language:
Find link is a tool written by Edward Betts.Longer titles found: 2-EPT probability density function (view)
searching for Probability density function 93 found (722 total)
alternate case: probability density function
BBGKY hierarchy
(1,553 words)
[view diff]
exact match in snippet
view article
find links to article
particles. The equation for an s-particle distribution function (probability density function) in the BBGKY hierarchy includes the (s + 1)-particle distributionBivariate von Mises distribution (706 words) [view diff] exact match in snippet view article find links to article
S^{1}\times S^{1}} in R 3 {\displaystyle \mathbb {R} ^{3}} . The probability density function of the general bivariate von Mises distribution for the anglesStephen B. Pope (224 words) [view diff] no match in snippet view article find links to article
Fluid Dynamics in 1991, for contributions of archival value to probability-density-function methods in turbulence modeling, to understanding of the geometryTracy–Widom distribution (5,083 words) [view diff] exact match in snippet view article find links to article
{\displaystyle \lambda _{\max }} . For a Gaussian unitary ensemble, the probability density function of λ max {\displaystyle \lambda _{\max }} satisfies, for largeComplex random variable (2,272 words) [view diff] exact match in snippet view article find links to article
variable is an example of a complex random variable for which the probability density function is defined. The density function is shown as the yellow diskCircular law (3,204 words) [view diff] exact match in snippet view article find links to article
It is not even absolutely continuous, thus does not have a probability density function, but decomposes into sectors depending on the number of realStability postulate (639 words) [view diff] exact match in snippet view article find links to article
\dots ,\ X_{n}\ } are independent random variables with common probability density function P ( X j = x ) ≡ f X ( x ) , {\displaystyle \ \mathbb {P}Electrochemical noise (494 words) [view diff] exact match in snippet view article find links to article
random low-frequency stochastic processes described by either probability density function equations or in statistical terms. These random processes areList of integrals of Gaussian functions (1,827 words) [view diff] exact match in snippet view article find links to article
{1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}} is the standard normal probability density function, Φ ( x ) = ∫ − ∞ x φ ( t ) d t = 1 2 [ 1 + erf ( x 2 ) ] {\displaystyleMaximum likelihood sequence estimation (606 words) [view diff] exact match in snippet view article find links to article
L(x)=p(r\mid x),} where p(r | x) denotes the conditional joint probability density function of the observed series {r(t)} given that the underlying seriesPoondi Kumaraswamy (399 words) [view diff] exact match in snippet view article find links to article
also developed the double-bounded probability density function (Kumaraswamy distribution), a probability density function suitable for physical variablesPollaczek–Khinchine formula (867 words) [view diff] exact match in snippet view article find links to article
(1-z))-z}}} where g(s) is the Laplace transform of the service time probability density function. Writing W*(s) for the Laplace–Stieltjes transform of the waitingKlein–Kramers equation (2,345 words) [view diff] exact match in snippet view article find links to article
equation is a partial differential equation that describes the probability density function f (r, p, t) of a Brownian particle in phase space (r, p). ItMax Born (7,388 words) [view diff] exact match in snippet view article find links to article
following year, he formulated the now-standard interpretation of the probability density function for ψ*ψ in the Schrödinger equation, for which he was awardedDebye–Waller factor (3,826 words) [view diff] exact match in snippet view article find links to article
{\displaystyle p_{k}({\vec {x}}_{k}-{\vec {x}}_{k0})} is the probability density function for displacement. x → k 0 {\displaystyle {\vec {x}}_{k0}} isPrinciple of maximum entropy (4,330 words) [view diff] exact match in snippet view article find links to article
on the expectations of the functions fk, i.e. we require our probability density function to satisfy the inequality (or purely equality) moment constraints:Fluctuation loss (1,253 words) [view diff] exact match in snippet view article find links to article
divided by 2. The degree of freedom used in the chi-squared probability density function is a positive number related to the target model. Values of mCluster-weighted modeling (803 words) [view diff] exact match in snippet view article find links to article
