Find link
language:
af: Afrikaans
als: Alemannisch
[Alemannic]
am: አማርኛ
[Amharic]
an: aragonés
[Aragonese]
ar: العربية
[Arabic]
arz: مصرى
[Egyptian Arabic]
as: অসমীয়া
[Assamese]
ast: asturianu
[Asturian]
az: azərbaycanca
[Azerbaijani]
azb: تۆرکجه
[Southern Azerbaijani]
ba: башҡортса
[Bashkir]
bar: Boarisch
[Bavarian]
bat-smg: žemaitėška
[Samogitian]
be: беларуская
[Belarusian]
be-tarask: беларуская (тарашкевіца)
[Belarusian (Taraškievica)]
bg: български
[Bulgarian]
bn: বাংলা
[Bengali]
bpy: বিষ্ণুপ্রিয়া মণিপুরী
[Bishnupriya Manipuri]
br: brezhoneg
[Breton]
bs: bosanski
[Bosnian]
bug: ᨅᨔ ᨕᨘᨁᨗ
[Buginese]
ca: català
[Catalan]
ce: нохчийн
[Chechen]
ceb: Cebuano
ckb: کوردیی ناوەندی
[Kurdish (Sorani)]
cs: čeština
[Czech]
cv: Чӑвашла
[Chuvash]
cy: Cymraeg
[Welsh]
da: dansk
[Danish]
de: Deutsch
[German]
el: Ελληνικά
[Greek]
en: English
eo: Esperanto
es: español
[Spanish]
et: eesti
[Estonian]
eu: euskara
[Basque]
fa: فارسی
[Persian]
fi: suomi
[Finnish]
fo: føroyskt
[Faroese]
fr: français
[French]
fy: Frysk
[West Frisian]
ga: Gaeilge
[Irish]
gd: Gàidhlig
[Scottish Gaelic]
gl: galego
[Galician]
gu: ગુજરાતી
[Gujarati]
he: עברית
[Hebrew]
hi: हिन्दी
[Hindi]
hr: hrvatski
[Croatian]
hsb: hornjoserbsce
[Upper Sorbian]
ht: Kreyòl ayisyen
[Haitian]
hu: magyar
[Hungarian]
hy: Հայերեն
[Armenian]
ia: interlingua
[Interlingua]
id: Bahasa Indonesia
[Indonesian]
io: Ido
is: íslenska
[Icelandic]
it: italiano
[Italian]
ja: 日本語
[Japanese]
jv: Basa Jawa
[Javanese]
ka: ქართული
[Georgian]
kk: қазақша
[Kazakh]
kn: ಕನ್ನಡ
[Kannada]
ko: 한국어
[Korean]
ku: Kurdî
[Kurdish (Kurmanji)]
ky: Кыргызча
[Kirghiz]
la: Latina
[Latin]
lb: Lëtzebuergesch
[Luxembourgish]
li: Limburgs
[Limburgish]
lmo: lumbaart
[Lombard]
lt: lietuvių
[Lithuanian]
lv: latviešu
[Latvian]
map-bms: Basa Banyumasan
[Banyumasan]
mg: Malagasy
min: Baso Minangkabau
[Minangkabau]
mk: македонски
[Macedonian]
ml: മലയാളം
[Malayalam]
mn: монгол
[Mongolian]
mr: मराठी
[Marathi]
mrj: кырык мары
[Hill Mari]
ms: Bahasa Melayu
[Malay]
my: မြန်မာဘာသာ
[Burmese]
mzn: مازِرونی
[Mazandarani]
nah: Nāhuatl
[Nahuatl]
nap: Napulitano
[Neapolitan]
nds: Plattdüütsch
[Low Saxon]
ne: नेपाली
[Nepali]
new: नेपाल भाषा
[Newar]
nl: Nederlands
[Dutch]
nn: norsk nynorsk
[Norwegian (Nynorsk)]
no: norsk bokmål
[Norwegian (Bokmål)]
oc: occitan
[Occitan]
or: ଓଡ଼ିଆ
[Oriya]
os: Ирон
[Ossetian]
pa: ਪੰਜਾਬੀ
[Eastern Punjabi]
pl: polski
[Polish]
pms: Piemontèis
[Piedmontese]
pnb: پنجابی
[Western Punjabi]
pt: português
[Portuguese]
qu: Runa Simi
[Quechua]
ro: română
[Romanian]
ru: русский
[Russian]
sa: संस्कृतम्
[Sanskrit]
sah: саха тыла
[Sakha]
scn: sicilianu
[Sicilian]
sco: Scots
sh: srpskohrvatski / српскохрватски
[Serbo-Croatian]
si: සිංහල
[Sinhalese]
simple: Simple English
sk: slovenčina
[Slovak]
sl: slovenščina
[Slovenian]
sq: shqip
[Albanian]
sr: српски / srpski
[Serbian]
su: Basa Sunda
[Sundanese]
sv: svenska
[Swedish]
sw: Kiswahili
[Swahili]
ta: தமிழ்
[Tamil]
te: తెలుగు
[Telugu]
tg: тоҷикӣ
[Tajik]
th: ไทย
[Thai]
tl: Tagalog
tr: Türkçe
[Turkish]
tt: татарча/tatarça
[Tatar]
uk: українська
[Ukrainian]
ur: اردو
[Urdu]
uz: oʻzbekcha/ўзбекча
[Uzbek]
vec: vèneto
[Venetian]
vi: Tiếng Việt
[Vietnamese]
