Joseph-Marie Jacquard

22 results back to index


pages: 198 words: 59,351

The Internet Is Not What You Think It Is: A History, a Philosophy, a Warning by Justin E. H. Smith

3D printing, Ada Lovelace, Adrian Hon, agricultural Revolution, algorithmic management, artificial general intelligence, Big Tech, Charles Babbage, clean water, coronavirus, COVID-19, cryptocurrency, dark matter, disinformation, Donald Trump, drone strike, Elon Musk, game design, gamification, global pandemic, GPT-3, Internet of things, Isaac Newton, Jacquard loom, Jacques de Vaucanson, Jaron Lanier, jimmy wales, Joseph-Marie Jacquard, Kuiper Belt, Mark Zuckerberg, Marshall McLuhan, meme stock, new economy, Nick Bostrom, Norbert Wiener, packet switching, passive income, Potemkin village, printed gun, QAnon, Ray Kurzweil, Republic of Letters, Silicon Valley, Skype, strong AI, technological determinism, theory of mind, TikTok, Tragedy of the Commons, trolley problem, Turing machine, Turing test, you are the product

When we move away from myth and poetry and back into the history of technology, moreover, we find weaving machines not only developing in parallel to information-processing machines from the beginning of the modern period going forward. We find, much more, that the history of looms and the history of computers is at certain moments literally one and the same history, as we shall now see.5 Algebraic Weaving In 1808, the French inventor Joseph Marie Jacquard introduced to the world his automated loom, capable of transferring a design onto silk that had been “programmed” into a sequence of punched cards.6 At first glance it might not seem that the punched-card weaving machine deserves a place in the history of computer science, alongside other technologies more narrowly focused on data processing rather than on the manufacture of a product.

One of Jacquard’s predecessors in the development of loom technology, Jacques de Vaucanson, who himself experimented with punched cards as early as 1725 but did not employ them with any significant degree of automation, is much better known for his so-called canard digérateur or “digesting duck,” which we have already mentioned in the preceding chapter: a mechanical waterfowl so lifelike, its inventor promised, that it could not only walk around and flap its wings, but could even consume food and defecate its waste products.7 It is not surprising that one and the same man should have been occupied with these two projects, for both machines, the defecating duck and the silk-weaving loom, are doing the same sort of work, though in opposite directions: the duck starts with artifice and seeks to push it across the border that separates it from the natural; the loom starts with a natural product, the silk of certain species of moth larva, and turns it into the artifice of a woven piece of fabric. FIGURE 5. Joseph Marie Jacquard’s punched-card loom, 1808. Musée des Arts et Métiers, Paris. Perhaps no one in modern history has been more interested in exploring the boundary between the artificial and the natural than G. W. Leibniz—no stranger to the reader by now. Like Vaucanson, Leibniz was particularly interested in understanding just how far the analogy between animal bodies and machines could be pushed.

Here I am especially indebted to Bredekamp, “Leibniz’ Gewebe: Strumpband, Falte, Leinwand”; Brezine, “Algorithms and Automation”; Friedman, “Baroqueian Folds”; Harlizius-Klück, Weberei als episteme. Among these authors, Friedman is engaged in ongoing research on the intersection of weaving and mathematics in the seventeenth century, not only in Leibniz but as in Joachim Jungius and J. J. Becher. The results of this research are eagerly awaited. 6. Joseph Marie Jacquard, Métier à tisser, inventory number 07641–0001, Permanent collection, Musée des Arts et Métiers, Paris. For a comprehensive study of Jacquard’s invention in its relation to the history of computer science, see James Essinger, Jacquard’s Web. See also Davis and Davis, “Mistaken Ancestry”; Langlois, “Distributed Intelligence.” 7.


pages: 322 words: 88,197

Wonderland: How Play Made the Modern World by Steven Johnson

"hyperreality Baudrillard"~20 OR "Baudrillard hyperreality", Ada Lovelace, adjacent possible, Alfred Russel Wallace, Antoine Gombaud: Chevalier de Méré, Berlin Wall, bitcoin, Book of Ingenious Devices, Buckminster Fuller, Charles Babbage, Claude Shannon: information theory, Clayton Christensen, colonial exploitation, computer age, Computing Machinery and Intelligence, conceptual framework, cotton gin, crowdsourcing, cuban missile crisis, Drosophila, Edward Thorp, Fellow of the Royal Society, flying shuttle, game design, global village, Great Leap Forward, Hedy Lamarr / George Antheil, HyperCard, invention of air conditioning, invention of the printing press, invention of the telegraph, Islamic Golden Age, Jacquard loom, Jacques de Vaucanson, James Watt: steam engine, Jane Jacobs, John von Neumann, joint-stock company, Joseph-Marie Jacquard, land value tax, Landlord’s Game, Lewis Mumford, lone genius, mass immigration, megacity, Minecraft, moral panic, Murano, Venice glass, music of the spheres, Necker cube, New Urbanism, Oculus Rift, On the Economy of Machinery and Manufactures, pattern recognition, peer-to-peer, pets.com, placebo effect, pneumatic tube, probability theory / Blaise Pascal / Pierre de Fermat, profit motive, QWERTY keyboard, Ray Oldenburg, SimCity, spice trade, spinning jenny, statistical model, Steve Jobs, Steven Pinker, Stewart Brand, supply-chain management, talking drums, the built environment, The Great Good Place, the scientific method, The Structural Transformation of the Public Sphere, trade route, Turing machine, Turing test, Upton Sinclair, urban planning, vertical integration, Victor Gruen, Watson beat the top human players on Jeopardy!, white flight, white picket fence, Whole Earth Catalog, working poor, Wunderkammern

Though several working prototypes were built, the machine never found a home in the French textile industry. But one of those prototypes survived long enough to find its way into the collection of the Conservatoire des Arts et Métiers, an institute formed in the early days of the French Revolution, more than a decade after Vaucanson’s death. In 1803, an ambitious inventor from Lyon named Joseph-Marie Jacquard made a pilgrimage to the conservatoire to inspect Vaucanson’s automated loom. Recognizing both the genius and the limitations of the pinned cylinder, Jacquard hit upon the idea of using a sequence of cards punched with holes to program the loom. In Jacquard’s design, small rods, each attached to an individual thread, pressed against the punch cards; if they encountered the card’s surface, the thread remained stationary.

The automated nature of Jacquard’s loom also made it more than twenty times faster than traditional drawlooms. “Using the Jacquard loom,” James Essinger writes, “it was possible for a skilled weaver to produce two feet of stunningly beautiful decorated silk fabric every day compared with the one inch of fabric per day that was the best that could be managed with the drawloom.” Joseph-Marie Jacquard displaying his loom The Jacquard loom, patented in 1804, stands today as one of the most significant innovations in the history of textile production. But its most important legacy lies in the world of computation. In 1839, Charles Babbage wrote a letter to an astronomer friend in Paris, inquiring about a portrait he had just encountered in London, a portrait that when viewed from across the room seemed to have been rendered in oil paints, but on closer inspection turned out to be woven entirely out of silk.

In 1839, Charles Babbage wrote a letter to an astronomer friend in Paris, inquiring about a portrait he had just encountered in London, a portrait that when viewed from across the room seemed to have been rendered in oil paints, but on closer inspection turned out to be woven entirely out of silk. The subject of the portrait was Joseph-Marie Jacquard himself. In his letter Babbage explained his interest in the legendary textile inventor: You are aware that the system of cards which Jacard [sic] invented are the means by which we can communicate to a very ordinary loom orders to weave any pattern that may be desired. Availing myself of the same beautiful invention I have by similar means communicated to my Calculating Engine orders to calculate any formula however complicated.


pages: 220 words: 64,234

Fewer, Better Things: The Hidden Wisdom of Objects by Glenn Adamson

big-box store, Biosphere 2, blood diamond, blue-collar work, Buckminster Fuller, carbon footprint, Charles Babbage, crowdsourcing, dematerialisation, dumpster diving, fake news, Ford Model T, haute couture, informal economy, Jacquard loom, Joseph-Marie Jacquard, Kintsugi, Mason jar, post-truth, race to the bottom, tacit knowledge, TED Talk, trade route, VTOL, white flight

More complexity can be achieved by introducing multiple colors or multiple types of fiber, each of which gets the equivalent of its own sheet of graph paper pattern in the design process. As you may appreciate, the possibility for complication becomes enormous rather quickly. This is why the Jacquard loom, named for its French inventor, Joseph Marie Jacquard, and publicly unveiled in 1801, was so important. He devised a means for storing the pattern of each pick (again, that’s each single passage of the weft thread through the textile) into a series of punch cards, chained together and fed automatically into the loom. This system completely revolutionized the textile industry.

We don’t need to set up game preserves for endangered species of craft, nor do we need to turn every workshop into an R&D hub. There is a middle way, which is anchored in equal respect for all forms of material intelligence, no matter how established or novel. Once we think in these unprejudiced terms, we can see that the weaver Joseph Marie Jacquard and the coconut carver Murage Ngani Ngatho, for all of the obvious differences in their situations, had a great deal in common. Both found ways to create value through ingenious experimentation. Both dedicated themselves not just to the shaping of materials, but also to the tools that do the shaping.


pages: 485 words: 126,597

Paper: A World History by Mark Kurlansky

Ada Lovelace, Charles Babbage, circular economy, clean water, computer age, Edward Snowden, Great Leap Forward, invention of the telephone, invention of writing, Isaac Newton, James Watt: steam engine, John von Neumann, Joseph-Marie Jacquard, lone genius, Marshall McLuhan, means of production, moveable type in China, paper trading, planned obsolescence, trade route, Vannevar Bush

He disliked the papermakers’ guild and the papermakers, with all their rights and privileges—as did many on the management side of papermaking—and was candid about his goal of finding a way to unseat them from their perch. This was one of the first signs to the careful observer that Diderot’s promised century was not going to unfold the way he imagined. Soon weavers would be in a death struggle with Joseph-Marie Jacquard’s automatic punch-card-operated looms, another French invention put into operation in Britain. The weavers, like the paper workers, were a highly skilled and well-organized group who had won many rights. The continuous-paper-machine patent caught the interest of the Fourdrinier brothers, Henry and Sealy, papermakers who built several prototypes of the huge and complicated machine, and went bankrupt in the process.