x, the modeling and calibration procedure arrives at a joint probability density function, p(y,x). Here the "variables" might be uni-variate, multivariateList of things named after Thomas Bayes (887 words) [view diff] exact match in snippet view article find links to article
mechanics Recursive Bayesian estimation – Process for estimating a probability density function Robust Bayesian analysis – Type of sensitivity analysis Variable-orderNoise (spectral phenomenon) (588 words) [view diff] exact match in snippet view article
which has constant power spectral density Gaussian noise, with a probability density function equal to that of the normal distribution Pink noise, with spectralCokurtosis (1,233 words) [view diff] exact match in snippet view article find links to article
uncorrelated apart from sign for positive values. The joint probability density function is f X , Y ( x , y ) = e − x 2 / 2 2 π ( H ( − x ) δ ( x − ySkewed generalized t distribution (3,598 words) [view diff] exact match in snippet view article find links to article
parameterization that yields the simplest functional form of the probability density function sets m = 0 {\displaystyle m=0} and v = 1 {\displaystyle v=1}Hotelling's T-squared distribution (1,980 words) [view diff] exact match in snippet view article find links to article
Hotelling's T2 distribution Probability density function Cumulative distribution function Parameters p - dimension of the random variables m - relatedKinetic scheme (624 words) [view diff] exact match in snippet view article find links to article
connections are constant with respect to time (and any jumping time probability density function for state i is an exponential, with a rate equal the value ofKramers–Moyal expansion (2,430 words) [view diff] exact match in snippet view article find links to article
where the probability density does not change, the moments of a probability density function determine the probability density itself by a Fourier transformNeutron transport (2,305 words) [view diff] exact match in snippet view article find links to article
g., 2.43 for U-235). χ p ( E ) {\displaystyle \chi _{p}(E)} Probability density function for neutrons of exit energy E {\displaystyle E} from all neutronsMaxwell–Boltzmann statistics (5,368 words) [view diff] exact match in snippet view article find links to article
{mv^{2}}{2k_{\text{B}}T}}}} where: f ( v ) {\displaystyle f(v)} is the probability density function of particle speeds, m {\displaystyle m} is the mass of a particleMultivariate random variable (3,411 words) [view diff] exact match in snippet view article find links to article
invertible matrix and X {\displaystyle \textstyle \mathbf {X} } has a probability density function f X {\displaystyle f_{\mathbf {X} }} , then the probability densityHeavy-tailed distribution (2,725 words) [view diff] exact match in snippet view article find links to article
distribution. A fat-tailed distribution is a distribution for which the probability density function, for large x, goes to zero as a power x − a {\displaystyle x^{-a}}Behrens–Fisher problem (2,366 words) [view diff] exact match in snippet view article find links to article
was proved in 1966 that it has an exact solution. In 2018 the probability density function of a generalized Behrens–Fisher distribution of m means and mDistribution of the product of two random variables (9,049 words) [view diff] exact match in snippet view article find links to article
{\displaystyle f_{X}} and f Y {\displaystyle f_{Y}} then the probability density function of Z = X Y {\displaystyle Z=XY} is f Z ( z ) = ∫ − ∞ ∞ f X (Group actions in computational anatomy (1,544 words) [view diff] exact match in snippet view article find links to article
function (ODF) characterizes the angular profile of the diffusion probability density function of water molecules and can be reconstructed from High AngularCoskewness (1,240 words) [view diff] exact match in snippet view article find links to article
uncorrelated apart from sign for positive values. The joint probability density function is f X , Y ( x , y ) = e − x 2 / 2 2 π ( H ( − x ) δ ( x − yChapman–Kolmogorov equation (996 words) [view diff] exact match in snippet view article find links to article
{\displaystyle p_{i_{1},\ldots ,i_{n}}(f_{1},\ldots ,f_{n})} be the joint probability density function of the values of the random variables f1 to fn. Then, the Chapman–KolmogorovThomas S. Lundgren (150 words) [view diff] exact match in snippet view article find links to article
Lundgren is a Fellow of American Physical Society since 1994. Probability density function methods for turbulence T. S. Lundgren at the University of MinnesotaBrascamp–Lieb inequality (2,385 words) [view diff] exact match in snippet view article find links to article
Consider a probability density function p ( x ) = exp ( − ϕ ( x ) ) {\displaystyle p(x)=\exp(-\phi (x))} . This probability density function p ( x ) {\displaystyleMicroseism (2,566 words) [view diff] exact match in snippet view article find links to article
