Find link
language:
af: Afrikaans
als: Alemannisch
[Alemannic]
am: አማርኛ
[Amharic]
an: aragonés
[Aragonese]
ar: العربية
[Arabic]
arz: مصرى
[Egyptian Arabic]
as: অসমীয়া
[Assamese]
ast: asturianu
[Asturian]
az: azərbaycanca
[Azerbaijani]
azb: تۆرکجه
[Southern Azerbaijani]
ba: башҡортса
[Bashkir]
bar: Boarisch
[Bavarian]
bat-smg: žemaitėška
[Samogitian]
be: беларуская
[Belarusian]
be-tarask: беларуская (тарашкевіца)
[Belarusian (Taraškievica)]
bg: български
[Bulgarian]
bn: বাংলা
[Bengali]
bpy: বিষ্ণুপ্রিয়া মণিপুরী
[Bishnupriya Manipuri]
br: brezhoneg
[Breton]
bs: bosanski
[Bosnian]
bug: ᨅᨔ ᨕᨘᨁᨗ
[Buginese]
ca: català
[Catalan]
ce: нохчийн
[Chechen]
ceb: Cebuano
ckb: کوردیی ناوەندی
[Kurdish (Sorani)]
cs: čeština
[Czech]
cv: Чӑвашла
[Chuvash]
cy: Cymraeg
[Welsh]
da: dansk
[Danish]
de: Deutsch
[German]
el: Ελληνικά
[Greek]
en: English
eo: Esperanto
es: español
[Spanish]
et: eesti
[Estonian]
eu: euskara
[Basque]
fa: فارسی
[Persian]
fi: suomi
[Finnish]
fo: føroyskt
[Faroese]
fr: français
[French]
fy: Frysk
[West Frisian]
ga: Gaeilge
[Irish]
gd: Gàidhlig
[Scottish Gaelic]
gl: galego
[Galician]
gu: ગુજરાતી
[Gujarati]
he: עברית
[Hebrew]
hi: हिन्दी
[Hindi]
hr: hrvatski
[Croatian]
hsb: hornjoserbsce
[Upper Sorbian]
ht: Kreyòl ayisyen
[Haitian]
hu: magyar
[Hungarian]
hy: Հայերեն
[Armenian]
ia: interlingua
[Interlingua]
id: Bahasa Indonesia
[Indonesian]
io: Ido
is: íslenska
[Icelandic]
it: italiano
[Italian]
ja: 日本語
[Japanese]
jv: Basa Jawa
[Javanese]
ka: ქართული
[Georgian]
kk: қазақша
[Kazakh]
kn: ಕನ್ನಡ
[Kannada]
ko: 한국어
[Korean]
ku: Kurdî
[Kurdish (Kurmanji)]
ky: Кыргызча
[Kirghiz]
la: Latina
[Latin]
lb: Lëtzebuergesch
[Luxembourgish]
li: Limburgs
[Limburgish]
lmo: lumbaart
[Lombard]
lt: lietuvių
[Lithuanian]
lv: latviešu
[Latvian]
map-bms: Basa Banyumasan
[Banyumasan]
mg: Malagasy
min: Baso Minangkabau
[Minangkabau]
mk: македонски
[Macedonian]
ml: മലയാളം
[Malayalam]
mn: монгол
[Mongolian]
mr: मराठी
[Marathi]
mrj: кырык мары
[Hill Mari]
ms: Bahasa Melayu
[Malay]
my: မြန်မာဘာသာ
[Burmese]
mzn: مازِرونی
[Mazandarani]
nah: Nāhuatl
[Nahuatl]
nap: Napulitano
[Neapolitan]
nds: Plattdüütsch
[Low Saxon]
ne: नेपाली
[Nepali]
new: नेपाल भाषा
[Newar]
nl: Nederlands
[Dutch]
nn: norsk nynorsk
[Norwegian (Nynorsk)]
no: norsk bokmål
[Norwegian (Bokmål)]
oc: occitan
[Occitan]
or: ଓଡ଼ିଆ
[Oriya]
os: Ирон
[Ossetian]
pa: ਪੰਜਾਬੀ
[Eastern Punjabi]
pl: polski
[Polish]
pms: Piemontèis
[Piedmontese]
pnb: پنجابی
[Western Punjabi]
pt: português
[Portuguese]
qu: Runa Simi
[Quechua]
ro: română
[Romanian]
ru: русский
[Russian]
sa: संस्कृतम्
[Sanskrit]
sah: саха тыла
[Sakha]
scn: sicilianu
[Sicilian]
sco: Scots
sh: srpskohrvatski / српскохрватски
[Serbo-Croatian]
si: සිංහල
[Sinhalese]
simple: Simple English
sk: slovenčina
[Slovak]
sl: slovenščina
[Slovenian]
sq: shqip
[Albanian]
sr: српски / srpski
[Serbian]
su: Basa Sunda
[Sundanese]
sv: svenska
[Swedish]
sw: Kiswahili
[Swahili]
ta: தமிழ்
[Tamil]
te: తెలుగు
[Telugu]
tg: тоҷикӣ
[Tajik]
th: ไทย
[Thai]
tl: Tagalog
tr: Türkçe
[Turkish]
tt: татарча/tatarça
[Tatar]
uk: українська
[Ukrainian]
ur: اردو
[Urdu]
uz: oʻzbekcha/ўзбекча
[Uzbek]
vec: vèneto
[Venetian]
vi: Tiếng Việt
[Vietnamese]
vo: Volapük
wa: walon