vo: Volapük
wa: walon
[Walloon]
war: Winaray
[Waray]
yi: ייִדיש
[Yiddish]
yo: Yorùbá
[Yoruba]
zh: 中文
[Chinese]
zh-min-nan: Bân-lâm-gú
[Min Nan]
zh-yue: 粵語
[Cantonese]
jump to random article
Find link is a tool written by Edward Betts .
searching for Mutual recursion 11 found (23 total)
alternate case: mutual recursion
Bekić's theorem
(1,182 words)
[view diff]
exact match in snippet
view article
find links to article
Bekić's lemma is a theorem about fixed-points which allows splitting a mutual recursion into recursions on one variable at a time. It was created by Austrian
Multi-pass compiler
(628 words)
[view diff]
exact match in snippet
view article
find links to article
Multiple passes obviate the need for forward declarations, allowing mutual recursion to be implemented elegantly. The prime examples of languages requiring
Gprof
(1,050 words)
[view diff]
exact match in snippet
view article
find links to article
(estimated as 30%-260%) for higher-order or object-oriented programs. Mutual recursion and non-trivial cycles are not resolvable by the gprof approach (context-insensitive
Second-order logic
(4,502 words)
[view diff]
exact match in snippet
view article
find links to article
second-order logic. More expressive fragments are defined for any k > 0 by mutual recursion : Σ k + 1 1 {\displaystyle \Sigma _{k+1}^{1}} has the form ∃ R 0 … ∃
This (computer programming)
(3,119 words)
[view diff]
exact match in snippet
view article
derived class calls the same method in a base class, or in cases of mutual recursion . The fragile base class problem has been blamed on open recursion,
Pascal (programming language)
(8,513 words)
[view diff]
exact match in snippet
view article
declarations to define pointer types, or when record declarations led to mutual recursion , or when an identifier may or may not have been used in an enumeration
Scope (computer science)
(10,546 words)
[view diff]
exact match in snippet
view article
them, and requires forward declaration in some cases, notably for mutual recursion . In other languages, such as Python, a name's scope begins at the start
List of Steins;Gate 0 episodes
(421 words)
[view diff]
case mismatch in snippet
view article
find links to article
bringing Rintaro's time with Amadeus to an end. 12 "Mother Goose of Mutual Recursion : Recursive Mother Goose" Transliteration: "Sōgosaiki no Mazā Gūsu"
Let expression
(5,006 words)
[view diff]
exact match in snippet
view article
find links to article
z)\ (Y\ (\lambda x.y))} This approach is then generalized to support mutual recursion . A mutually recursive let expression may be composed by rearranging
Lambda lifting
(8,423 words)
[view diff]
exact match in snippet
view article
find links to article
allow mutual recursion , which is, in a sense, more lifted than is supported in lambda calculus. Lambda calculus does not support mutual recursion and only
Ordinal collapsing function
(12,608 words)
[view diff]
exact match in snippet
view article
find links to article
( α ) {\displaystyle \Psi _{\pi }^{\xi }(\alpha )} are defined in mutual recursion in the following way: M0 = K ∩ L i m {\displaystyle K\cap {\mathsf