Power spectral density probability density function (color scale at right) for 20 years of continuous vertical component seismic velocity data recordedMarkov chain Monte Carlo (8,560 words) [view diff] exact match in snippet view article find links to article
generative modeling, via an MCMC procedure. Specifically, given the probability density function p ( x ) {\displaystyle p(x)} , we use its log gradient ∇ x logEntropic uncertainty (2,571 words) [view diff] exact match in snippet view article find links to article
minimizes the variance for a given entropy. In fact, for any probability density function ϕ {\displaystyle \phi } on the real line, Shannon's entropy inequalityDiffusing-wave spectroscopy (915 words) [view diff] exact match in snippet view article find links to article
the particles <Δr2> can be established. Let us note P(s) the probability density function (PDF) of the photon path length s. The relation can be writtenOrnstein–Uhlenbeck process (4,684 words) [view diff] exact match in snippet view article find links to article
Ornstein–Uhlenbeck process can also be described in terms of a probability density function, P ( x , t ) {\displaystyle P(x,t)} , which specifies the probabilityEmanuel Parzen (374 words) [view diff] case mismatch in snippet view article find links to article
Wilks Memorial Medal Parzen, E. (1962). "On Estimation of a Probability Density Function and Mode" (PDF). The Annals of Mathematical Statistics. 33 (3):Maximum entropy spectral estimation (598 words) [view diff] exact match in snippet view article find links to article
maximum lag, in such a way that the entropy of the corresponding probability density function is maximized in each step of the extrapolation. The maximum entropyCopula (statistics) (9,411 words) [view diff] exact match in snippet view article
probability density function between the two random variables can be calculated, or when the two marginal functions and the joint probability densityMean shift (1,995 words) [view diff] exact match in snippet view article find links to article
map near the object's old position. The confidence map is a probability density function on the new image, assigning each pixel of the new image a probabilityZiv–Zakai bound (919 words) [view diff] exact match in snippet view article find links to article
condition, that is, the parameter under estimation needs to have a probability density function; this is one of the key advantages of the Ziv-Zakai bound . HenceAmplitude-shift keying (1,641 words) [view diff] exact match in snippet view article find links to article
z[k]=n_{r}[k]+v[k]g[0]} the transmission will be affected only by noise. The probability density function of having an error of a given size can be modelled by a GaussianResidual time (1,148 words) [view diff] exact match in snippet view article find links to article
Differentiating with respect to x {\displaystyle x} , the probability density function can be written as ϕ ( x , t ) = f ( t + x ) + ∫ 0 t f ( u + xStretched exponential function (2,387 words) [view diff] exact match in snippet view article find links to article
integrated distribution is a stretched exponential, the normalized probability density function is given by[citation needed] p ( τ ∣ λ , β ) d τ = λ Γ ( 1Cox–Ingersoll–Ross model (1,928 words) [view diff] exact match in snippet view article find links to article
c r t e − a T {\displaystyle 2cr_{t}e^{-aT}} . Formally the probability density function is: f ( r t + T ; r t , a , b , σ ) = c e − u − v ( v u ) q /Cox–Ingersoll–Ross model (1,928 words) [view diff] exact match in snippet view article find links to article
c r t e − a T {\displaystyle 2cr_{t}e^{-aT}} . Formally the probability density function is: f ( r t + T ; r t , a , b , σ ) = c e − u − v ( v u ) q /TI-36 (1,401 words) [view diff] exact match in snippet view article find links to article
quadratic and cubic regressions Distribution functions: normal probability density function at mean=0 and sigma=1 (f(x), probability between x boundaries)Chapman–Robbins bound (977 words) [view diff] exact match in snippet view article find links to article
example, no assumption is made regarding differentiability of the probability density function p(x; θ) of λ θ {\displaystyle \lambda _{\theta }} . When p(x;Hamburger moment problem (1,385 words) [view diff] exact match in snippet view article find links to article
partial isometries. The cumulative distribution function and the probability density function can often be found by applying the inverse Laplace transformNoise (electronics) (2,200 words) [view diff] exact match in snippet view article
spectrum. The amplitude of the signal has very nearly a Gaussian probability density function. A communication system affected by thermal noise is often modelledMarian Smoluchowski (1,512 words) [view diff] exact match in snippet view article find links to article