The computer age does seem to have its origins in the Industrial Revolution, and Ada Lovelace was probably the first to write about a machine that could be programmed to work on any problem. But her ideas were based on those of Charles Babbage, who had built a machine, the Difference Engine, that could make calculations. Her most famous work is an 1843 treatise on the potential of Babbage’s machine. Forty years earlier, Joseph-Marie Jacquard had invented a loom that could be programmed with punch cards. Ada Lovelace was probably familiar with that machine because when the Luddites tried to smash them, her father, Lord Byron, famously spoke in the Luddites’ defense. Jacquard’s work probably also led Babbage to imagine his calculating machine, also programmable with punch cards.

Three years later it changes its name to The Times. 1790 Thomas Bewick becomes the most sought-after illustrator in Britain. 1798 Nicolas-Louis Robert applies for a patent for his continuous-paper machine. 1798 Artist J. M. W. Turner begins his experiments with watercolors. 1799 Alois Senefelder invents the lithograph. 1800 Lord Stanhope invents a cast iron printer. 1801 Joseph-Marie Jacquard invents the automatic loom, operated by punch cards. 1804 Bryan Donkin builds the first working Fourdrinier machine. 1809 John Dickinson patents his cylinder papermaking machine. 1810 Friedrich Koenig invents a steam-powered printer. 1811 The Luddites start smashing automatic looms in England. 1814 The Times of London uses Koenig’s steam-powered printer. 1818 Joshua Gilpin builds the first continuous-paper machine in America. 1820 More than 29 million newspapers are sold in Britain this year. 1825 Joseph Nicéphore Niépce makes the first photograph. 1830 New bleaching process makes white paper from colored rags possible. 1833 An English patent is granted for making paper from wood. 1840 William Henry Fox Talbot makes first permanent photo on paper. 1841 Ebenezer Landells starts the London satirical magazine Punch. 1843 American Richard M.


pages: 261 words: 81,802

The Trouble With Billionaires by Linda McQuaig

"World Economic Forum" Davos, battle of ideas, Bear Stearns, Bernie Madoff, Big bang: deregulation of the City of London, British Empire, Build a better mousetrap, carried interest, Charles Babbage, collateralized debt obligation, computer age, corporate governance, Credit Default Swap, credit default swaps / collateralized debt obligations, Douglas Engelbart, Douglas Engelbart, employer provided health coverage, financial deregulation, fixed income, full employment, Gary Kildall, George Akerlof, Gini coefficient, Glass-Steagall Act, income inequality, Intergovernmental Panel on Climate Change (IPCC), invention of the telephone, invention of the wheel, invisible hand, Isaac Newton, Jacquard loom, John Bogle, Joseph-Marie Jacquard, laissez-faire capitalism, land tenure, lateral thinking, low interest rates, Mark Zuckerberg, market bubble, Martin Wolf, mega-rich, minimum wage unemployment, Mont Pelerin Society, Naomi Klein, neoliberal agenda, Northern Rock, offshore financial centre, Paul Samuelson, plutocrats, Ponzi scheme, pre–internet, price mechanism, proprietary trading, purchasing power parity, RAND corporation, rent-seeking, rising living standards, road to serfdom, Robert Solow, Ronald Reagan, The Chicago School, The Spirit Level, The Wealth of Nations by Adam Smith, Tobin tax, too big to fail, trickle-down economics, Vanguard fund, very high income, wealth creators, women in the workforce

In many ways, the story of the personal computer begins in France in the early 1800s with the invention of a superior loom for weaving silk. The intricately brocaded fabrics that were fashionable at the time could be produced by an instrument known as a drawloom, but only with extremely difficult and complex hand-weaving. Joseph Marie Jacquard, the fifth of nine children of a master weaver from Lyon, devised a loom that allowed the weaving function to be done without manual effort. The key to his invention was a series of punched cards. These were inserted into the loom, where metal rods attached to individual threads would hit against them.

Engelbart, who has been sadly disappointed by the commercial direction of the computer revolution, held the patent for the mouse, although he never actually received any royalties for it because he allowed it to expire in 1987, on the cusp of the desktop revolution. So if we were to present the story of the development of the personal computer as a stage play, it would be a rich and complex drama with a long list of characters. From early scenes featuring Joseph Marie Jacquard and his punched-card technology, the play would go on to include starring roles for Charles Babbage, Herman Hollerith, Thomas John Watson, J. Presper Eckert, John Mauchly, Douglas Engelbart and Bill English, with a host of other largely unidentified characters playing crucial supporting roles onstage and off.


pages: 371 words: 93,570

Broad Band: The Untold Story of the Women Who Made the Internet by Claire L. Evans

4chan, Ada Lovelace, air gap, Albert Einstein, Bletchley Park, British Empire, Charles Babbage, colonial rule, Colossal Cave Adventure, computer age, crowdsourcing, D. B. Cooper, dark matter, dematerialisation, Doomsday Book, Douglas Engelbart, Douglas Engelbart, Douglas Hofstadter, East Village, Edward Charles Pickering, game design, glass ceiling, Grace Hopper, Gödel, Escher, Bach, Haight Ashbury, Harvard Computers: women astronomers, Honoré de Balzac, Howard Rheingold, HyperCard, hypertext link, index card, information retrieval, Internet Archive, Jacquard loom, John von Neumann, Joseph-Marie Jacquard, junk bonds, knowledge worker, Leonard Kleinrock, machine readable, Mahatma Gandhi, Mark Zuckerberg, Menlo Park, military-industrial complex, Mondo 2000, Mother of all demos, Network effects, old-boy network, On the Economy of Machinery and Manufactures, packet switching, PalmPilot, pets.com, rent control, RFC: Request For Comment, rolodex, San Francisco homelessness, semantic web, side hustle, Silicon Valley, Skype, South of Market, San Francisco, Steve Jobs, Steven Levy, Stewart Brand, subscription business, tech worker, technoutopianism, Ted Nelson, telepresence, The Soul of a New Machine, Wayback Machine, Whole Earth Catalog, Whole Earth Review, women in the workforce, Works Progress Administration, Y2K

Around looms, at spinning wheels, in sewing circles, in ancient Egypt and China, and in southeastern Europe five centuries before Christianity, women have woven clothing, shelter, the signifiers of status, even currency. Like many accepted patterns, this was disrupted by the Industrial Revolution, when a French weaver, Joseph-Marie Jacquard, proposed a new way to create cloth—not by hand, but by the numbers. Unlike a traditional loom, singularly animated by its weaver’s ingenuity, Jacquard’s invention produced remarkably complex textiles from patterns punched into sequences of paper cards, reproducible and consistent beyond a margin of human error.

Privately, he worried that, in his sympathy for the Luddites, he might be taken as “half a frame-breaker” himself. He was, of course, not—and he was dead wrong about the spider work, too. Even as Byron made his case, Jacquard looms were producing a quality and volume of textiles unlike anything the world had ever seen. The mathematician Charles Babbage owned a portrait of Joseph-Marie Jacquard woven from thousands of silk threads using twenty-four thousand punched cards, a weaving so intricate that it was regularly mistaken for an engraving by his guests. And although the portrait was a fine possession, it was the loom itself, and its punch card programs, that really ignited Babbage’s imagination.


pages: 480 words: 112,463

The Golden Thread: How Fabric Changed History by Kassia St Clair

Apollo 11, barriers to entry, bitcoin, blockchain, butterfly effect, Dmitri Mendeleev, Elon Musk, flying shuttle, Francisco Pizarro, gender pay gap, ghettoisation, gravity well, Jacquard loom, James Hargreaves, Joseph-Marie Jacquard, Kickstarter, Neil Armstrong, North Ronaldsay sheep, out of africa, Rana Plaza, Silicon Valley, Silicon Valley startup, Skype, spinning jenny, synthetic biology, TED Talk, trade route, transatlantic slave trade, Virgin Galactic, Works Progress Administration

Although early reviews have found the technology rather limited – you’re only controlling the smartphone that’s in your pocket, after all – others see such smart fabric as the wearable tech of the future.8 The name chosen for this futuristic endeavour was Project Jacquard, a name with a nineteenth-century pedigree. In 1801 Joseph Marie Jacquard invented a loom that made it possible to mass-produce textiles with complex woven patterns, something that previously had taken a great deal of skill, time and expertise to produce. His ‘Jacquard Loom’ was controlled, or programmed, by pieces of card marked with a series of holes that determined the pattern.

Now more commonly a thick, twilled cotton cloth usually dyed a dull, dark colour. H Heckling To split and straighten the fibres of hemp or flax for spinning. Holland Linen fabric from the province of Holland in the Netherlands. J Jacquard loom A loom fitted with a mechanism to control the weaving of figured fabrics. This mechanism was invented by Joseph Marie Jacquard from Lyons in France. Jersey Knitted goods from Jersey, especially a kind of tunic. Later used to denote fine knitted fabrics. L Loom A machine or implement on which yarn or thread is woven. Lustring A very glossy silk fabric. The name derives from the word ‘lustre’. M Mercer A person who deals in textiles, especially luxurious ones including silks and velvet.


