updates onto CPUs like TI MSP430s, Motorola ColdFires, and ARM Cortex-Ms, some clocked as high as 16MHz and with as much as 32kB of RAM (for everything, not just the crypto). The solution with smart meters was to cut corners as much as possible in order to make things fit, skipping certificate verification, assuming hardcoded public keys, and various other measures that are destined to become entertaining Black Hat or Defcon presentations in the future.


pages: 879 words: 233,093

The Empathic Civilization: The Race to Global Consciousness in a World in Crisis by Jeremy Rifkin

agricultural Revolution, Albert Einstein, animal electricity, back-to-the-land, British Empire, carbon footprint, collaborative economy, death of newspapers, delayed gratification, distributed generation, en.wikipedia.org, energy security, feminist movement, global village, hedonic treadmill, hydrogen economy, illegal immigration, income inequality, income per capita, interchangeable parts, Intergovernmental Panel on Climate Change (IPCC), Internet Archive, invention of movable type, invention of the steam engine, invisible hand, Isaac Newton, James Watt: steam engine, Johann Wolfgang von Goethe, Mahatma Gandhi, Marshall McLuhan, means of production, megacity, meta analysis, meta-analysis, Milgram experiment, Nelson Mandela, new economy, New Urbanism, Norbert Wiener, off grid, out of africa, Peace of Westphalia, peak oil, peer-to-peer, planetary scale, scientific worldview, Simon Kuznets, Skype, smart grid, smart meter, social intelligence, supply-chain management, surplus humans, the medium is the message, the scientific method, The Wealth of Nations by Adam Smith, The Wisdom of Crowds, theory of mind, transaction costs, upwardly mobile, uranium enrichment, working poor, World Values Survey

The fourth pillar, the reconfiguration of the power grid along the lines of the Internet, allowing businesses and homeowners to produce their own energy and share it with each other, is just now being tested by power companies in Europe, the United States, Japan, China, and other countries. The smart intergrid is made up of three critical components. Mini-grids allow homeowners, small- and medium-size enterprises (SMEs), and large-scale economic enterprises to produce renewable energy locally—through solar cells, wind power, small hydropower, animal and agricultural waste, and garbage—and use it off-grid for their own electricity needs. Smart metering technology allows local producers to more effectively sell their energy back to the main power grid, as well as accept electricity from the grid, making the flow of electricity bidirectional. The next phase in smart grid technology is embedding sensing devices and chips throughout the grid system, connecting every electrical appliance. Software allows the entire power grid to know how much energy is being used, at any time, anywhere on the grid.


pages: 944 words: 243,883

Private Empire: ExxonMobil and American Power by Steve Coll

addicted to oil, anti-communist, Atul Gawande, banking crisis, Berlin Wall, call centre, carbon footprint, clean water, collapse of Lehman Brothers, corporate governance, corporate social responsibility, decarbonisation, energy security, European colonialism, Exxon Valdez, failed state, Fall of the Berlin Wall, Google Earth, hydraulic fracturing, hydrogen economy, illegal immigration, income inequality, industrial robot, Intergovernmental Panel on Climate Change (IPCC), inventory management, kremlinology, market fundamentalism, McMansion, medical malpractice, Mikhail Gorbachev, oil shale / tar sands, oil shock, peak oil, place-making, Ponzi scheme, price mechanism, profit maximization, profit motive, Ronald Reagan, Saturday Night Live, Scramble for Africa, shareholder value, Silicon Valley, smart meter, statistical model, Steve Jobs, WikiLeaks

The depths of the economic crisis made clear to them that they would now have to push for a large stimulus bill, to use rapid federal government spending to prevent a full-blown depression. Obama and his advisers decided that day to design the stimulus to make a down payment on their major domestic priorities—particularly clean energy. Franklin Roosevelt’s stimulus during the Depression years had built national park facilities; Obama’s bill, they concluded, should launch a new era of investment in solar energy, wind power, other clean energy technology, “smart” meters to regulate home electricity use more efficiently, upgrades to the national electric grid transmission system, home weatherization, and energy efficiency programs. These expenditures ultimately would total $80 billion. The renewable energy advocates around Obama recognized, however, that the long-term economic viability of solar and wind power would depend on whether dirtier, cheaper sources of energy such as oil and coal would be taxed—directly or through cap and trade.