stochastic processes. It describes the time evolution of the probability density function for a particle undergoing Brownian motion under the influenceGeostatistics (1,694 words) [view diff] exact match in snippet view article find links to article
usually denoted as an estimation problem. Sampling from the entire probability density function f(z,x) by actually considering each possible outcome of it atPoisson binomial distribution (2,585 words) [view diff] case mismatch in snippet view article find links to article
Williams (2010). "Closed-Form Expression for the Poisson-Binomial Probability Density Function". IEEE Transactions on Aerospace and Electronic Systems. 46 (2):Completeness (statistics) (1,548 words) [view diff] exact match in snippet view article
of X1 + X2 is normal with expectation 2θ and variance 2. Its probability density function in x {\displaystyle x} is therefore proportional to exp ( −Minimum mean square error (9,310 words) [view diff] exact match in snippet view article find links to article
Bayesian approach, such prior information is captured by the prior probability density function of the parameters; and based directly on Bayes' theorem, it allowsPareto principle (2,916 words) [view diff] exact match in snippet view article find links to article
variation caused by individual slopes squared. This derives from the probability density function for multiple variables or the multivariate distribution (we areProbit (1,580 words) [view diff] exact match in snippet view article find links to article
{dw}{dp}}={\frac {1}{f(w)}}} where f ( w ) {\displaystyle f(w)} is the probability density function of w. In the case of the Gaussian: d w d p = 2 π e w 2 2 {\displaystyleBayesian econometrics (1,423 words) [view diff] exact match in snippet view article find links to article
{\displaystyle \theta } ; f ( y ) {\displaystyle f(y)} : the probability density function of y {\displaystyle y} . The posterior function is given by πMisconceptions about the normal distribution (1,555 words) [view diff] exact match in snippet view article find links to article
Y)} of a random point in the plane are chosen according to the probability density function p ( x , y ) = 1 2 π 3 [ exp ( − 2 3 ( x 2 + x y + y 2 ) ) +Spatial heterogeneity (1,282 words) [view diff] exact match in snippet view article find links to article
explained by the stratification. The q follows a noncentral F probability density function. Spatial heterogeneity for multivariate data and 3D data canN-sphere (7,348 words) [view diff] exact match in snippet view article find links to article
from the ( n − 1 ) {\displaystyle (n-1)} -sphere, then its probability density function, for y ∈ [ 0 , 1 ] {\displaystyle y\in [0,1]} , is ρ ( y ) =Twisting properties (1,304 words) [view diff] exact match in snippet view article find links to article
Joint probability density function of parameters ( K , Λ ) {\displaystyle (K,\Lambda )} of a Gamma random variable.Activation function (1,960 words) [view diff] exact match in snippet view article find links to article
(x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}} is the probability density function of standard gaussian distribution. ( − 0.17 … , ∞ ) {\displaystyleGolomb coding (2,610 words) [view diff] exact match in snippet view article find links to article
approach is used: first, the block of data is scanned to estimate a probability density function (PDF) for the data. The Golomb–Rice parameter is then determinedGeneralized additive model for location, scale and shape (1,631 words) [view diff] no match in snippet view article find links to article
y_{i}} for i = 1 , 2 , … , n {\displaystyle i=1,2,\dots ,n} with probability (density) function f ( y i | μ i , σ i , ν i , τ i ) {\displaystyle f(y_{i}|\muAnd Be a Villain (2,469 words) [view diff] exact match in snippet view article find links to article
portion of a radical sign. A more accurate discussion of the probability density function can be found at Normal distribution. Jacques Barzun and WendellMarket design (4,191 words) [view diff] exact match in snippet view article find links to article
{\displaystyle {{v}_{1}}} and v 2 {\displaystyle {{v}_{2}}} with probability density function f ( v 1 , v 2 ) {\displaystyle f({{v}_{1}},{{v}_{2}})} are affiliatedMichael Schlesinger (478 words) [view diff] exact match in snippet view article find links to article
Michael E. (16 October 2001). "Objective estimation of the probability density function for climate sensitivity". Journal of Geophysical Research: AtmospheresRevenue equivalence (2,640 words) [view diff] exact match in snippet view article find links to article
with support [0,1], cumulative distribution function F(v) and probability density function f(v). If buyers behave according to their dominant strategiesGeneralized least squares (2,846 words) [view diff] exact match in snippet view article find links to article
