Find link
language:
af: Afrikaans
als: Alemannisch
[Alemannic]
am: አማርኛ
[Amharic]
an: aragonés
[Aragonese]
ar: العربية
[Arabic]
arz: مصرى
[Egyptian Arabic]
as: অসমীয়া
[Assamese]
ast: asturianu
[Asturian]
az: azərbaycanca
[Azerbaijani]
azb: تۆرکجه
[Southern Azerbaijani]
ba: башҡортса
[Bashkir]
bar: Boarisch
[Bavarian]
bat-smg: žemaitėška
[Samogitian]
be: беларуская
[Belarusian]
be-tarask: беларуская (тарашкевіца)
[Belarusian (Taraškievica)]
bg: български
[Bulgarian]
bn: বাংলা
[Bengali]
bpy: বিষ্ণুপ্রিয়া মণিপুরী
[Bishnupriya Manipuri]
br: brezhoneg
[Breton]
bs: bosanski
[Bosnian]
bug: ᨅᨔ ᨕᨘᨁᨗ
[Buginese]
ca: català
[Catalan]
ce: нохчийн
[Chechen]
ceb: Cebuano
ckb: کوردیی ناوەندی
[Kurdish (Sorani)]
cs: čeština
[Czech]
cv: Чӑвашла
[Chuvash]
cy: Cymraeg
[Welsh]
da: dansk
[Danish]
de: Deutsch
[German]
el: Ελληνικά
[Greek]
en: English
eo: Esperanto
es: español
[Spanish]
et: eesti
[Estonian]
eu: euskara
[Basque]
fa: فارسی
[Persian]
fi: suomi
[Finnish]
fo: føroyskt
[Faroese]
fr: français
[French]
fy: Frysk
[West Frisian]
ga: Gaeilge
[Irish]
gd: Gàidhlig
[Scottish Gaelic]
gl: galego
[Galician]
gu: ગુજરાતી
[Gujarati]
he: עברית
[Hebrew]
hi: हिन्दी
[Hindi]
hr: hrvatski
[Croatian]
hsb: hornjoserbsce
[Upper Sorbian]
ht: Kreyòl ayisyen
[Haitian]
hu: magyar
[Hungarian]
hy: Հայերեն
[Armenian]
ia: interlingua
[Interlingua]
id: Bahasa Indonesia
[Indonesian]
io: Ido
is: íslenska
[Icelandic]
it: italiano
[Italian]
ja: 日本語
[Japanese]
jv: Basa Jawa
[Javanese]
ka: ქართული
[Georgian]
kk: қазақша
[Kazakh]
kn: ಕನ್ನಡ
[Kannada]
ko: 한국어
[Korean]
ku: Kurdî
[Kurdish (Kurmanji)]
ky: Кыргызча
[Kirghiz]
la: Latina
[Latin]
lb: Lëtzebuergesch
[Luxembourgish]
li: Limburgs
[Limburgish]
lmo: lumbaart
[Lombard]
lt: lietuvių
[Lithuanian]
lv: latviešu
[Latvian]
map-bms: Basa Banyumasan
[Banyumasan]
mg: Malagasy
min: Baso Minangkabau
[Minangkabau]
mk: македонски
[Macedonian]
ml: മലയാളം
[Malayalam]
mn: монгол
[Mongolian]
mr: मराठी
[Marathi]
mrj: кырык мары
[Hill Mari]
ms: Bahasa Melayu
[Malay]
my: မြန်မာဘာသာ
[Burmese]
mzn: مازِرونی
[Mazandarani]
nah: Nāhuatl
[Nahuatl]
nap: Napulitano
[Neapolitan]
nds: Plattdüütsch
[Low Saxon]
ne: नेपाली
[Nepali]
new: नेपाल भाषा
[Newar]
nl: Nederlands
[Dutch]
nn: norsk nynorsk
[Norwegian (Nynorsk)]
no: norsk bokmål
[Norwegian (Bokmål)]
oc: occitan
[Occitan]
or: ଓଡ଼ିଆ
[Oriya]
os: Ирон
[Ossetian]
pa: ਪੰਜਾਬੀ
[Eastern Punjabi]
pl: polski
[Polish]
pms: Piemontèis
[Piedmontese]
pnb: پنجابی
[Western Punjabi]
pt: português
[Portuguese]
qu: Runa Simi
[Quechua]
ro: română
[Romanian]
ru: русский
[Russian]
sa: संस्कृतम्
[Sanskrit]
sah: саха тыла
[Sakha]
scn: sicilianu
[Sicilian]
sco: Scots
sh: srpskohrvatski / српскохрватски
[Serbo-Croatian]
si: සිංහල
[Sinhalese]
simple: Simple English
sk: slovenčina
[Slovak]
sl: slovenščina
[Slovenian]
sq: shqip
[Albanian]
sr: српски / srpski
[Serbian]
su: Basa Sunda
[Sundanese]
sv: svenska
[Swedish]
sw: Kiswahili
[Swahili]
ta: தமிழ்
[Tamil]
te: తెలుగు
[Telugu]
tg: тоҷикӣ
[Tajik]
th: ไทย
[Thai]
tl: Tagalog
tr: Türkçe
[Turkish]
tt: татарча/tatarça
[Tatar]
uk: українська
[Ukrainian]
ur: اردو
[Urdu]
uz: oʻzbekcha/ўзбекча
[Uzbek]
vec: vèneto
[Venetian]
