Find link
language:
af: Afrikaans
als: Alemannisch
[Alemannic]
am: አማርኛ
[Amharic]
an: aragonés
[Aragonese]
ar: العربية
[Arabic]
arz: مصرى
[Egyptian Arabic]
as: অসমীয়া
[Assamese]
ast: asturianu
[Asturian]
az: azərbaycanca
[Azerbaijani]
azb: تۆرکجه
[Southern Azerbaijani]
ba: башҡортса
[Bashkir]
bar: Boarisch
[Bavarian]
bat-smg: žemaitėška
[Samogitian]
be: беларуская
[Belarusian]
be-tarask: беларуская (тарашкевіца)
[Belarusian (Taraškievica)]
bg: български
[Bulgarian]
bn: বাংলা
[Bengali]
bpy: বিষ্ণুপ্রিয়া মণিপুরী
[Bishnupriya Manipuri]
br: brezhoneg
[Breton]
bs: bosanski
[Bosnian]
bug: ᨅᨔ ᨕᨘᨁᨗ
[Buginese]
ca: català
[Catalan]
ce: нохчийн
[Chechen]
ceb: Cebuano
ckb: کوردیی ناوەندی
[Kurdish (Sorani)]
cs: čeština
[Czech]
cv: Чӑвашла
[Chuvash]
cy: Cymraeg
[Welsh]
da: dansk
[Danish]
de: Deutsch
[German]
el: Ελληνικά
[Greek]
en: English
eo: Esperanto
es: español
[Spanish]
et: eesti
[Estonian]
eu: euskara
[Basque]
fa: فارسی
[Persian]
fi: suomi
[Finnish]
fo: føroyskt
[Faroese]
fr: français
[French]
fy: Frysk
[West Frisian]
ga: Gaeilge
[Irish]
gd: Gàidhlig
[Scottish Gaelic]
gl: galego
[Galician]
gu: ગુજરાતી
[Gujarati]
he: עברית
[Hebrew]
hi: हिन्दी
[Hindi]
hr: hrvatski
[Croatian]
hsb: hornjoserbsce
[Upper Sorbian]
ht: Kreyòl ayisyen
[Haitian]
hu: magyar
[Hungarian]
hy: Հայերեն
[Armenian]
ia: interlingua
[Interlingua]
id: Bahasa Indonesia
[Indonesian]
io: Ido
is: íslenska
[Icelandic]
it: italiano
[Italian]
ja: 日本語
[Japanese]
jv: Basa Jawa
[Javanese]
ka: ქართული
[Georgian]
kk: қазақша
[Kazakh]
kn: ಕನ್ನಡ
[Kannada]
ko: 한국어
[Korean]
ku: Kurdî
[Kurdish (Kurmanji)]
ky: Кыргызча
[Kirghiz]
la: Latina
[Latin]
lb: Lëtzebuergesch
[Luxembourgish]
li: Limburgs
[Limburgish]
lmo: lumbaart
[Lombard]
lt: lietuvių
[Lithuanian]
lv: latviešu
[Latvian]
map-bms: Basa Banyumasan
[Banyumasan]
mg: Malagasy
min: Baso Minangkabau
[Minangkabau]
mk: македонски
[Macedonian]
ml: മലയാളം
[Malayalam]
mn: монгол
[Mongolian]
mr: मराठी
[Marathi]
mrj: кырык мары
[Hill Mari]
ms: Bahasa Melayu
[Malay]
my: မြန်မာဘာသာ
[Burmese]
mzn: مازِرونی
[Mazandarani]
nah: Nāhuatl
[Nahuatl]
nap: Napulitano
[Neapolitan]
nds: Plattdüütsch
[Low Saxon]
ne: नेपाली
[Nepali]
new: नेपाल भाषा
[Newar]
nl: Nederlands
[Dutch]
nn: norsk nynorsk
[Norwegian (Nynorsk)]
no: norsk bokmål
[Norwegian (Bokmål)]
oc: occitan
[Occitan]
or: ଓଡ଼ିଆ
[Oriya]
os: Ирон
[Ossetian]
pa: ਪੰਜਾਬੀ
[Eastern Punjabi]
pl: polski
[Polish]
pms: Piemontèis
[Piedmontese]
pnb: پنجابی
[Western Punjabi]
pt: português
[Portuguese]
qu: Runa Simi
[Quechua]
ro: română
[Romanian]
ru: русский
[Russian]
sa: संस्कृतम्
[Sanskrit]
sah: саха тыла
[Sakha]
scn: sicilianu
[Sicilian]
sco: Scots
sh: srpskohrvatski / српскохрватски
[Serbo-Croatian]
si: සිංහල
[Sinhalese]
simple: Simple English
sk: slovenčina
[Slovak]
sl: slovenščina
[Slovenian]
sq: shqip
[Albanian]
sr: српски / srpski
[Serbian]
su: Basa Sunda
[Sundanese]
sv: svenska
[Swedish]
sw: Kiswahili
[Swahili]
ta: தமிழ்
[Tamil]
te: తెలుగు
[Telugu]
tg: тоҷикӣ
[Tajik]
th: ไทย
[Thai]
tl: Tagalog
tr: Türkçe
[Turkish]
tt: татарча/tatarça
[Tatar]
uk: українська
[Ukrainian]
ur: اردو
[Urdu]
uz: oʻzbekcha/ўзбекча
[Uzbek]
vec: vèneto
[Venetian]
vi: Tiếng Việt
[Vietnamese]
vo: Volapük
wa: walon
[Walloon]
war: Winaray
[Waray]
yi: ייִדיש
[Yiddish]
yo: Yorùbá
[Yoruba]
zh: 中文
[Chinese]
zh-min-nan: Bân-lâm-gú
[Min Nan]
zh-yue: 粵語
[Cantonese]
jump to random article
Find link is a tool written by Edward Betts .
searching for Graph automorphism 3 found (17 total)
alternate case: graph automorphism
List of finite simple groups
(1,789 words)
[view diff]
exact match in snippet
view article
find links to article
B1(q) also exists, but is the same as A1(q). B2(q) has a non-trivial graph automorphism when q is a power of 2. This group is obtained from the symplectic
Reductive group
(8,018 words)
[view diff]
exact match in snippet
view article
find links to article
k ¯ {\displaystyle {\overline {k}}} -point of a maximal torus), a graph automorphism (corresponding to an automorphism of the Dynkin diagram), and a field
Network motif
(10,370 words)
[view diff]
exact match in snippet
view article
find links to article
though, there is no efficient (or polynomial time) algorithm for the graph automorphism problem, this problem can be tackled efficiently in practice by McKay's