Find link

language:

jump to random article

Find link is a tool written by Edward Betts.

Longer titles found: State-transition matrix (view)

searching for Transition matrix 101 found (116 total)

alternate case: transition matrix

Discrete phase-type distribution (596 words) [view diff] exact match in snippet view article find links to article

{\displaystyle \mathbf {T} ^{0}+{T}\mathbf {1} =\mathbf {1} } . The transition matrix is characterized entirely by its upper-left block T {\displaystyle
M/D/1 queue (1,522 words) [view diff] no match in snippet view article find links to article
In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single
Markov chain (12,900 words) [view diff] exact match in snippet view article find links to article
transition probabilities. The process is characterized by a state space, a transition matrix describing the probabilities of particular transitions, and an initial
Old quantum theory (4,834 words) [view diff] no match in snippet view article find links to article
The old quantum theory is a collection of results from the years 1900–1925, which predate modern quantum mechanics. The theory was never complete or self-consistent
Probabilistic automaton (1,726 words) [view diff] exact match in snippet view article find links to article
given transition into the transition function, turning it into a transition matrix. Thus, the probabilistic automaton also generalizes the concepts of
Chapman–Kolmogorov equation (996 words) [view diff] exact match in snippet view article find links to article
corollary, it follows that to calculate the transition matrix of jump t, it is sufficient to raise the transition matrix of jump one to the power of t, that is
Examples of Markov chains (2,405 words) [view diff] exact match in snippet view article find links to article
given the weather on the preceding day, can be represented by a transition matrix: P = [ 0.9 0.1 0.5 0.5 ] {\displaystyle P={\begin{bmatrix}0.9&0.1\\0
Baum–Welch algorithm (3,896 words) [view diff] exact match in snippet view article find links to article
which leads to the definition of the time-independent stochastic transition matrix A = { a i j } = P ( X t = j ∣ X t − 1 = i ) . {\displaystyle
Markov kernel (2,052 words) [view diff] exact match in snippet view article find links to article
in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite state space.
Change of basis (3,123 words) [view diff] exact match in snippet view article find links to article
bases. A {\displaystyle A} is the change-of-basis matrix (also called transition matrix), which is the matrix whose columns are the coordinates of the new
Cheeger bound (377 words) [view diff] exact match in snippet view article find links to article
Cheeger bound is a bound of the second largest eigenvalue of the transition matrix of a finite-state, discrete-time, reversible stationary Markov chain
Stochastic control (1,686 words) [view diff] exact match in snippet view article find links to article
discrete-time case with uncertainty about the parameter values in the transition matrix (giving the effect of current values of the state variables on their
T-matrix method (1,084 words) [view diff] case mismatch in snippet view article find links to article
The Transition Matrix Method (T-matrix method, TMM) is a computational technique of light scattering by nonspherical particles originally formulated by
Absorbing Markov chain (1,762 words) [view diff] exact match in snippet view article find links to article
absorbing Markov chain with transition matrix P have t transient states and r absorbing states. Unlike a typical transition matrix, the rows of P represent
Pseudotensor (1,031 words) [view diff] exact match in snippet view article find links to article
A^{i_{q}}{}_{k_{q}}} is the transition matrix for the contravariant indices, B l p j p {\displaystyle B^{l_{p}}{}_{j_{p}}} is the transition matrix for the covariant
Random dynamical system (1,799 words) [view diff] exact match in snippet view article find links to article
{\displaystyle n\times n} matrix representation, called deterministic transition matrix. It is a binary matrix but it has exactly one entry 1 in each row
Reducing subspace (421 words) [view diff] exact match in snippet view article find links to article
Q ∈ R r × r {\displaystyle Q\in \mathbb {R} ^{r\times r}} is the transition matrix from B {\displaystyle B} to B ′ {\displaystyle B'} then with respect