vi: Tiếng Việt
[Vietnamese]
vo: Volapük
wa: walon
[Walloon]
war: Winaray
[Waray]
yi: ייִדיש
[Yiddish]
yo: Yorùbá
[Yoruba]
zh: 中文
[Chinese]
zh-min-nan: Bân-lâm-gú
[Min Nan]
zh-yue: 粵語
[Cantonese]
jump to random article
Find link is a tool written by Edward Betts .
searching for Intersection graph 11 found (75 total)
alternate case: intersection graph
List of circle topics
(2,411 words)
[view diff]
exact match in snippet
view article
find links to article
that lie inside a bigger circle and tangent to it Circle graph – Intersection graph of a chord diagram Circle map – Phenomenon in mathsPages displaying
Matching in hypergraphs
(2,606 words)
[view diff]
exact match in snippet
view article
find links to article
its minimum edge coloring number. H has the Helly property, and the intersection graph of H (the simple graph in which the vertices are E and two elements
Hypertree
(622 words)
[view diff]
case mismatch in snippet
view article
find links to article
322390, MR 0709831. McKee, T.A.; McMorris, F.R. (1999), Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications,
Set packing
(1,514 words)
[view diff]
exact match in snippet
view article
find links to article
set contains at most k elements (the k-set packing problem), the intersection graph is (k+1)-claw-free. This is because, if a set intersects some k+1
Helly family
(1,274 words)
[view diff]
exact match in snippet
view article
find links to article
following are equivalent:: 470–471 H has the Helly property, and the intersection graph of H (the simple graph in which the vertices are E and two elements
Split (graph theory)
(1,328 words)
[view diff]
exact match in snippet
view article
split quotient is either complete or bipartite. A circle graph is the intersection graph of a family of chords of a circle. A given graph is a circle graph
Dually chordal graph
(873 words)
[view diff]
case mismatch in snippet
view article
find links to article
0.co;2-m. McKee, Terry A.; McMorris, FR. (1999), Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications.
List of conjectures
(1,461 words)
[view diff]
exact match in snippet
view article
find links to article
counterexample announced 2019 Hirsch conjecture (disproved in 2010) Intersection graph conjecture Kelvin's conjecture Kouchnirenko's conjecture Mertens conjecture
Virgil D. Gligor
(2,117 words)
[view diff]
exact match in snippet
view article
find links to article
co-designed with his student L. Eschenauer, gave rise to a uniform random intersection graph , or simply a random key graph. Its k-connectivity and k-robustness
Mesh generation
(5,909 words)
[view diff]
exact match in snippet
view article
find links to article
cubical mesh by generating an arrangement of surfaces and dualizing the intersection graph ; see spatial twist continuum. Sometimes both the primal mesh and its
List of unsolved problems in mathematics
(20,120 words)
[view diff]
exact match in snippet
view article
find links to article
Chalopin, Jérémie; Gonçalves, Daniel (2009). "Every planar graph is the intersection graph of segments in the plane: extended abstract". In Mitzenmacher, Michael