Find link
language:
af: Afrikaans
als: Alemannisch
[Alemannic]
am: አማርኛ
[Amharic]
an: aragonés
[Aragonese]
ar: العربية
[Arabic]
arz: مصرى
[Egyptian Arabic]
as: অসমীয়া
[Assamese]
ast: asturianu
[Asturian]
az: azərbaycanca
[Azerbaijani]
azb: تۆرکجه
[Southern Azerbaijani]
ba: башҡортса
[Bashkir]
bar: Boarisch
[Bavarian]
bat-smg: žemaitėška
[Samogitian]
be: беларуская
[Belarusian]
be-tarask: беларуская (тарашкевіца)
[Belarusian (Taraškievica)]
bg: български
[Bulgarian]
bn: বাংলা
[Bengali]
bpy: বিষ্ণুপ্রিয়া মণিপুরী
[Bishnupriya Manipuri]
br: brezhoneg
[Breton]
bs: bosanski
[Bosnian]
bug: ᨅᨔ ᨕᨘᨁᨗ
[Buginese]
ca: català
[Catalan]
ce: нохчийн
[Chechen]
ceb: Cebuano
ckb: کوردیی ناوەندی
[Kurdish (Sorani)]
cs: čeština
[Czech]
cv: Чӑвашла
[Chuvash]
cy: Cymraeg
[Welsh]
da: dansk
[Danish]
de: Deutsch
[German]
el: Ελληνικά
[Greek]
en: English
eo: Esperanto
es: español
[Spanish]
et: eesti
[Estonian]
eu: euskara
[Basque]
fa: فارسی
[Persian]
fi: suomi
[Finnish]
fo: føroyskt
[Faroese]
fr: français
[French]
fy: Frysk
[West Frisian]
ga: Gaeilge
[Irish]
gd: Gàidhlig
[Scottish Gaelic]
gl: galego
[Galician]
gu: ગુજરાતી
[Gujarati]
he: עברית
[Hebrew]
hi: हिन्दी
[Hindi]
hr: hrvatski
[Croatian]
hsb: hornjoserbsce
[Upper Sorbian]
ht: Kreyòl ayisyen
[Haitian]
hu: magyar
[Hungarian]
hy: Հայերեն
[Armenian]
ia: interlingua
[Interlingua]
id: Bahasa Indonesia
[Indonesian]
io: Ido
is: íslenska
[Icelandic]
it: italiano
[Italian]
ja: 日本語
[Japanese]
jv: Basa Jawa
[Javanese]
ka: ქართული
[Georgian]
kk: қазақша
[Kazakh]
kn: ಕನ್ನಡ
[Kannada]
ko: 한국어
[Korean]
ku: Kurdî
[Kurdish (Kurmanji)]
ky: Кыргызча
[Kirghiz]
la: Latina
[Latin]
lb: Lëtzebuergesch
[Luxembourgish]
li: Limburgs
[Limburgish]
lmo: lumbaart
[Lombard]
lt: lietuvių
[Lithuanian]
lv: latviešu
[Latvian]
map-bms: Basa Banyumasan
[Banyumasan]
mg: Malagasy
min: Baso Minangkabau
[Minangkabau]
mk: македонски
[Macedonian]
ml: മലയാളം
[Malayalam]
mn: монгол
[Mongolian]
mr: मराठी
[Marathi]
mrj: кырык мары
[Hill Mari]
ms: Bahasa Melayu
[Malay]
my: မြန်မာဘာသာ
[Burmese]
mzn: مازِرونی
[Mazandarani]
nah: Nāhuatl
[Nahuatl]
nap: Napulitano
[Neapolitan]
nds: Plattdüütsch
[Low Saxon]
ne: नेपाली
[Nepali]
new: नेपाल भाषा
[Newar]
nl: Nederlands
[Dutch]
nn: norsk nynorsk
[Norwegian (Nynorsk)]
no: norsk bokmål
[Norwegian (Bokmål)]
oc: occitan
[Occitan]
or: ଓଡ଼ିଆ
[Oriya]
os: Ирон
[Ossetian]
pa: ਪੰਜਾਬੀ
[Eastern Punjabi]
pl: polski
[Polish]
pms: Piemontèis
[Piedmontese]
pnb: پنجابی
[Western Punjabi]
pt: português
[Portuguese]
qu: Runa Simi
[Quechua]
ro: română
[Romanian]
ru: русский
[Russian]
sa: संस्कृतम्
[Sanskrit]
sah: саха тыла
[Sakha]
scn: sicilianu
[Sicilian]
sco: Scots
sh: srpskohrvatski / српскохрватски
[Serbo-Croatian]
si: සිංහල
[Sinhalese]
simple: Simple English
sk: slovenčina
[Slovak]
sl: slovenščina
[Slovenian]
sq: shqip
[Albanian]
sr: српски / srpski
[Serbian]
su: Basa Sunda
[Sundanese]
sv: svenska
[Swedish]
sw: Kiswahili
[Swahili]
ta: தமிழ்
[Tamil]
te: తెలుగు
[Telugu]
tg: тоҷикӣ
[Tajik]
th: ไทย
[Thai]
tl: Tagalog
tr: Türkçe
[Turkish]
tt: татарча/tatarça
[Tatar]
uk: українська
[Ukrainian]
ur: اردو
[Urdu]
uz: oʻzbekcha/ўзбекча
[Uzbek]
vec: vèneto