Hacking Capitalism by Söderberg, Johan; Söderberg, Johan;

Abraham Maslow, air gap, Alvin Toffler, AOL-Time Warner, barriers to entry, Charles Babbage, collective bargaining, commoditize, computer age, corporate governance, creative destruction, Debian, deindustrialization, delayed gratification, Dennis Ritchie, deskilling, digital capitalism, digital divide, Donald Davies, Eben Moglen, Erik Brynjolfsson, Firefox, Free Software Foundation, frictionless, full employment, Garrett Hardin, Hacker Conference 1984, Hacker Ethic, Herbert Marcuse, Howard Rheingold, IBM and the Holocaust, informal economy, interchangeable parts, invention of radio, invention of the telephone, Jacquard loom, James Watt: steam engine, jimmy wales, John Markoff, John von Neumann, Joseph Schumpeter, Joseph-Marie Jacquard, Ken Thompson, knowledge economy, knowledge worker, labour market flexibility, late capitalism, Lewis Mumford, liberal capitalism, Marshall McLuhan, means of production, Mitch Kapor, mutually assured destruction, new economy, Norbert Wiener, On the Economy of Machinery and Manufactures, packet switching, patent troll, peer-to-peer, peer-to-peer model, planned obsolescence, post scarcity, post-Fordism, post-industrial society, price mechanism, Productivity paradox, profit motive, RFID, Richard Florida, Richard Stallman, Ronald Coase, safety bicycle, Search for Extraterrestrial Intelligence, SETI@home, Silicon Valley, Slavoj Žižek, software patent, Steven Levy, Stewart Brand, subscription business, tech worker, technological determinism, technoutopianism, the Cathedral and the Bazaar, The Nature of the Firm, the scientific method, The Theory of the Leisure Class by Thorstein Veblen, Thomas Davenport, Thorstein Veblen, tragedy of the anticommons, Tragedy of the Commons, transaction costs, Whole Earth Catalog, Yochai Benkler

The book is dedicated to all of you out there who make something new and interesting with it. Introduction The rise of computing, like so many other things in the modern world, could arguably be dated to the aftermath of the French Revolution. The embryo of software programs is a system of perforated cards used in the Jacquard loom and first exhibited in 1801. Joseph-Marie Jacquard’s device was the culmination of a series of inventions made during the course of the eighteenth century in the silk-weaving district of Lyon. The principal idea which he borrowed from earlier designs was the use of perforated cards to steer the loom. The movements of the machinery pushed the cards against a set of rods.

Play is a showcase of how labour self-organises its constituent power outside the confines of market exchanges. It is more than a little ironic, or perhaps, highly consistent with the dialectic dramaturgy of our tale, that this potential first arises in the field of computers—historically speaking the very antithesis of labour autonomy. A common thread runs through the perforated cards devised by Joseph-Marie Jacquard to deprive weavers of their craft skills, and the writings of Charles Babbage, the distinguished forerunner of modern computer science. He envisioned the world’s first computer, the Difference Engine, and incorporated Jacquard’s punched card system in his second attempt to build a computer, the Analytical Engine.


pages: 436 words: 127,642

When Einstein Walked With Gödel: Excursions to the Edge of Thought by Jim Holt

Ada Lovelace, Albert Einstein, Andrew Wiles, anthropic principle, anti-communist, Arthur Eddington, Benoit Mandelbrot, Bletchley Park, Brownian motion, cellular automata, Charles Babbage, classic study, computer age, CRISPR, dark matter, David Brooks, Donald Trump, Dr. Strangelove, Eddington experiment, Edmond Halley, everywhere but in the productivity statistics, Fellow of the Royal Society, four colour theorem, Georg Cantor, George Santayana, Gregor Mendel, haute couture, heat death of the universe, Henri Poincaré, Higgs boson, inventory management, Isaac Newton, Jacquard loom, Johannes Kepler, John von Neumann, Joseph-Marie Jacquard, Large Hadron Collider, Long Term Capital Management, Louis Bachelier, luminiferous ether, Mahatma Gandhi, mandelbrot fractal, Monty Hall problem, Murray Gell-Mann, new economy, Nicholas Carr, Norbert Wiener, Norman Macrae, Paradox of Choice, Paul Erdős, Peter Singer: altruism, Plato's cave, power law, probability theory / Blaise Pascal / Pierre de Fermat, quantum entanglement, random walk, Richard Feynman, Robert Solow, Schrödinger's Cat, scientific worldview, Search for Extraterrestrial Intelligence, selection bias, Skype, stakhanovite, Stephen Hawking, Steven Pinker, Thorstein Veblen, Turing complete, Turing machine, Turing test, union organizing, Vilfredo Pareto, Von Neumann architecture, wage slave

Finally, the architecture of the Analytical Engine was quite like that of a modern computer: it had a “store” (memory), a “mill” (processor), and an input device for entering programs and an output device for printing results. The input device would read the programming instructions off punched cards, just as modern computers did until the late 1970s. Babbage borrowed the punched-card idea from French weaving technology; in 1804, Joseph-Marie Jacquard had invented a fully automated loom that would weave different patterns automatically depending on the sequence of punched cards fed into it. Babbage worked out his design for the Analytical Engine in the years 1836–1840, all the while trying, in vain, to get government support for its realization.

With Ada Lovelace dismissed from contention, one might think that Babbage merited this distinction, too, because he did write a number of programs for his unrealized computer. But computers do not exhaust the universe of programmable things. If “programming” means devising a set of coded instructions that will get an automated contraption to do your bidding, then the first great programmer was Joseph-Marie Jacquard—the Frenchman who, at the beginning of the nineteenth century, pioneered the use of punched cards to get automatic looms to weave complicated patterns in brocade. Babbage himself acknowledged Jacquard’s precedence: when he presented the concept for his Analytical Engine at the Turin conference, he brought with him a silk portrait of Jacquard that had been produced by an automatic loom programmed by no fewer than twenty-four thousand cards.


pages: 210 words: 62,771

Turing's Vision: The Birth of Computer Science by Chris Bernhardt

Ada Lovelace, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, Andrew Wiles, Bletchley Park, British Empire, cellular automata, Charles Babbage, Claude Shannon: information theory, complexity theory, Computing Machinery and Intelligence, Conway's Game of Life, discrete time, Douglas Hofstadter, Georg Cantor, Gödel, Escher, Bach, Henri Poincaré, Internet Archive, Jacquard loom, John Conway, John von Neumann, Joseph-Marie Jacquard, Ken Thompson, Norbert Wiener, Paul Erdős, Reflections on Trusting Trust, Turing complete, Turing machine, Turing test, Von Neumann architecture

Though the physical machines were not constructed during his lifetime, Babbage went on to design a new difference engine, Difference Engine No. 2, and the Analytical Engine.1 The Analytical Engine was far more sophisticated than the difference engines. Its most important and innovative feature was that it could be programmed using punched cards. This was an idea that he borrowed from mechanical looms. In 1801, Joseph-Marie Jacquard had designed a mechanical loom that could weave intricate patterns based on operations controlled by a sequence of punched cards. Babbage realized he could use the same idea for his machine. He had designed the programmable computer. Augusta Ada King, Countess of Lovelace, now usually known as just Ada Lovelace, was the daughter of the poet Lord Byron.


pages: 855 words: 178,507

The Information: A History, a Theory, a Flood by James Gleick

Ada Lovelace, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, AltaVista, bank run, bioinformatics, Bletchley Park, Brownian motion, butterfly effect, Charles Babbage, citation needed, classic study, Claude Shannon: information theory, clockwork universe, computer age, Computing Machinery and Intelligence, conceptual framework, crowdsourcing, death of newspapers, discovery of DNA, Donald Knuth, double helix, Douglas Hofstadter, en.wikipedia.org, Eratosthenes, Fellow of the Royal Society, Gregor Mendel, Gödel, Escher, Bach, Henri Poincaré, Honoré de Balzac, index card, informal economy, information retrieval, invention of the printing press, invention of writing, Isaac Newton, Jacquard loom, Jaron Lanier, jimmy wales, Johannes Kepler, John von Neumann, Joseph-Marie Jacquard, Lewis Mumford, lifelogging, Louis Daguerre, machine translation, Marshall McLuhan, Menlo Park, microbiome, Milgram experiment, Network effects, New Journalism, Norbert Wiener, Norman Macrae, On the Economy of Machinery and Manufactures, PageRank, pattern recognition, phenotype, Pierre-Simon Laplace, pre–internet, quantum cryptography, Ralph Waldo Emerson, RAND corporation, reversible computing, Richard Feynman, Rubik’s Cube, Simon Singh, Socratic dialogue, Stephen Hawking, Steven Pinker, stochastic process, talking drums, the High Line, The Wisdom of Crowds, transcontinental railway, Turing machine, Turing test, women in the workforce, yottabyte

He called this the Analytical Engine. Motivating him was a quiet awareness of the Difference Engine’s limitations: it could not, merely by adding differences, compute every sort of number or solve any mathematical problem. Inspiring him, as well, was the loom on display in the Strand, invented by Joseph-Marie Jacquard, controlled by instructions encoded and stored as holes punched in cards. What caught Babbage’s fancy was not the weaving, but rather the encoding, from one medium to another, of patterns. The patterns would appear in damask, eventually, but first were “sent to a peculiar artist.” This specialist, as he said, punches holes in a set of pasteboard cards in such a manner that when those cards are placed in a Jacquard loom, it will then weave upon its produce the exact pattern designed by the artist.♦ The notion of abstracting information away from its physical substrate required careful emphasis.