[Walloon]
war: Winaray
[Waray]
yi: ייִדיש
[Yiddish]
yo: Yorùbá
[Yoruba]
zh: 中文
[Chinese]
zh-min-nan: Bân-lâm-gú
[Min Nan]
zh-yue: 粵語
[Cantonese]
jump to random article
Find link is a tool written by Edward Betts .
searching for Tarjan's algorithm 11 found (13 total)
alternate case: tarjan's algorithm
Dominator (graph theory)
(1,131 words)
[view diff]
no match in snippet
view article
In computer science, a node d of a control-flow graph dominates a node n if every path from the entry node to n must go through d. Notationally, this is
Tarjan's off-line lowest common ancestors algorithm
(583 words)
[view diff]
exact match in snippet
view article
find links to article
named after Robert Tarjan, who discovered the technique in 1979. Tarjan's algorithm is an offline algorithm; that is, unlike other lowest common ancestor
Tarjan's strongly connected components algorithm
(1,711 words)
[view diff]
case mismatch in snippet
view article
find links to article
doi:10.1007/978-3-319-06410-9_25, ISBN 978-3-319-06409-3 "Lecture 19: Tarjan's Algorithm for Identifying Strongly Connected Components in the Dependency Graph"
Path-based strong component algorithm
(612 words)
[view diff]
exact match in snippet
view article
find links to article
final vertex of its component. However, in place of the stack P, Tarjan's algorithm uses a vertex-indexed array of preorder numbers, assigned in the order
Strongly connected component
(1,639 words)
[view diff]
exact match in snippet
view article
find links to article
path-based strong component algorithm uses a depth-first search, like Tarjan's algorithm , but with two stacks. One of the stacks is used to keep track of the
Biconnected component
(1,389 words)
[view diff]
exact match in snippet
view article
find links to article
A demo of Tarjan's algorithm to find cut vertices. D denotes depth and L denotes lowpoint.
Control-flow graph
(1,548 words)
[view diff]
exact match in snippet
view article
find links to article
The dominator tree can be calculated efficiently using Lengauer–Tarjan's algorithm . A postdominator tree is analogous to the dominator tree. This tree
Strong connectivity augmentation
(1,276 words)
[view diff]
exact match in snippet
view article
find links to article
ISBN 978-1-61197-646-5 Raghavan, S. (2005), "A note on Eswaran and Tarjan's algorithm for the strong connectivity augmentation problem", in Golden, Bruce;
Planarity testing
(1,818 words)
[view diff]
exact match in snippet
view article
find links to article
planarity testing algorithm in 1974. An implementation of Hopcroft and Tarjan's algorithm is provided in the Library of Efficient Data types and Algorithms
Bipolar orientation
(1,839 words)
[view diff]
exact match in snippet
view article
find links to article
all vertices v other than s. Once these numbers have been computed, Tarjan's algorithm performs a second traversal of the depth-first search tree, maintaining
2-satisfiability
(9,112 words)
[view diff]
exact match in snippet
view article
find links to article
are generated by Kosaraju's algorithm in topological order and by Tarjan's algorithm in reverse topological order. For each component in the reverse topological