parameters b {\displaystyle \mathbf {b} } , the conditional probability density function of the errors are assumed to be: p ( ε | b ) = 1 ( 2 π ) n detBray–Moss–Libby model (858 words) [view diff] exact match in snippet view article find links to article
occurs instantaneously at the reaction sheet. Therefore, the probability density function for the progress variable is given by P ( c , x , t ) = α ( xCombustion models for CFD (1,348 words) [view diff] exact match in snippet view article find links to article
Center, UW Madison.) Pope_NACM_91.pdf—“combustion modeling using probability density function methods” S.B.Pope. Pope_ACAC_97.pdf---“Turbulence CombustionEmpirical Bayes method (2,643 words) [view diff] exact match in snippet view article find links to article
_{y}\rho (y|x)=\rho (y|x)(x-y)} by direct calculation with the probability density function of multivariate gaussians. Integrating over ρ ( x ) d x {\displaystyleFundamental thermodynamic relation (2,684 words) [view diff] exact match in snippet view article find links to article
thermodynamic relation together with the following three postulates The probability density function is proportional to some function of the ensemble parameters andOutlier (3,503 words) [view diff] exact match in snippet view article find links to article
unknown random vector x is represented by a set Xi (instead of a probability density function). If no outliers occur, x should belong to the intersection ofCEDAR-FOX (1,066 words) [view diff] exact match in snippet view article find links to article
using pdf. Distribution for distance space is modeled using probability density function which are represented as Gaussian or Gamma distribution. theMultivariate Pareto distribution (1,464 words) [view diff] exact match in snippet view article find links to article
Multivariate Pareto distribution of the First Kind has the joint probability density function given by f ( x 1 , … , x k ) = a ( a + 1 ) ⋯ ( a + k − 1 ) (Poisson point process (15,356 words) [view diff] exact match in snippet view article find links to article
the probability density function λ ( x ) Λ ( W ) {\displaystyle {\frac {\lambda (x)}{\Lambda (W)}}} , accepting if it is smaller than the probability densityStatistical mechanics (5,102 words) [view diff] exact match in snippet view article find links to article
relation together with the following set of postulates: The probability density function is proportional to some function of the ensemble parameters andPi-system (2,898 words) [view diff] exact match in snippet view article find links to article
then the probability can be expressed as an integral of the probability density function of Z . {\displaystyle Z.} P [ R ≤ ρ , Θ ≤ θ ] = ∫ R ≤ ρ , ΘQuantum state (5,522 words) [view diff] exact match in snippet view article find links to article
} where | ψ ( x ) | 2 {\displaystyle |\psi (x)|^{2}} is the probability density function for finding a particle at a given position. These examples emphasizeBorel–Kolmogorov paradox (2,543 words) [view diff] exact match in snippet view article find links to article
)={\frac {1}{4\pi }}(1+\sin(\varphi ))(\theta +\pi )} The joint probability density function is then given by f Φ , Θ ( φ , θ ) = ∂ 2 ∂ φ ∂ θ F Φ , Θ ( φRespiratory droplet (3,003 words) [view diff] exact match in snippet view article find links to article
The probability density function for droplets in the breath of someone speaking, as a function of diameter. Note that both axes are log scales, we breatheModified lognormal power-law distribution (986 words) [view diff] exact match in snippet view article find links to article
function with no joining conditions. The closed form of the probability density function of the MLP is as follows: f ( m ) = α 2 exp ( α μ 0 + α 2 σDe Moivre's law (1,374 words) [view diff] exact match in snippet view article find links to article
{\displaystyle \mu (x)=-S'(x)/S(x)=f(x)/S(x),} where f(x) is the probability density function. Under de Moivre's law, the force of mortality for a life agedBrilliant Light Power (4,170 words) [view diff] exact match in snippet view article find links to article
quantum mechanics regards its inability to be reconciled with the probability density function in quantum mechanics. Rathke stated, "However, while solutionsVariational autoencoder (3,974 words) [view diff] exact match in snippet view article find links to article
{\displaystyle q_{\phi }(z|x)} . Let q 0 {\displaystyle q_{0}} be the probability density function for ϵ {\displaystyle \epsilon } , then [clarification needed]Polynomial chaos (2,437 words) [view diff] exact match in snippet view article find links to article
does not require the complete knowledge or even existence of a probability density function. This avoids the necessity to assign parametric probability distributions