Weighting pattern (259 words) [view diff] exact match in snippet view article find links to article
\sigma )B(\sigma )} such that ϕ {\displaystyle \phi } is the state transition matrix. The weighting pattern will determine a system, but if there exists
Subshift of finite type (2,396 words) [view diff] exact match in snippet view article find links to article
contains an uncountably infinite number of sequences. Given a Markov transition matrix and an invariant distribution on the states, we can impose a probability
Kolmogorov's criterion (861 words) [view diff] exact match in snippet view article find links to article
that an irreducible, positive recurrent, aperiodic Markov chain with transition matrix P is reversible if and only if its stationary Markov chain satisfies
Uniformization (probability theory) (608 words) [view diff] exact match in snippet view article
matrix Q, the uniformized discrete-time Markov chain has probability transition matrix P := ( p i j ) i , j {\displaystyle P:=(p_{ij})_{i,j}} , which is
Automatic basis function construction (1,630 words) [view diff] exact match in snippet view article find links to article
diffusion wavelets are used. Krylov basis construction uses the actual transition matrix instead of random walk Laplacian. The assumption of this method is
Moran process (4,769 words) [view diff] exact match in snippet view article find links to article
exists only between state i and state i − 1, i and i + 1. Thus the transition matrix of the stochastic process is tri-diagonal in shape and the transition
Fractional Chebyshev collocation method (415 words) [view diff] exact match in snippet view article find links to article
commensurate order FDEs and a system of linear FDDEs are given by a state transition matrix. Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. (December 2011). "Efficient
Pop music automation (1,076 words) [view diff] exact match in snippet view article find links to article
algorithm is constructed to produce an output note values based on the transition matrix weightings, which could be MIDI note values, frequency (Hz), or any
Viterbi algorithm (2,664 words) [view diff] exact match in snippet view article find links to article
input init: initial probabilities of each state input trans: S × S transition matrix input emit: S × O emission matrix input obs: sequence of T observations
Hans Kramers (770 words) [view diff] exact match in snippet view article find links to article
Nationality Dutch Alma mater Leiden University Known for Kramers transition matrix Kramers theory of reaction rates Kramers' law Kramers' opacity law
State-transition equation (546 words) [view diff] exact match in snippet view article find links to article
)+\mathbf {Ew} (\tau )]dt\end{aligned}}} where Φ(t) is the state transition matrix. The state-transition equation as derived above is useful only when
Recurrence relation (4,204 words) [view diff] exact match in snippet view article find links to article
[x_{t}-x^{*}]=A[x_{t-1}-x^{*}]} with state vector x {\displaystyle x} and transition matrix A {\displaystyle A} , x {\displaystyle x} converges asymptotically
Entropy rate (784 words) [view diff] exact match in snippet view article find links to article
defined on a countable number of states. Given its right stochastic transition matrix P i j {\displaystyle P_{ij}} and an entropy h i := − ∑ j P i j log
Discrete-time Markov chain (4,252 words) [view diff] exact match in snippet view article find links to article
\Pr(X_{n+1}=x\mid X_{n}=x_{n}).} The same information is represented by the transition matrix from time n to time n + 1. However, Markov chains are frequently assumed
Balance equation (924 words) [view diff] exact match in snippet view article find links to article
and j {\displaystyle j} . A discrete time Markov chain (DTMC) with transition matrix P {\displaystyle P} and equilibrium distribution π {\displaystyle
Diffusion map (2,469 words) [view diff] exact match in snippet view article find links to article
(y)=1} From p ( x , y ) {\displaystyle p(x,y)} we can construct a transition matrix of a Markov chain ( M {\displaystyle M} ) on X {\displaystyle X}
Train track map (2,675 words) [view diff] exact match in snippet view article find links to article
a topological representative f:Γ→Γ of an automorphism φ of Fk the transition matrix M(f) is an rxr matrix (where r is the number of topological edges