I Am a Mathematician (Wiener) iatroepidemics IBM, 8.1, 9.1, 12.1, 12.2, 12.3, 12.4, 13.1, 13.2, 13.3, 13.4, 14.1, 14.2 ideas, compared to biosphere, 11.1, 11.2; see also memes idiographic writing Iliad (Homer) images compressibility of memes as recording of, 14.1, 14.2 imagination, 2.1n, 4.1, 4.2, 7.1 Imitation Game (Turing), 8.1, 8.2, 8.3, 8.4 incompleteness theorem algorithmic proof of randomness and, 12.1, 12.2 chaos theory and, 12.1, 12.2 decision problem and, 7.1, 7.2 proof of, 6.1, 6.2, 6.3 significance of, 6.1, 6.2 Turing machine and indexes, 15.1, 15.2, epl.1, epl.2, epl.3 inductive reasoning Infinities, The (Banville) “Information Is Inevitably Physical” (Landauer) “Information Is Physical” (Landauer) information overload in Borges’s “Library of Babel,” 14.1 e-mail and, 15.1, 15.2 filter and search strategies to prevent, 15.1, 15.2 historical fears of, 15.1, 15.2, 15.3 human–computer comparison of effects of knowledge and, 15.1, 15.2 manifestations of, 15.1, 15.2, 15.3 meaning and, epl.1, epl.2, epl.3, epl.4 psychological studies of, 15.1, 15.2 technological progress and, prl.1, 15.1, 15.2, 15.3, 15.4 information theory attempts to add semantic counterpart to on control of redundancy in messages, 7.1, 7.2 cryptography and development in England, 8.1, 8.2 diagram of communication in, 7.1, 7.2, 7.3 genetic science and, prl.1, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7 language as possibility in, epl.1, epl.2 measurement of information in, 7.1, 7.2 message value in, 12.1-3.1 noise source in, 7.1, 7.2 origins of, prl.1, prl.2, prl.3, prl.4, 7.1; see also Mathematical Theory of Communication, The (Shannon, Weaver) physics and, prl.1, prl.2, prl.3 place of meaning in, 7.1, 7.2, 8.1, 8.2, 8.3, epl.1, epl.2 response of wider scientific community to, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9 response to Shannon’s initial publication, 8.1, 8.2 significance of, prl.1, prl.2, 8.1, 8.2, 8.3 in Soviet Union, 12.1, 12.2 system states in theories of psychology and, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 see also quantum information science Internet, 11.1, 11.2, epl.1, epl.2, epl.3 It from Bit (Wheeler), prl.1, 13.1 Jacobson, Homer Jacquard, Joseph-Marie Jacquard loom, 4.1, 4.2, 4.3, 4.4, 12.1 James, William, 8.1, 8.2 János, Neumann; see John von Neumann Jaynes, Julian, 2.1, 2.2 Jennings, Allan Johannsen, Wilhelm John of Salisbury Johnson, John B. Johnson, Samuel, 3.1, 3.2, 3.3, 3.4 Johnstone, James Joncourt, Élie de, 4.1, 4.2, 4.3 Jones, Alexander Jonsson, Lars Jowett, Benjamin Judson, Horace Freeland Just, Ward Kahn, David Karinthy, Frigyes Kele language, 1.1, 1.2, 1.3 Kelvin, William Thomson, Lord Kepler, Johannes Kermode, Frank, 2.1, 2.2 Keynes, John Maynard Khwarizmi, Abu Abdullah Mohammad Ibn Musa al- Kierkegaard, Søren King, August Ada; see Lovelace, Ada King, William Klüver, Heinrich knowledge curse of omniscience, epl.1, epl.2 emergence of global consciousness, epl.1, epl.2, epl.3 epistemological theory of information information overload and, 15.1, 15.2, 15.3 limits to scientific investigation, 12.1, 12.2 in literate cultures, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 power of as product of logic requirements for communication, 12.1, 12.2, 12.3 transmission of, through human history, prl.1, prl.2 Knuth, Donald, 2.1, 2.2 Kolmogorov, Andrei Nikolaevich, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8 Kolmogorov-Chaitin complexity, 12.1, 12.2, 12.3, 12.4 Konversations-Lexikon, epl.1 Lacroix, Sylvestre François Lagrange, Joseph Louis Landauer, Rolf, 13.1, 13.2 Landowska, Wanda Landsberg, Peter Lane, Anthony, 15.1, 15.2 language adaptations for telegraphy, 5.1, 5.2 Babbage’s work on, 4.1, 4.2 compressibility of concept of mind and for discussing language, 3.1, 3.2, 4.1 functions of, 5.1, 5.2 as infinite possibility, epl.1, epl.2 limitations of measuring redundancy in, 1.1, 1.2, 8.1, 8.2, 8.3 paradoxes of, 2.1, 2.2, 6.1, 6.2, 6.3 pattern analysis perfect redundancy in, 1.1, 1.2, 1.3, 5.1, 7.1, 7.2, 7.3, 7.4, 8.1, 8.2, 8.3, 12.1 as shared experience statistical structure of, 7.1, 7.2, 7.3, 7.4 symbolic expression of, 5.1, 5.2 technical, 3.1, 3.2 transmission capacity of Internet and, 3.1, 3.2 universal, 4.1, 6.1 see also oral culture; writing; specific language Language Instinct, The (Pinker), 3.1, 3.2 Lanier, Jaron Laplace, Pierre-Simon, 14.1, 14.2 Lardner, Dionysius, 4.1, 4.2, 4.3, 5.1, 5.2 Lasker, Edward Latin language, 3.1, 3.2, 3.3, 3.4 Lawrence Livermore Laboratory Laws of Thought, The (Boole), 5.1, 5.2 Leibniz, Gottfried Wilhelm, 3.1, 4.1, 4.2, 4.3, 6.1, 6.2, 7.1, 15.1, epl.1 Lem, Stanislaw Le Roy, Édouard Le Sage, Georges-Louis Lever, Ralph Levor, Norma, 6.1, 6.2, 6.3 Leyland numbers Li, Ming, 11.1, 11.2 liar’s paradox libraries, organization of materials in, 3.1, 3.2, 15.1 Library of Alexandria, 14.1, 14.2 “Library of Babel, The” (Borges), 14.1, 14.2, 15.1, epl.1, epl.2 Library of Congress, 7.1, 14.1, 14.2, epl.1 Licklider, J.


pages: 222 words: 74,587

Paper Machines: About Cards & Catalogs, 1548-1929 by Markus Krajewski, Peter Krapp

Apollo 11, business process, Charles Babbage, continuation of politics by other means, double entry bookkeeping, Frederick Winslow Taylor, Gödel, Escher, Bach, index card, Index librorum prohibitorum, information retrieval, invention of movable type, invention of the printing press, Jacques de Vaucanson, Johann Wolfgang von Goethe, Joseph-Marie Jacquard, knowledge worker, means of production, new economy, paper trading, Turing machine, work culture

Remington & Sons Typewriter Company, spun off by gun producer Eliphalet Remington II in 1886, acquires both Library Bureau and Globe Wernicke, merging them the following year with Rand Kardex to form Remington Rand Inc.78 A department called Remington Kardex Bureau spurs the decisive advancement of the index card to an automated storage device principle whose origins refer once more to Europe, that is, to the eighteenth century and Jacques de Vaucanson as well as Joseph Marie Jacquard’s punch cards.79 After 1958, five electric-pneumatically linked Remington Rand typewriters print the paper slips of the last analog catalog of the Austrian National Library, five copies synchronized by compressed air. However, they prove inferior to the more robust and soon widely used electric typewriters of the International Business Machines Corporation, and as a result are disposed of.80 The intertwined genealogy of card index makers and typewriter manufacturers, leading to the production of the universal discrete machine, remains an American history of mergers and acquisitions.


pages: 218 words: 63,471

How We Got Here: A Slightly Irreverent History of Technology and Markets by Andy Kessler

Albert Einstein, Andy Kessler, animal electricity, automated trading system, bank run, Big bang: deregulation of the City of London, Black Monday: stock market crash in 1987, Bletchley Park, Bob Noyce, Bretton Woods, British Empire, buttonwood tree, Charles Babbage, Claude Shannon: information theory, Corn Laws, cotton gin, Dennis Ritchie, Douglas Engelbart, Edward Lloyd's coffeehouse, Fairchild Semiconductor, fiat currency, fixed income, floating exchange rates, flying shuttle, Fractional reserve banking, full employment, GPS: selective availability, Grace Hopper, invention of the steam engine, invention of the telephone, invisible hand, Isaac Newton, Jacquard loom, James Hargreaves, James Watt: steam engine, John von Neumann, joint-stock company, joint-stock limited liability company, Joseph-Marie Jacquard, Ken Thompson, Kickstarter, Leonard Kleinrock, Marc Andreessen, Mary Meeker, Maui Hawaii, Menlo Park, Metcalfe's law, Metcalfe’s law, military-industrial complex, Mitch Kapor, Multics, packet switching, pneumatic tube, price mechanism, probability theory / Blaise Pascal / Pierre de Fermat, profit motive, proprietary trading, railway mania, RAND corporation, Robert Metcalfe, Silicon Valley, Small Order Execution System, South Sea Bubble, spice trade, spinning jenny, Steve Jobs, Suez canal 1869, supply-chain management, supply-chain management software, systems thinking, three-martini lunch, trade route, transatlantic slave trade, tulip mania, Turing machine, Turing test, undersea cable, UUNET, Wayback Machine, William Shockley: the traitorous eight

Stream engines would drive the looms, but the cloth that came out was one color or one thickness. The bland Brits didn’t complain, at least it was more comfortable than itchy wool. The French, on the other hand, demanded a little style, and were willing to pay for it. The son of a French silk weaver, Joseph-Marie Jacquard had a thriving business operating looms. But to meet the demands of discerning customers for interesting patterns, he needed weavers to lift or depress warp threads before each pass of the shuttle of the loom. This was painstaking work so output was slow and expensive. In 1801, Jacquard came up with an automated loom that operated with a set of punched cards.