[Venetian]
vi: Tiếng Việt
[Vietnamese]
vo: Volapük
wa: walon
[Walloon]
war: Winaray
[Waray]
yi: ייִדיש
[Yiddish]
yo: Yorùbá
[Yoruba]
zh: 中文
[Chinese]
zh-min-nan: Bân-lâm-gú
[Min Nan]
zh-yue: 粵語
[Cantonese]
jump to random article
Find link is a tool written by Edward Betts .
searching for Law of excluded middle 11 found (120 total)
alternate case: law of excluded middle
Intuitionistic logic
(7,741 words)
[view diff]
exact match in snippet
view article
find links to article
Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle
Theory of descriptions
(2,968 words)
[view diff]
exact match in snippet
view article
find links to article
non-gray people). Thus, it appears that this is a case in which the law of excluded middle is violated, which is also an indication that something has gone
Smooth infinitesimal analysis
(615 words)
[view diff]
exact match in snippet
view article
find links to article
that all infinitesimals are equal to zero. One can see that the law of excluded middle cannot hold from the following basic theorem (again, understood
Minimal logic
(3,702 words)
[view diff]
exact match in snippet
view article
find links to article
propositions. Most constructive logics only reject the former, the law of excluded middle . In classical logic, the ex falso laws ( A ∧ ¬ A ) → B , {\displaystyle
Henk van Dongen
(798 words)
[view diff]
exact match in snippet
view article
find links to article
the work of intuitionists such as Brouwer and Bachelard on the law of excluded middle , and the concept of via negativa in theology). Moreover, his view
Philosophia Botanica
(2,883 words)
[view diff]
case mismatch in snippet
view article
find links to article
Taxonomic Literature. Another example of Aristotelian logic is the Law of Excluded Middle (everything is either A or not A) used as the basis for dichotomous
Diaconescu's theorem
(1,906 words)
[view diff]
exact match in snippet
view article
find links to article
following lemma then more sharply isolates the core insight: The law of excluded middle is equivalent to choice in all inhabited sets X ≤ ∗ 2 {\displaystyle
Critica Botanica
(3,066 words)
[view diff]
case mismatch in snippet
view article
find links to article
Taxonomic Literature. Another example of Aristotelian logic is the Law of Excluded Middle (everything is either A or not A) used as the basis for dichotomous
Heyting algebra
(6,245 words)
[view diff]
exact match in snippet
view article
find links to article
1/2∨¬1/2 = 1/2∨(1/2 → 0) = 1/2∨0 = 1/2 falsifies the law of excluded middle . Every topology provides a complete Heyting algebra in the form
Graham Priest bibliography
(3,790 words)
[view diff]
case mismatch in snippet
view article
find links to article
1080/00048408112340371. — (1983). "The Logical Paradoxes and the Law of Excluded Middle ". Philosophical Quarterly. 33 (131): 160–5. doi:10.2307/2218742
Apoha
(1,770 words)
[view diff]
case mismatch in snippet
view article
find links to article
the case of the verbally bound negation, the classical logical Law of Excluded Middle holds, i.e., either x is A, or x is not A, for all x. On the other