Matrix difference equation (1,964 words) [view diff] exact match in snippet view article find links to article
asymptotically to the steady state x*—if and only if all eigenvalues of the transition matrix A (whether real or complex) have an absolute value which is less than
Hidden Markov model (6,811 words) [view diff] exact match in snippet view article find links to article
parameter) controls the relative density or sparseness of the resulting transition matrix. A choice of 1 yields a uniform distribution. Values greater than
Linear map (7,001 words) [view diff] exact match in snippet view article find links to article
B'} : A ′ {\textstyle A'} Transition matrix from B ′ {\textstyle B'} to B {\textstyle B} : P {\textstyle P} Transition matrix from B {\textstyle B} to
Kolmogorov extension theorem (1,824 words) [view diff] exact match in snippet view article find links to article
a Markov chain taking values in a given state space with a given transition matrix, infinite products of (inner-regular) probability spaces. According
Absorption band (1,532 words) [view diff] exact match in snippet view article find links to article
than dipole transitions. Second, not all transitions have the same transition matrix element, absorption coefficient or oscillator strength. For some types
Controllability Gramian (2,170 words) [view diff] exact match in snippet view article find links to article
τ ) {\displaystyle {\boldsymbol {\Phi }}(t,\tau )} is the state transition matrix of x ˙ = A ( t ) x {\displaystyle {\boldsymbol {\dot {x}}}={\boldsymbol
Stochastic chains with memory of variable length (1,789 words) [view diff] exact match in snippet view article find links to article
{\displaystyle A={0,1}} and let p {\displaystyle p} be a probability transition matrix. Also, let ( ξ n ) n ≥ 0 {\displaystyle (\xi _{n})_{n\geq 0}} be a
M/G/1 queue (1,787 words) [view diff] exact match in snippet view article find links to article
state i – 1, i, i + 1, i + 2, .... The embedded Markov chain has transition matrix P = ( a 0 a 1 a 2 a 3 a 4 ⋯ a 0 a 1 a 2 a 3 a 4 ⋯ 0 a 0 a 1 a 2 a
Observability Gramian (2,149 words) [view diff] exact match in snippet view article find links to article
τ ) {\displaystyle {\boldsymbol {\Phi }}(t,\tau )} is the state transition matrix of x ˙ = A ( t ) x {\displaystyle {\boldsymbol {\dot {x}}}={\boldsymbol
X-ray magnetic circular dichroism (2,493 words) [view diff] exact match in snippet view article find links to article
and selection rules of XMCD can be understood by considering the transition matrix elements of an atomic state | n j m ⟩ {\displaystyle \vert {njm}\rangle
Widdringtonia wallichii (1,056 words) [view diff] exact match in snippet view article find links to article
Journal of Botany. 53 (5): 408–410. Manders, P.T (July 1987). "A transition matrix model of the population dynamics of the Clanwilliam cedar (Widdringtonia
Nearly completely decomposable Markov chain (570 words) [view diff] exact match in snippet view article find links to article
diagonal and small nonzeros everywhere else. A Markov chain with transition matrix P = ( 1 2 1 2 0 0 1 2 1 2 0 0 0 0 1 2 1 2 0 0 1 2 1 2 ) + ϵ ( − 1
Lattice (group) (2,289 words) [view diff] exact match in snippet view article
different bases B will generate different lattices. However, if the transition matrix T between the bases is in G L n ( R ) {\displaystyle \mathrm {GL}
N! conjecture (561 words) [view diff] exact match in snippet view article find links to article
so-called q,t-Kostka polynomials are the coefficients of a resulting transition matrix. Macdonald conjectured that they are polynomials in q and t, with
Continuous-time Markov chain (4,240 words) [view diff] exact match in snippet view article find links to article
situation for discrete-time Markov chains, where all row sums of the transition matrix equal unity. Now, let X : T → S Ω {\displaystyle X:T\to S^{\Omega
Electron orbital imaging (1,374 words) [view diff] exact match in snippet view article find links to article
system, respectively. If q is small then the Taylor expansion of the transition matrix eiq·r implies that only the first (dipole) term in the expansion is
Detailed balance (5,752 words) [view diff] exact match in snippet view article find links to article