pages: 256 words: 73,068

12 Bytes: How We Got Here. Where We Might Go Next by Jeanette Winterson

"Margaret Hamilton" Apollo, "World Economic Forum" Davos, 3D printing, Ada Lovelace, Airbnb, Albert Einstein, Alignment Problem, Amazon Mechanical Turk, Anthropocene, Apollo 11, Apple's 1984 Super Bowl advert, artificial general intelligence, Asilomar, augmented reality, autonomous vehicles, basic income, Big Tech, bitcoin, Bletchley Park, blockchain, Boston Dynamics, call centre, Cambridge Analytica, Capital in the Twenty-First Century by Thomas Piketty, cashless society, Charles Babbage, computer age, Computing Machinery and Intelligence, coronavirus, COVID-19, CRISPR, cryptocurrency, dark matter, Dava Sobel, David Graeber, deep learning, deskilling, digital rights, discovery of DNA, Dominic Cummings, Donald Trump, double helix, driverless car, Elon Musk, fake news, flying shuttle, friendly AI, gender pay gap, global village, Grace Hopper, Gregor Mendel, hive mind, housing crisis, Internet of things, Isaac Newton, Jacquard loom, James Hargreaves, Jeff Bezos, Johannes Kepler, John von Neumann, Joseph-Marie Jacquard, Kickstarter, Large Hadron Collider, life extension, lockdown, lone genius, Mark Zuckerberg, means of production, microdosing, more computing power than Apollo, move fast and break things, natural language processing, Nick Bostrom, Norbert Wiener, off grid, OpenAI, operation paperclip, packet switching, Peter Thiel, pink-collar, Plato's cave, public intellectual, QAnon, QWERTY keyboard, Ray Kurzweil, rewilding, ride hailing / ride sharing, Rutger Bregman, Sam Altman, self-driving car, sharing economy, Sheryl Sandberg, Shoshana Zuboff, Silicon Valley, Skype, Snapchat, SoftBank, SpaceX Starlink, speech recognition, spinning jenny, stem cell, Stephen Hawking, Steve Bannon, Steve Jobs, Steven Levy, Steven Pinker, superintelligent machines, surveillance capitalism, synthetic biology, systems thinking, tech billionaire, tech worker, TED Talk, telepresence, telepresence robot, TikTok, trade route, Turing test, universal basic income, Virgin Galactic, Watson beat the top human players on Jeopardy!, women in the workforce, Y Combinator

* * * Babbage realised that the punched-cards system used on the mechanical Jacquard loom could be used to self-operate a calculating machine. No need for a crank handle. The calculating machine could also use the punched cards to store memory. This was an extraordinary insight. * * * Punched cards are stiff cards with holes in them. The Frenchman Joseph-Marie Jacquard patented a mechanism in 1804 that allowed the pattern of a piece of cloth to be expressed as a series of holes on a card. This was a genius moment of abstract intuition – closer to the quantum-mechanical patterned universe than the 3D realism of the Industrial Revolution. It makes sense that Babbage grasped its implications for computing.


pages: 720 words: 197,129

The Innovators: How a Group of Inventors, Hackers, Geniuses and Geeks Created the Digital Revolution by Walter Isaacson

1960s counterculture, Ada Lovelace, AI winter, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, Albert Einstein, AltaVista, Alvin Toffler, Apollo Guidance Computer, Apple II, augmented reality, back-to-the-land, beat the dealer, Bill Atkinson, Bill Gates: Altair 8800, bitcoin, Bletchley Park, Bob Noyce, Buckminster Fuller, Byte Shop, c2.com, call centre, Charles Babbage, citizen journalism, Claude Shannon: information theory, Clayton Christensen, commoditize, commons-based peer production, computer age, Computing Machinery and Intelligence, content marketing, crowdsourcing, cryptocurrency, Debian, desegregation, Donald Davies, Douglas Engelbart, Douglas Engelbart, Douglas Hofstadter, driverless car, Dynabook, El Camino Real, Electric Kool-Aid Acid Test, en.wikipedia.org, eternal september, Evgeny Morozov, Fairchild Semiconductor, financial engineering, Firefox, Free Software Foundation, Gary Kildall, Google Glasses, Grace Hopper, Gödel, Escher, Bach, Hacker Ethic, Haight Ashbury, Hans Moravec, Howard Rheingold, Hush-A-Phone, HyperCard, hypertext link, index card, Internet Archive, Ivan Sutherland, Jacquard loom, Jaron Lanier, Jeff Bezos, jimmy wales, John Markoff, John von Neumann, Joseph-Marie Jacquard, Leonard Kleinrock, Lewis Mumford, linear model of innovation, Marc Andreessen, Mark Zuckerberg, Marshall McLuhan, Menlo Park, Mitch Kapor, Mother of all demos, Neil Armstrong, new economy, New Journalism, Norbert Wiener, Norman Macrae, packet switching, PageRank, Paul Terrell, pirate software, popular electronics, pre–internet, Project Xanadu, punch-card reader, RAND corporation, Ray Kurzweil, reality distortion field, RFC: Request For Comment, Richard Feynman, Richard Stallman, Robert Metcalfe, Rubik’s Cube, Sand Hill Road, Saturday Night Live, self-driving car, Silicon Valley, Silicon Valley startup, Skype, slashdot, speech recognition, Steve Ballmer, Steve Crocker, Steve Jobs, Steve Wozniak, Steven Levy, Steven Pinker, Stewart Brand, Susan Wojcicki, technological singularity, technoutopianism, Ted Nelson, Teledyne, the Cathedral and the Bazaar, The Coming Technological Singularity, The Nature of the Firm, The Wisdom of Crowds, Turing complete, Turing machine, Turing test, value engineering, Vannevar Bush, Vernor Vinge, Von Neumann architecture, Watson beat the top human players on Jeopardy!, Whole Earth Catalog, Whole Earth Review, wikimedia commons, William Shockley: the traitorous eight, Yochai Benkler

One would be in charge of adding 2 to the last number in column B, and then would hand that result to another person, who would add that result to the last number in column A, thus generating the next number in the sequence of squares. Replica of the Difference Engine. Replica of the Analytical Engine. The Jacquard loom. Silk portrait of Joseph-Marie Jacquard (1752–1834) woven by a Jacquard loom. Babbage devised a way to mechanize this process, and he named it the Difference Engine. It could tabulate any polynomial function and provide a digital method for approximating the solution to differential equations. How did it work? The Difference Engine used vertical shafts with disks that could be turned to any numeral.

Babbage had combined innovations that had cropped up in other fields, a trick of many great inventors. He had originally used a metal drum that was studded with spikes to control how the shafts would turn. But then he studied, as Ada had, the automated loom invented in 1801 by a Frenchman named Joseph-Marie Jacquard, which transformed the silk-weaving industry. Looms create a pattern by using hooks to lift selected warp threads, and then a rod pushes a woof thread underneath. Jacquard invented a method of using cards with holes punched in them to control this process. The holes determined which hooks and rods would be activated for each pass of the weave, thus automating the creation of intricate patterns.


pages: 245 words: 83,272

Artificial Unintelligence: How Computers Misunderstand the World by Meredith Broussard

"Susan Fowler" uber, 1960s counterculture, A Declaration of the Independence of Cyberspace, Ada Lovelace, AI winter, Airbnb, algorithmic bias, AlphaGo, Amazon Web Services, autonomous vehicles, availability heuristic, barriers to entry, Bernie Sanders, Big Tech, bitcoin, Buckminster Fuller, Charles Babbage, Chris Urmson, Clayton Christensen, cloud computing, cognitive bias, complexity theory, computer vision, Computing Machinery and Intelligence, crowdsourcing, Danny Hillis, DARPA: Urban Challenge, data science, deep learning, Dennis Ritchie, digital map, disruptive innovation, Donald Trump, Douglas Engelbart, driverless car, easy for humans, difficult for computers, Electric Kool-Aid Acid Test, Elon Musk, fake news, Firefox, gamification, gig economy, global supply chain, Google Glasses, Google X / Alphabet X, Greyball, Hacker Ethic, independent contractor, Jaron Lanier, Jeff Bezos, Jeremy Corbyn, John Perry Barlow, John von Neumann, Joi Ito, Joseph-Marie Jacquard, life extension, Lyft, machine translation, Mark Zuckerberg, mass incarceration, Minecraft, minimum viable product, Mother of all demos, move fast and break things, Nate Silver, natural language processing, Northpointe / Correctional Offender Management Profiling for Alternative Sanctions, One Laptop per Child (OLPC), opioid epidemic / opioid crisis, PageRank, Paradox of Choice, payday loans, paypal mafia, performance metric, Peter Thiel, price discrimination, Ray Kurzweil, ride hailing / ride sharing, Ross Ulbricht, Saturday Night Live, school choice, self-driving car, Silicon Valley, Silicon Valley billionaire, speech recognition, statistical model, Steve Jobs, Steven Levy, Stewart Brand, TechCrunch disrupt, Tesla Model S, the High Line, The Signal and the Noise by Nate Silver, theory of mind, traumatic brain injury, Travis Kalanick, trolley problem, Turing test, Uber for X, uber lyft, Watson beat the top human players on Jeopardy!, We are as Gods, Whole Earth Catalog, women in the workforce, work culture , yottabyte

This design was used to build calculating machines for the next 275 years.12 Leibniz had no time for mere arithmetic; he had more important math to do. After he invented his machine, he famously said: “It is beneath the dignity of excellent men to waste their time in calculation when any peasant could do the work just as accurately with the aid of a machine.” When Joseph Marie Jacquard released the punch-card loom in 1801, it got mathematicians thinking differently about machines that might help calculate. Jacquard’s loom ran on binary logic: a hole in the card meant binary one; no hole meant binary zero. The machine wove its intricate patterns based on whether there was a hole or not.


pages: 426 words: 83,128

The Journey of Humanity: The Origins of Wealth and Inequality by Oded Galor

agricultural Revolution, Alfred Russel Wallace, Andrei Shleifer, Apollo 11, Berlin Wall, bioinformatics, colonial rule, Columbian Exchange, conceptual framework, COVID-19, creative destruction, Daniel Kahneman / Amos Tversky, David Ricardo: comparative advantage, deindustrialization, demographic dividend, demographic transition, Donald Trump, double entry bookkeeping, Easter island, European colonialism, Fall of the Berlin Wall, Francisco Pizarro, general purpose technology, germ theory of disease, income per capita, intermodal, invention of agriculture, invention of movable type, invention of the printing press, invention of the telegraph, James Hargreaves, James Watt: steam engine, Joseph-Marie Jacquard, Kenneth Arrow, longitudinal study, loss aversion, Louis Pasteur, means of production, out of africa, phenotype, rent-seeking, rising living standards, Robert Solow, Scramble for Africa, The Death and Life of Great American Cities, The Rise and Fall of American Growth, The Wealth of Nations by Adam Smith, Thomas Malthus, Walter Mischel, Washington Consensus, wikimedia commons, women in the workforce, working-age population, World Values Survey

For example, the Scribes Guild in late-fifteenth-century Paris managed to bar the entry of the city’s first printing press for nearly twenty years.[9] In 1561, the Red-Metal Turners Guild of Nuremberg pressured the city council to deter a local coppersmith by the name of Hans Spaichi, who had invented a superior slide rest lathe, from spreading his invention, ultimately threatening to jail anyone who dared to adopt his new production techniques.[10] In 1579, the Danzig city council ordered the inventor of a new ribbon loom, which threatened traditional ribbon weavers, to be drowned in secret.[11] And in the early nineteenth century, an angry mob of the Weavers Guild in France protested against Joseph-Marie Jacquard (1752–1834), the inventor of an innovative loom operated using a series of punched cards – technology that would later inspire the programming of the first computers. In contrast, the British guilds were less powerful than their European counterparts, which may have been partly a consequence of the rapid and largely unregulated rebuilding of the City of London in the aftermath of the Great Fire of 1666, as well as rapid market expansion elsewhere, leading to a greater demand for craftsmen than the guilds could supply.


