language:
Find link is a tool written by Edward Betts.searching for Laplace's equation 29 found (153 total)
alternate case: laplace's equation
Laplace equation for irrotational flow
(436 words)
[view diff]
case mismatch in snippet
view article
find links to article
{v}}=0} , the scalar potential can be substituted back in to find Laplace's Equation for irrotational flow: ∇ 2 ϕ = 0 {\displaystyle \nabla ^{2}\phi =0\Separable partial differential equation (463 words) [view diff] exact match in snippet view article find links to article
multiplied by a product of functions of each individual coordinate. Laplace's equation on R n {\displaystyle {\mathbb {R} }^{n}} is an example of a partialHans Maass (406 words) [view diff] exact match in snippet view article find links to article
automorphic forms in the 1940s (Maaß waveforms). Instead of satisfying Laplace's equation (as analytic functions do), they are eigenfunctions of the invariantBäcklund transform (916 words) [view diff] exact match in snippet view article find links to article
above properties mean, more precisely, that Laplace's equation for u {\displaystyle u} and Laplace's equation for v {\displaystyle v} are the integrabilityAtmospheric tide (3,216 words) [view diff] no match in snippet view article find links to article
Atmospheric tides are global-scale periodic oscillations of the atmosphere. In many ways they are analogous to ocean tides. They can be excited by: TheOblate spheroidal coordinates (3,467 words) [view diff] exact match in snippet view article find links to article
As is the case with spherical coordinates and spherical harmonics, Laplace's equation may be solved by the method of separation of variables to yield solutionsElectromagnetic shielding (2,521 words) [view diff] exact match in snippet view article find links to article
material, then we can define a magnetic scalar potential that satisfies Laplace's equation: H = − ∇ Φ M ∇ 2 Φ M = 0 {\displaystyle {\begin{aligned}\mathbf {H}Bouguer anomaly (759 words) [view diff] exact match in snippet view article find links to article
gravity field Potential theory – Harmonic functions as solutions to Laplace's equation Vertical deflection – Measure of the downward gravitational force'sAnalytical regularization (556 words) [view diff] case mismatch in snippet view article find links to article
S. (5 January 2009). "Regularization of the Dirichlet Problem for Laplace's Equation: Surfaces of Revolution". Electromagnetics. 29 (1). Informa UK Limited:Ivan S. Sokolnikoff (1,131 words) [view diff] case mismatch in snippet view article find links to article
of Wisconsin-Madison. His doctoral dissertation On a Solution of Laplace's Equation with an Application to the Torsion Problem for a Polygon with ReentrantPoisson kernel (1,481 words) [view diff] exact match in snippet view article find links to article
x ) {\displaystyle P[u](t,x)=[P(t,\cdot )*u](x)} is a solution of Laplace's equation in the upper half-plane. One can also show that as t → 0, P[u](t,x)Mixed boundary condition (747 words) [view diff] exact match in snippet view article find links to article
attention the following problem: to determine one function u satisfying Laplace's equation on a certain domain (D) being given, on a part (S) of its boundaryLegendre wavelet (1,206 words) [view diff] exact match in snippet view article find links to article
of the spherical harmonics which are common to all separations of Laplace's equation in spherical polar coordinates. The radial part of the solution variesProlate spheroidal coordinates (1,931 words) [view diff] exact match in snippet view article find links to article
orthogonal coordinates. As is the case with spherical coordinates, Laplace's equation may be solved by the method of separation of variables to yield solutionsCapacity of a set (1,655 words) [view diff] exact match in snippet view article find links to article
for Laplacian Potential theory – Harmonic functions as solutions to Laplace's equation Choquet theory – Area of functional analysis and convex analysis BrélotDistorted Schwarzschild metric (1,553 words) [view diff] exact match in snippet view article find links to article
{\displaystyle R=0} implies Eq(5.d). End derivation. Eq(5.a) is the linear Laplace's equation; that is to say, linear combinations of given solutions are stillDistorted Schwarzschild metric (1,553 words) [view diff] exact match in snippet view article find links to article
{\displaystyle R=0} implies Eq(5.d). End derivation. Eq(5.a) is the linear Laplace's equation; that is to say, linear combinations of given solutions are stillRoxbee Cox, Baron Kings Norton (1,453 words) [view diff] exact match in snippet view article find links to article
the age of 95. Cox, H. R. (1926). A reciprocal function solution of Laplace's equation in two dimensions : with an application to an aerofoil section (PhDQuantitative susceptibility mapping (1,871 words) [view diff] exact match in snippet view article find links to article
The background field can also be directly computed by solving the Laplace's equation with simplified boundary values, as demonstrated in the LaplacianMethod of image charges (2,369 words) [view diff] exact match in snippet view article find links to article
Diagram illustrating the image method for Laplace's equation for a sphere of radius R. The green point is a charge q lying inside the sphere at a distanceSpace charge (3,470 words) [view diff] exact match in snippet view article find links to article
electrons mobility and D {\displaystyle D} the diffusion coefficient. Laplace's equation gives for the field: d E d x = e n ε . {\displaystyle {\frac {dE}{dx}}=e{\fracHydrogeology (8,006 words) [view diff] case mismatch in snippet view article find links to article
equation is a solution to the steady state groundwater flow equation (Laplace's Equation) for flow to a well. Unless there are large sources of water nearbyFokas method (5,052 words) [view diff] exact match in snippet view article find links to article
Suppose that u {\displaystyle u} and v {\displaystyle v} both satisfy Laplace's equation in the interior of a convex bounded polygon Ω {\displaystyle \OmegaMermin–Wagner theorem (4,309 words) [view diff] exact match in snippet view article find links to article
)^{2}}}{\frac {e^{ik\cdot x}}{k^{2}+m^{2}}}.} For small m, G is a solution to Laplace's equation with a point source: ∇ 2 G = δ ( x ) . {\displaystyle \nabla ^{2}G=\deltaLaplacian of the indicator (4,269 words) [view diff] exact match in snippet view article find links to article
membership Potential theory – Harmonic functions as solutions to Laplace's equation Dirac, Paul (1958), Principles of quantum mechanics (4th ed.), OxfordGradient vector flow (3,232 words) [view diff] exact match in snippet view article find links to article
is small, then the solution of each equation is guided entirely by Laplace's equation, for example ∇ 2 u = 0 {\displaystyle \textstyle \nabla ^{2}u=0}Alexander Ramm (4,450 words) [view diff] exact match in snippet view article find links to article
developed for solving interior and exterior boundary value problems for Laplace's equation, analytic formulas for the S-matrix for acoustic and electromagneticSpherical wave transformation (7,711 words) [view diff] exact match in snippet view article find links to article
Bateman, Harry (1912) [1910]. "Some geometrical theorems connected with Laplace's equation and the equation of wave motion". American Journal of MathematicsHistory of Lorentz transformations (15,390 words) [view diff] exact match in snippet view article find links to article
Bateman, Harry (1912) [1910]. "Some geometrical theorems connected with Laplace's equation and the equation of wave motion". American Journal of Mathematics