states into appropriately-sized degenerate sub-states. For a Markov transition matrix and a stationary distribution, the detailed balance equations may
Kemeny's constant (630 words) [view diff] exact match in snippet view article find links to article
Markov chain-based methods. For a finite ergodic Markov chain with transition matrix P and invariant distribution π, write mij for the mean first passage
W. K. Hastings (382 words) [view diff] case mismatch in snippet view article find links to article
(now at York University), whose 1970 dissertation "The Choice Of Transition Matrix In Monte Carlo Sampling Methods Using Markov Chains" developed the
Time-series segmentation (665 words) [view diff] exact match in snippet view article find links to article
involve placing hierarchical Dirichlet process priors over the HMM transition matrix. Step detection Keogh, Eamonn, et al. "Segmenting time series: A survey
Parrondo's paradox (2,793 words) [view diff] exact match in snippet view article find links to article
In fact, Game B is a Markov chain, and an analysis of its state transition matrix (again with M=3) shows that the steady state probability of using
Noisy-channel coding theorem (2,786 words) [view diff] exact match in snippet view article find links to article
to the sender and receiver. It is also assumed that one knows the transition matrix p ( y | x ) {\displaystyle p(y|x)} for the channel being used. A message
Random walk closeness centrality (1,385 words) [view diff] exact match in snippet view article find links to article
denoted by j=1, …, n; and a random walk process on this network with a transition matrix M. The m i j {\displaystyle m_{ij}} element of M describes the probability
Finite-state machine (4,528 words) [view diff] exact match in snippet view article find links to article
probability pij. These probabilities can be exhibited in the form of a transition matrix" (Kemeny (1959), p. 384) Finite Markov-chain processes are also known
Mihir Chowdhury (1,485 words) [view diff] case mismatch in snippet view article find links to article
Photon-Molecule Interaction: A Symmetry-Conservation-Based Approach Bypassing Transition Matrix Elements". J. Chem. Educ. 73 (8): 743. Bibcode:1996JChEd..73..743C
Electronic band structure (4,835 words) [view diff] exact match in snippet view article find links to article
Green's function method, finds the stationary values of the inverse transition matrix T rather than the Hamiltonian. A variational implementation was suggested
Aphonopelma hollyi (793 words) [view diff] exact match in snippet view article find links to article
 43–63. Hamilton, Donna E. (2008). "Ch. 3. Using radio telemetry and transition matrix modeling to study the behavioural ecology of cryptic animals: An example
Hedge (finance) (4,315 words) [view diff] exact match in snippet view article
neutral) probability of default, and/or (portfolio-wide) will use a transition matrix of Bond credit ratings to estimate the (actuarial) probability and
Photoemission orbital tomography (2,480 words) [view diff] exact match in snippet view article find links to article
Planck constant and m {\displaystyle m} is the electron mass. The transition matrix element is given in the dipole approximation, where p → {\displaystyle
Markov switching multifractal (1,572 words) [view diff] exact match in snippet view article find links to article
states in binomial MSM. The Markov dynamics are characterized by the transition matrix A = ( a i , j ) 1 ≤ i , j ≤ d {\displaystyle A=(a_{i,j})_{1\leq i
Genetic drift (6,379 words) [view diff] exact match in snippet view article find links to article
by one, go down by one, or can stay the same. This means that the transition matrix is tridiagonal, which means that mathematical solutions are easier
PostBQP (3,635 words) [view diff] exact match in snippet view article find links to article
G(n) denote the total number of gates. Represent the ith gate by its transition matrix Ai (a real unitary 2 B × 2 B {\displaystyle 2^{B}\times 2^{B}} matrix)
Algebraic Riccati equation (1,517 words) [view diff] exact match in snippet view article find links to article
variables, u is a k × 1 vector of control variables, A is the n × n state transition matrix, B is the n × k matrix of control multipliers, Q (n × n) is a symmetric
Operator (physics) (3,595 words) [view diff] exact match in snippet view article