Shady Characters: The Secret Life of Punctuation, Symbols, and Other Typographical Marks by Keith Houston

Albert Einstein, anti-communist, Boeing 747, Charles Babbage, classic study, computer age, cuban missile crisis, Donald Knuth, en.wikipedia.org, Eratosthenes, invention of movable type, invention of the printing press, Isaac Newton, John Markoff, Joseph-Marie Jacquard, Kickstarter, means of production, Multics, packet switching, pre–internet, QWERTY keyboard, trade route, wikimedia commons

Though they had been integral to the Latin scribe’s art, abbreviations in modern languages were fewer in number and were often discouraged altogether in running text; a drive to reduce the number of characters, or “sorts,” required of a typeface caused a decline in ligatures and letter variants, and, other than within its German heartland, by the end of the nineteenth century blackletter had largely retreated to niche applications.37 At the same time, the rules of hyphenation themselves grew ever more complex: published toward the end of the era of manual typesetting, the 1906 Chicago Manual of Style contained no fewer than fourteen separate rules for word division.38 In other words, it was getting harder to hyphenate and justify lines, and the archaic composing stick was not helping. The race to automate the composition process finally came to fruition in the closing decades of the Victorian era. Baroque mechanical contraptions had invaded every corner of nineteenth century life, from factories to homes: Joseph-Marie Jacquard’s punch card–driven loom of 1801 made it possible to mass produce intricate fabric weaves; Charles Babbage’s mathematical engines of the 1820s and ’30s pioneered the automated solution of mathematical formulae, and even a visit to the bathroom was enlivened by the appearance of the flushing toilets popularized by one Thomas Crapper.39 The ossified printing industry was long overdue for a similar shake-up.


pages: 323 words: 90,868

The Wealth of Humans: Work, Power, and Status in the Twenty-First Century by Ryan Avent

3D printing, Airbnb, American energy revolution, assortative mating, autonomous vehicles, Bakken shale, barriers to entry, basic income, Bernie Sanders, Big Tech, BRICs, business cycle, call centre, Capital in the Twenty-First Century by Thomas Piketty, Clayton Christensen, cloud computing, collective bargaining, computer age, creative destruction, currency risk, dark matter, David Ricardo: comparative advantage, deindustrialization, dematerialisation, Deng Xiaoping, deskilling, disruptive innovation, Dissolution of the Soviet Union, Donald Trump, Downton Abbey, driverless car, Edward Glaeser, Erik Brynjolfsson, eurozone crisis, everywhere but in the productivity statistics, falling living standards, financial engineering, first square of the chessboard, first square of the chessboard / second half of the chessboard, Ford paid five dollars a day, Francis Fukuyama: the end of history, future of work, general purpose technology, gig economy, global supply chain, global value chain, heat death of the universe, hydraulic fracturing, income inequality, independent contractor, indoor plumbing, industrial robot, intangible asset, interchangeable parts, Internet of things, inventory management, invisible hand, James Watt: steam engine, Jeff Bezos, Jeremy Corbyn, John Maynard Keynes: Economic Possibilities for our Grandchildren, Joseph-Marie Jacquard, knowledge economy, low interest rates, low skilled workers, lump of labour, Lyft, machine translation, manufacturing employment, Marc Andreessen, mass immigration, means of production, new economy, performance metric, pets.com, post-work, price mechanism, quantitative easing, Ray Kurzweil, rent-seeking, reshoring, rising living standards, Robert Gordon, Robert Solow, Ronald Coase, savings glut, Second Machine Age, secular stagnation, self-driving car, sharing economy, Silicon Valley, single-payer health, software is eating the world, supply-chain management, supply-chain management software, tacit knowledge, TaskRabbit, tech billionaire, The Future of Employment, The Nature of the Firm, The Rise and Fall of American Growth, The Spirit Level, The Wealth of Nations by Adam Smith, trade liberalization, transaction costs, Tyler Cowen, Tyler Cowen: Great Stagnation, Uber and Lyft, Uber for X, uber lyft, very high income, warehouse robotics, working-age population

And computing is a fantastically powerful general-purpose technology. Engineers tinkered with computing machines for millennia, but the pace of advance in mechanical computing truly picked up in the nineteenth century. Early computing innovation found its way into a loom invented by a Frenchman called Joseph Marie Jacquard, which used punch cards to ‘programme’ the loom to produce particular patterns in the fabric. In the early twentieth century, the vacuum tube (a light-bulb-like device in which an electrical current is transmitted from one electrode to another) became the guts of early electronic computers.


pages: 405 words: 117,219

In Our Own Image: Savior or Destroyer? The History and Future of Artificial Intelligence by George Zarkadakis

3D printing, Ada Lovelace, agricultural Revolution, Airbnb, Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, animal electricity, anthropic principle, Asperger Syndrome, autonomous vehicles, barriers to entry, battle of ideas, Berlin Wall, bioinformatics, Bletchley Park, British Empire, business process, carbon-based life, cellular automata, Charles Babbage, Claude Shannon: information theory, combinatorial explosion, complexity theory, Computing Machinery and Intelligence, continuous integration, Conway's Game of Life, cosmological principle, dark matter, data science, deep learning, DeepMind, dematerialisation, double helix, Douglas Hofstadter, driverless car, Edward Snowden, epigenetics, Flash crash, Google Glasses, Gödel, Escher, Bach, Hans Moravec, income inequality, index card, industrial robot, intentional community, Internet of things, invention of agriculture, invention of the steam engine, invisible hand, Isaac Newton, Jacquard loom, Jacques de Vaucanson, James Watt: steam engine, job automation, John von Neumann, Joseph-Marie Jacquard, Kickstarter, liberal capitalism, lifelogging, machine translation, millennium bug, mirror neurons, Moravec's paradox, natural language processing, Nick Bostrom, Norbert Wiener, off grid, On the Economy of Machinery and Manufactures, packet switching, pattern recognition, Paul Erdős, Plato's cave, post-industrial society, power law, precautionary principle, prediction markets, Ray Kurzweil, Recombinant DNA, Rodney Brooks, Second Machine Age, self-driving car, seminal paper, Silicon Valley, social intelligence, speech recognition, stem cell, Stephen Hawking, Steven Pinker, Strategic Defense Initiative, strong AI, Stuart Kauffman, synthetic biology, systems thinking, technological singularity, The Coming Technological Singularity, The Future of Employment, the scientific method, theory of mind, Turing complete, Turing machine, Turing test, Tyler Cowen, Tyler Cowen: Great Stagnation, Vernor Vinge, Von Neumann architecture, Watson beat the top human players on Jeopardy!, Y2K

AD 50: Hero of Alexandria designs first mechanical automata. 1275: Ramon Lull invents Ars Magna, a logical machine. 1637: Descartes declares cogito ergo sum (‘I think therefore I am’). 1642: Blaise Pascal invents the Pascaline, a mechanical cal-culator. 1726: Jonathan Swift publishes Gulliver’s Travels, which includes the description of a machine that can write any book. 1801: Joseph Marie Jacquard invents a textiles loom that uses punched cards. 1811: Luddite movement in Great Britain against the auto-mation of manual jobs. 1818: Mary Shelley publishes Frankenstein. 1835: Joseph Henry invents the electronic relay that allows electrical automation and switching. 1842: Charles Babbage lectures at the University of Turin, where he describes the Analytical Engine. 1843: Ada Lovelace writes the first computer program. 1847: George Boole invents symbolic and binary logic. 1876: Alexander Graham Bell invents the telephone. 1879: Thomas Edison invents the light bulb. 1879: Gottlob Frege invents predicate logic and calculus. 1910: Bertrand Russell and Alfred North Whitehead publish Principia Mathematica. 1917: Karel Capek coins the term ‘robot’ in his play R.U.R. 1921: Ludwig Wittgenstein publishes Tractatus Logico-philosopicus. 1931: Kurt Gödel publishes The Incompleteness Theorem. 1937: Alan Turing invents the ‘Turing machine’. 1938: Claude Shannon demonstrates that symbolic logic can be implemented using electronic relays. 1941: Konrad Zuse constructs Z3, the first Turing-complete computer. 1942: Alan Turing and Claude Shannon work together at Bell Labs. 1943: Warren McCulloch and Walter Pitts demonstrate the equivalence between electronics and neurons. 1943: IBM funds the construction of Harvard Mark 1, the first program-controlled calculator. 1943: Charles Wynn-Williams and others create the computer Colossus at Bletchley Park. 1945: John von Neumann suggests a computer architecture whereby programs are stored in the memory. 1946: ENIAC, the first electronic general-purpose computer, is built. 1947: Invention of the transistor at Bell Labs. 1948: Norbert Wiener publishes Cybernetics. 1950: Alan Turing proposes the ‘Turing Test’. 1950: Isaac Asimov publishes I, Robot. 1952: Alan Turing commits suicide with cyanide-laced apple. 1952: Herman Carr produces the first one-dimensional MRI image. 1953: Claude Shannon hires Marvin Minsky and John McCarthy at Bell Labs. 1953: Ludwig Wittgenstein’s Philosophical Investigations pub-lished in German (two years after his death). 1956: The Dartmouth conference; the term ‘Artificial Intel-ligence’ is coined by John McCarthy. 1957: Allen Newell and Herbert Simon build the ‘General Problem Solver’. 1958: John McCarthy creates LISP programming language. 1959: John McCarthy and Marvin Minsky establish AI lab at MIT. 1963: The US government awards $2.2 million to AI lab at MIT for machine-aided cognition. 1965: Hubert Dreyfus argues against the possibility of Artificial Intelligence. 1969: Stanley Kubrick introduces HAL in the film 2001: A Space Odyssey. 1971: Leon Chua envisions the memristor. 1972: Alain Colmerauer develops Prolog programming language. 1973: The Lighthill report influences the British government to abandon research in AI. 1976: Hans Moravec builds the ‘Stanford Cart’, the first auto-nomous vehicle.


pages: 566 words: 122,184

Code: The Hidden Language of Computer Hardware and Software by Charles Petzold

Bill Gates: Altair 8800, Charles Babbage, Claude Shannon: information theory, computer age, Dennis Ritchie, digital divide, Donald Knuth, Douglas Engelbart, Douglas Engelbart, Dynabook, Eratosthenes, Fairchild Semiconductor, Free Software Foundation, Gary Kildall, Grace Hopper, invention of the telegraph, Isaac Newton, Ivan Sutherland, Jacquard loom, James Watt: steam engine, John von Neumann, Joseph-Marie Jacquard, Ken Thompson, Louis Daguerre, millennium bug, Multics, Norbert Wiener, optical character recognition, popular electronics, Richard Feynman, Richard Stallman, Silicon Valley, Steve Jobs, Turing machine, Turing test, Vannevar Bush, Von Neumann architecture

Successful mechanical calculators that real people could use weren't available until the late nineteenth century. One curious invention that was to have a later influence on the history of computing—as well as a profound influence on the textile industry—was an automated loom developed by Joseph Marie Jacquard (1752–1834). The Jacquard loom (circa 1801) used metal cards with holes punched in them (much like those of a player piano) to control the weaving of patterns in fabrics. Jacquard's own tour de force was a self-portrait in black and white silk that required about 10,000 cards. In the eighteenth century (and indeed up to the 1940s), a computer was a person who calculated numbers for hire.


pages: 423 words: 126,096

Our Own Devices: How Technology Remakes Humanity by Edward Tenner

A. Roger Ekirch, Apple Newton, Bonfire of the Vanities, card file, Douglas Engelbart, Douglas Engelbart, Frederick Winslow Taylor, future of work, indoor plumbing, informal economy, invention of the telephone, invisible hand, Johannes Kepler, John Markoff, Joseph-Marie Jacquard, Lewis Mumford, Multics, multilevel marketing, Network effects, optical character recognition, PalmPilot, QWERTY keyboard, safety bicycle, scientific management, Shoshana Zuboff, Stewart Brand, tacit knowledge, women in the workforce

Most of these devices, though, were intended for taverns, dance halls, or street performances rather than bourgeois homes.19 Nineteenth-century automation promoted new devices and ambitions. Beginning in 1815, the silk mills of Lyons and other cities were using strings of cards with punched holes to reproduce designs on special looms developed by the manufacturer Joseph Marie Jacquard. This was one of the earliest forms of automatic process control in industry Pianos, organs, and other keyboard instruments were obvious candidates for more advanced systems for reproducing recorded notes. The first automatic pianos were rudimentary instruments for places of cheap popular entertainment.


pages: 420 words: 124,202

The Most Powerful Idea in the World: A Story of Steam, Industry, and Invention by William Rosen

Albert Einstein, All science is either physics or stamp collecting, barriers to entry, Charles Babbage, collective bargaining, computer age, Copley Medal, creative destruction, David Ricardo: comparative advantage, decarbonisation, delayed gratification, Fellow of the Royal Society, flying shuttle, Flynn Effect, fudge factor, full employment, Higgs boson, independent contractor, invisible hand, Isaac Newton, Islamic Golden Age, iterative process, James Hargreaves, James Watt: steam engine, John Harrison: Longitude, Joseph Schumpeter, Joseph-Marie Jacquard, knowledge economy, language acquisition, Lewis Mumford, moral hazard, Network effects, Panopticon Jeremy Bentham, Paul Samuelson, Peace of Westphalia, Peter Singer: altruism, QWERTY keyboard, Ralph Waldo Emerson, rent-seeking, Robert Solow, Ronald Coase, Simon Kuznets, spinning jenny, tacit knowledge, the scientific method, The Wealth of Nations by Adam Smith, Thomas Malthus, three-masted sailing ship, transaction costs, transcontinental railway, zero-sum game, éminence grise

Between 1740 and 1780,36 the French inclination to reward inventors not by enforcing a natural right but by the grant of pensions and prizes resulted in the award of nearly 7 million livres—approximately $600 million today*—to inventors of largely forgotten devices, but Claude-François Jouffroy d’Abbans (inventor of one of the first working steamboats), Barthélemy Thimonnier (creator of the first sewing machine), and Aimé Argand (a partner of Boulton and friend of Watt whose oil lamp became the world’s standard) all died penniless. Other than Joseph-Marie Jacquard, the creator of the eponymous loom, and perhaps the Montgolfiers, the French did not lionize their inventors.37 This didn’t mean they didn’t understand the strategic importance of technology. Carnot himself wrote, “to deprive England of her steam engines,38 you would deprive her of both coal and iron; you would cut off the sources of all her wealth, totally destroy her means of prosperity, and reduce this nation of huge power to insignificance.


pages: 551 words: 174,280

The Beginning of Infinity: Explanations That Transform the World by David Deutsch

agricultural Revolution, Albert Michelson, anthropic principle, Apollo 13, artificial general intelligence, Bonfire of the Vanities, Charles Babbage, Computing Machinery and Intelligence, conceptual framework, cosmological principle, dark matter, David Attenborough, discovery of DNA, Douglas Hofstadter, Easter island, Eratosthenes, Ernest Rutherford, first-past-the-post, Georg Cantor, global pandemic, Gödel, Escher, Bach, illegal immigration, invention of movable type, Isaac Newton, Islamic Golden Age, Jacquard loom, Johannes Kepler, John Conway, John von Neumann, Joseph-Marie Jacquard, Kenneth Arrow, Loebner Prize, Louis Pasteur, mirror neurons, Nick Bostrom, pattern recognition, Pierre-Simon Laplace, precautionary principle, Richard Feynman, Search for Extraterrestrial Intelligence, seminal paper, Stephen Hawking, supervolcano, technological singularity, Thales of Miletus, The Coming Technological Singularity, the scientific method, Thomas Malthus, Thorstein Veblen, Turing test, Vernor Vinge, Whole Earth Review, William of Occam, zero-sum game

Here we see a transition that is typical of the jump to universality: before the jump, one has to make specialized objects for each document to be printed; after the jump, one customizes (or specializes, or programs) a universal object – in this case a printing press with movable type. Similarly, in 1801 Joseph Marie Jacquard invented a general-purpose silk-weaving machine now known as the Jacquard loom. Instead of having to control manually each row of stitches in each individual bolt of patterned silk, one could program an arbitrary pattern on punched cards which would instruct the machine to weave that pattern any number of times.


pages: 619 words: 177,548

Power and Progress: Our Thousand-Year Struggle Over Technology and Prosperity by Daron Acemoglu, Simon Johnson

"Friedman doctrine" OR "shareholder theory", "World Economic Forum" Davos, 4chan, agricultural Revolution, AI winter, Airbnb, airline deregulation, algorithmic bias, algorithmic management, Alignment Problem, AlphaGo, An Inconvenient Truth, artificial general intelligence, augmented reality, basic income, Bellingcat, Bernie Sanders, Big Tech, Bletchley Park, blue-collar work, British Empire, carbon footprint, carbon tax, carried interest, centre right, Charles Babbage, ChatGPT, Clayton Christensen, clean water, cloud computing, collapse of Lehman Brothers, collective bargaining, computer age, Computer Lib, Computing Machinery and Intelligence, conceptual framework, contact tracing, Corn Laws, Cornelius Vanderbilt, coronavirus, corporate social responsibility, correlation does not imply causation, cotton gin, COVID-19, creative destruction, declining real wages, deep learning, DeepMind, deindustrialization, Demis Hassabis, Deng Xiaoping, deskilling, discovery of the americas, disinformation, Donald Trump, Douglas Engelbart, Douglas Engelbart, Edward Snowden, Elon Musk, en.wikipedia.org, energy transition, Erik Brynjolfsson, European colonialism, everywhere but in the productivity statistics, factory automation, facts on the ground, fake news, Filter Bubble, financial innovation, Ford Model T, Ford paid five dollars a day, fulfillment center, full employment, future of work, gender pay gap, general purpose technology, Geoffrey Hinton, global supply chain, Gordon Gekko, GPT-3, Grace Hopper, Hacker Ethic, Ida Tarbell, illegal immigration, income inequality, indoor plumbing, industrial robot, interchangeable parts, invisible hand, Isaac Newton, Jacques de Vaucanson, James Watt: steam engine, Jaron Lanier, Jeff Bezos, job automation, Johannes Kepler, John Markoff, John Maynard Keynes: Economic Possibilities for our Grandchildren, John Maynard Keynes: technological unemployment, Joseph-Marie Jacquard, Kenneth Arrow, Kevin Roose, Kickstarter, knowledge economy, labor-force participation, land reform, land tenure, Les Trente Glorieuses, low skilled workers, low-wage service sector, M-Pesa, manufacturing employment, Marc Andreessen, Mark Zuckerberg, megacity, mobile money, Mother of all demos, move fast and break things, natural language processing, Neolithic agricultural revolution, Norbert Wiener, NSO Group, offshore financial centre, OpenAI, PageRank, Panopticon Jeremy Bentham, paperclip maximiser, pattern recognition, Paul Graham, Peter Thiel, Productivity paradox, profit maximization, profit motive, QAnon, Ralph Nader, Ray Kurzweil, recommendation engine, ride hailing / ride sharing, Robert Bork, Robert Gordon, Robert Solow, robotic process automation, Ronald Reagan, scientific management, Second Machine Age, self-driving car, seminal paper, shareholder value, Sheryl Sandberg, Shoshana Zuboff, Silicon Valley, social intelligence, Social Responsibility of Business Is to Increase Its Profits, social web, South Sea Bubble, speech recognition, spice trade, statistical model, stem cell, Steve Jobs, Steve Wozniak, strikebreaker, subscription business, Suez canal 1869, Suez crisis 1956, supply-chain management, surveillance capitalism, tacit knowledge, tech billionaire, technoutopianism, Ted Nelson, TED Talk, The Future of Employment, The Rise and Fall of American Growth, The Structural Transformation of the Public Sphere, The Wealth of Nations by Adam Smith, theory of mind, Thomas Malthus, too big to fail, total factor productivity, trade route, transatlantic slave trade, trickle-down economics, Turing machine, Turing test, Twitter Arab Spring, Two Sigma, Tyler Cowen, Tyler Cowen: Great Stagnation, union organizing, universal basic income, Unsafe at Any Speed, Upton Sinclair, upwardly mobile, W. E. B. Du Bois, War on Poverty, WikiLeaks, wikimedia commons, working poor, working-age population