operators are linear, the matrix is a linear transformation (aka transition matrix) between bases. Each basis element ϕ j {\displaystyle \phi _{j}} can
Blahut–Arimoto algorithm (1,334 words) [view diff] exact match in snippet view article find links to article
Q=(q_{ji})} is a m × n {\displaystyle m\times n} matrix that behaves like a transition matrix from Y {\displaystyle Y} to X {\displaystyle X} with respect to the
Bhabha scattering (1,047 words) [view diff] exact match in snippet view article find links to article
Both the scattering and annihilation diagrams contribute to the transition matrix element. By letting k and k' represent the four-momentum of the positron
Cyclic succession (1,042 words) [view diff] exact match in snippet view article find links to article
ecology. The cyclic model of succession can be displayed in terms of a transition matrix. Based on the Markov chain, the matrix describes the likelihood of
Quantum point contact (2,031 words) [view diff] exact match in snippet view article find links to article
_{n,m}|T_{n,m}|^{2}} , where T n , m {\displaystyle T_{n,m}} is the transition matrix which incorporates non-zero probabilities of transmission from mode
Connection form (4,630 words) [view diff] exact match in snippet view article find links to article
passing from one frame to another involves the derivatives of the transition matrix g. If {Up} is an open covering of M, and each Up is equipped with
Richardson–Lucy deconvolution (2,155 words) [view diff] exact match in snippet view article find links to article
sources, thus the observed image can be represented in terms of a transition matrix p operating on an underlying image: d i = ∑ j p i , j u j {\displaystyle
Electric power transmission (9,802 words) [view diff] exact match in snippet view article find links to article
is that A = D = 1 per unit, B = Z Ohms, and C = 0. The associated transition matrix for this approximation is therefore: [ V S I S ] = [ 1 Z 0 1 ] [ V
Prisoner's dilemma (9,520 words) [view diff] exact match in snippet view article find links to article
strategy vector of Y (where the indices are from Y's point of view), a transition matrix M may be defined for X whose ij-th entry is the probability that the
Markov chain Monte Carlo (8,537 words) [view diff] exact match in snippet view article find links to article
{\displaystyle n_{\text{burn}}} is calculated using eigenvalue analysis of the transition matrix to estimate the number of initial iterations needed for the Markov
2009 British Columbia general election (1,032 words) [view diff] case mismatch in snippet view article find links to article
Election Prediction Project - BC 2009 UBC ESM Election Prediction Voter Transition Matrix TrendLines Research Weekly chart tracking of the Federal & BC seat
Multidimensional network (6,972 words) [view diff] exact match in snippet view article find links to article
network. Random walkers explore the network according to a special transition matrix and their dynamics is governed by a random walk master equation. It
Beta decay transition (2,080 words) [view diff] exact match in snippet view article find links to article
Rule says that the transition rate W {\displaystyle W} is given by a transition matrix element (or "amplitude") M i , f {\displaystyle M_{i,f}} weighted
Models of DNA evolution (6,331 words) [view diff] exact match in snippet view article find links to article
{\displaystyle E_{1},E_{2},E_{3},E_{4}} are the states, then the transition matrix P ( t ) = ( P i j ( t ) ) {\displaystyle P(t)={\big (}P_{ij}(t){\big
Inertial manifold (1,941 words) [view diff] exact match in snippet view article find links to article
system can be written in terms of a semigroup operator, or state transition matrix, S : H → H {\displaystyle S:H\to H} such that u ( t ) = S ( t ) u
Kazhdan–Lusztig polynomial (3,330 words) [view diff] exact match in snippet view article find links to article
Lusztig 1980a). The representation had two natural bases, and the transition matrix between these two bases is essentially given by the Kazhdan–Lusztig
Information bottleneck method (3,659 words) [view diff] exact match in snippet view article find links to article
present method, joint sample probabilities are found by use of a Markov transition matrix method and this has some mathematical synergy with the bottleneck
Exponentiation (13,629 words) [view diff] exact match in snippet view article find links to article