Clash over Automation and Wages Concerns about technological unemployment voiced by John Maynard Keynes, discussed in Chapter 1, were perhaps even more relevant in the decades following World War II. Machine tools continued to improve, and striking advances in numerically controlled machinery built on and perfected the ideas that dated back to Jacquard’s loom. Designed by Joseph-Marie Jacquard in 1804, this loom was one of the most important weaving automation devices of the nineteenth century, performing tasks that even skilled weavers found challenging. Its breakthrough was conceptualizing and designing a machine that wove fabric according to the designs entered via a set of punch cards.


Energy and Civilization: A History by Vaclav Smil

8-hour work day, additive manufacturing, agricultural Revolution, animal electricity, Apollo 11, Boeing 747, business cycle, carbon-based life, centre right, Charles Babbage, decarbonisation, dematerialisation, Deng Xiaoping, Easter island, en.wikipedia.org, energy security, energy transition, epigenetics, Exxon Valdez, Fairchild Semiconductor, Ford Model T, Frederick Winslow Taylor, Great Leap Forward, high-speed rail, hydraulic fracturing, income inequality, Indoor air pollution, Intergovernmental Panel on Climate Change (IPCC), invention of gunpowder, James Watt: steam engine, Jevons paradox, John Harrison: Longitude, Joseph-Marie Jacquard, Just-in-time delivery, Kaizen: continuous improvement, Kibera, knowledge economy, land tenure, language acquisition, Lewis Mumford, lone genius, Louis Blériot, mass immigration, megacity, megaproject, Menlo Park, mutually assured destruction, North Sea oil, ocean acidification, oil shale / tar sands, peak oil, phenotype, precision agriculture, purchasing power parity, QWERTY keyboard, Richard Feynman, scientific management, Silicon Valley, Suez canal 1869, Toyota Production System, transcontinental railway, uranium enrichment, Yom Kippur War

By 1500 more than 40,000 different books or editions had been published in Western Europe in more than 15 million copies (Johnson 1973). The introduction of detailed copper engraving during the sixteenth century and the contemporaneous development of various map projections were other notable early advances. Another outstanding innovation in this class was a punched card device invented by Joseph Marie Jacquard (1752–1834) in 1801 to control loom operations. Before 1900 punched cards were employed on Herman Hollerith’s (1860–1929) machines used to process census data (Lubar 1992). After 1940, punched input controlled first electromechanical and then electronic computers, all now supplanted by electronic data storage.


France (Lonely Planet, 8th Edition) by Nicola Williams

active transport: walking or cycling, back-to-the-land, bike sharing, British Empire, car-free, carbon footprint, centre right, Charles Lindbergh, Columbine, company town, double helix, flag carrier, gentrification, Guggenheim Bilbao, haute couture, haute cuisine, Henri Poincaré, Herbert Marcuse, high-speed rail, Honoré de Balzac, illegal immigration, industrial robot, information trail, Jacquard loom, Joseph-Marie Jacquard, Kickstarter, Louis Blériot, Louis Pasteur, low cost airline, Mahatma Gandhi, means of production, Murano, Venice glass, pension reform, post-work, QWERTY keyboard, ride hailing / ride sharing, Saturday Night Live, Silicon Valley, Skype, Sloane Ranger, Suez canal 1869, supervolcano, three-masted sailing ship, trade route, urban renewal, urban sprawl, V2 rocket

Boarders and bladers buzz around the fountains of place Louis Pradel, surveyed by the Homme de la Liberté (Man of Freedom) on roller skates, sculpted from scrap metal by Marseille-born César (1921–98). West of place des Terreaux, well-known Lyonnais peer out from the seven-storey Fresque des Lyonnais (Map; cnr rue de la Martinière & quai de la Pêcherie, 1er; Hôtel de Ville), a mural featuring loom inventor Joseph-Marie Jacquard (1752–1834), Renaissance poet Maurice Scève (c 1499–c 1560), superstar chef Paul Bocuse and the yellow-haired Little Prince, created by Lyon-born author Antoine de St-Exupéry (1900–44). South along the quay, inspired contemporary art installations fill the white space of La BF15 ( 04 78 28 66 63; www.labf15.org; 11 quai de la Pêcherie, 1er; Bellecour; admission free; 2-7pm Wed-Sat), a cutting-edge riverside art gallery.


Lonely Planet France by Lonely Planet Publications

banking crisis, bike sharing, British Empire, car-free, carbon footprint, centre right, Charles Lindbergh, Columbine, David Sedaris, double helix, Frank Gehry, G4S, gentrification, glass ceiling, haute couture, haute cuisine, Henri Poincaré, Herbert Marcuse, high-speed rail, Honoré de Balzac, illegal immigration, Jacquard loom, Joseph-Marie Jacquard, Kickstarter, Louis Blériot, Louis Pasteur, low cost airline, Mahatma Gandhi, mass immigration, Murano, Venice glass, ride hailing / ride sharing, sensible shoes, Silicon Valley, Suez canal 1869, supervolcano, three-masted sailing ship, trade route, urban renewal, urban sprawl, V2 rocket

On its northern side, boarders and bladers buzz around the fountains of place Louis Pradel , surveyed by the Homme de la Liberté Offline map Google map (Man of Freedom) on roller skates, sculpted from scrap metal by Marseille-born César. Fresque des Lyonnais MURAL Offline map Google map (cnr rue de la Martinière & quai de la Pêcherie, 1er; Hôtel de Ville) Well-known Lyonnais peer out from this seven-storey mural, including loom inventor Joseph-Marie Jacquard (1752–1834), Renaissance poet Maurice Scève (c 1499–1560), superstar chef Paul Bocuse (b 1926), puppet Guignol, and the yellow-haired Little Prince, created by author/aviator Antoine de St-Exupéry (1900–44). Musée des Tissus SILK MUSEUM (www.musee-des-tissus.com; 34 rue de la Charité, 2e; adult/child €10/7.50, after 4pm €8/5.50; 10am-5.30pm Tue-Sun; Ampère) Extraordinary Lyonnais and international silks are showcased here.


Europe: A History by Norman Davies

agricultural Revolution, Albert Einstein, anti-communist, Berlin Wall, bread and circuses, Bretton Woods, British Empire, business climate, centre right, charter city, classic study, clean water, Columbian Exchange, conceptual framework, continuation of politics by other means, Corn Laws, cuban missile crisis, Defenestration of Prague, discovery of DNA, disinformation, double entry bookkeeping, Dr. Strangelove, Edmond Halley, Edward Lloyd's coffeehouse, equal pay for equal work, Eratosthenes, Etonian, European colonialism, experimental economics, financial independence, finite state, Francis Fukuyama: the end of history, Francisco Pizarro, full employment, gentleman farmer, global village, Gregor Mendel, Honoré de Balzac, Index librorum prohibitorum, interchangeable parts, invention of agriculture, invention of movable type, Isaac Newton, James Hargreaves, James Watt: steam engine, Johann Wolfgang von Goethe, Johannes Kepler, John Harrison: Longitude, joint-stock company, Joseph-Marie Jacquard, Korean Air Lines Flight 007, land reform, liberation theology, long peace, Louis Blériot, Louis Daguerre, Mahatma Gandhi, mass immigration, Mikhail Gorbachev, military-industrial complex, Monroe Doctrine, Murano, Venice glass, music of the spheres, New Urbanism, North Sea oil, offshore financial centre, Peace of Westphalia, Plato's cave, popular capitalism, Potemkin village, purchasing power parity, Ralph Waldo Emerson, road to serfdom, sceptred isle, Scramble for Africa, spinning jenny, Suez canal 1869, Suez crisis 1956, Thales of Miletus, the scientific method, The Wealth of Nations by Adam Smith, Thomas Malthus, trade route, transatlantic slave trade, Transnistria, urban planning, urban sprawl, W. E. B. Du Bois

Machines, equally, which had to be made of hardened steel, could not be built in quantity unless the production of iron and steel could be expanded. This was achieved through a series of improvements, including those introduced at the Carron ironworks in Scotland (1760) and Henry Cort’s patents for the puddling and rolling of steel (1783–4). JACQUARD IN 1804 Joseph-Marie Jacquard (1752–1834), textile engineer of Lyons, perfected a loom which could weave cloth into any number of predetermined patterns, using sets of punched cards to control woof and shuttle. In textile history, Jacquard’s loom was a major advance on the earlier inventions of Arkwright, Hargreaves, and Crompton.