after n time steps. The matrix power A n {\displaystyle A^{n}} is the transition matrix between the state now and the state at a time n steps in the future
Substitution model (8,854 words) [view diff] exact match in snippet view article find links to article
by the rate matrix Q: π Q = 0 . {\displaystyle \pi \,Q=0\,.} The transition matrix function is a function from the branch lengths (in some units of time
Nonlinear dimensionality reduction (6,112 words) [view diff] exact match in snippet view article find links to article
is drawn between the diffusion operator on a manifold and a Markov transition matrix operating on functions defined on the graph whose nodes were sampled
Action potential (16,451 words) [view diff] exact match in snippet view article find links to article
all this is that the kinetics of the NaV channels are governed by a transition matrix whose rates are voltage-dependent in a complicated way. Since these
Expander graph (5,344 words) [view diff] exact match in snippet view article find links to article
results. Here one considers the matrix ⁠1/d⁠A, which is the Markov transition matrix of the graph G. Its eigenvalues are between −1 and 1. For not necessarily
Rumor spread in social network (1,837 words) [view diff] exact match in snippet view article find links to article
interact with each other, and one of them will change its state. The transition matrix depends on the number of ties of node i and node j, as well as the
Matrix differential equation (2,732 words) [view diff] exact match in snippet view article find links to article
variables), the stability conditions that the two eigenvalues of the transition matrix A each have a negative real part are equivalent to the conditions
Alpha beta filter (2,352 words) [view diff] exact match in snippet view article find links to article
following specializations and simplifications. The discrete state transition matrix A is a square matrix of dimension 2, with all main diagonal terms
Financial risk management (8,549 words) [view diff] exact match in snippet view article find links to article
at a portfolio level — e.g. for credit-VaR — analysts will use a transition matrix of these to estimate the probability and impact of a "credit migration"
Grönwall's inequality (3,413 words) [view diff] exact match in snippet view article find links to article
lemma that gives upper and lower bounds to the norm of the state transition matrix. Halanay inequality. A similar inequality to Gronwall's lemma that
Logarithmic norm (2,507 words) [view diff] exact match in snippet view article find links to article
Grönwall's lemma. In fact, it can be shown that the norm of the state transition matrix Φ ( t , t 0 ) {\displaystyle \Phi (t,t_{0})} associated to the differential
Two-photon circular dichroism (2,642 words) [view diff] exact match in snippet view article find links to article
T_{\rho \sigma }^{+,0f}(\omega _{0f})} (including electric quadrupole transition matrix elements, in the velocity formulation). The double L-scan is an experimental
Forward–backward algorithm (5,708 words) [view diff] exact match in snippet view article find links to article
and the probability of transitioning to the other state is 30%. The transition matrix is then: T = ( 0.7 0.3 0.3 0.7 ) {\displaystyle \mathbf {T} ={\begin{pmatrix}0
Perron–Frobenius theorem (8,215 words) [view diff] exact match in snippet view article find links to article
chain to its stationary distribution, formulated in terms of the transition matrix of the chain; see, for example, the article on the subshift of finite
Symmetry of diatomic molecules (7,820 words) [view diff] exact match in snippet view article find links to article
(ortho - para) transitions in a homonuclear diatomic molecule. The transition matrix elements for pure vibrational transition are μ v , v ′ = ⟨ v ′ | μ
Fully irreducible automorphism (2,129 words) [view diff] exact match in snippet view article find links to article
=\lambda (\varphi )} is equal to the Perron–Frobenius eigenvalue of the transition matrix of any train track representative of φ {\displaystyle \varphi } .
Separation principle in stochastic control (4,925 words) [view diff] exact match in snippet view article find links to article
setting u = 0 {\displaystyle u=0} and Φ {\displaystyle \Phi } is the transition matrix function. By linearity, x ^ ( t ) = E ⁡ { x ( t ) ∣ Y t } {\displaystyle