Find link
language:
af: Afrikaans
als: Alemannisch
[Alemannic]
am: አማርኛ
[Amharic]
an: aragonés
[Aragonese]
ar: العربية
[Arabic]
arz: مصرى
[Egyptian Arabic]
as: অসমীয়া
[Assamese]
ast: asturianu
[Asturian]
az: azərbaycanca
[Azerbaijani]
azb: تۆرکجه
[Southern Azerbaijani]
ba: башҡортса
[Bashkir]
bar: Boarisch
[Bavarian]
bat-smg: žemaitėška
[Samogitian]
be: беларуская
[Belarusian]
be-tarask: беларуская (тарашкевіца)
[Belarusian (Taraškievica)]
bg: български
[Bulgarian]
bn: বাংলা
[Bengali]
bpy: বিষ্ণুপ্রিয়া মণিপুরী
[Bishnupriya Manipuri]
br: brezhoneg
[Breton]
bs: bosanski
[Bosnian]
bug: ᨅᨔ ᨕᨘᨁᨗ
[Buginese]
ca: català
[Catalan]
ce: нохчийн
[Chechen]
ceb: Cebuano
ckb: کوردیی ناوەندی
[Kurdish (Sorani)]
cs: čeština
[Czech]
cv: Чӑвашла
[Chuvash]
cy: Cymraeg
[Welsh]
da: dansk
[Danish]
de: Deutsch
[German]
el: Ελληνικά
[Greek]
en: English
eo: Esperanto
es: español
[Spanish]
et: eesti
[Estonian]
eu: euskara
[Basque]
fa: فارسی
[Persian]
fi: suomi
[Finnish]
fo: føroyskt
[Faroese]
fr: français
[French]
fy: Frysk
[West Frisian]
ga: Gaeilge
[Irish]
gd: Gàidhlig
[Scottish Gaelic]
gl: galego
[Galician]
gu: ગુજરાતી
[Gujarati]
he: עברית
[Hebrew]
hi: हिन्दी
[Hindi]
hr: hrvatski
[Croatian]
hsb: hornjoserbsce
[Upper Sorbian]
ht: Kreyòl ayisyen
[Haitian]
hu: magyar
[Hungarian]
hy: Հայերեն
[Armenian]
ia: interlingua
[Interlingua]
id: Bahasa Indonesia
[Indonesian]
io: Ido
is: íslenska
[Icelandic]
it: italiano
[Italian]
ja: 日本語
[Japanese]
jv: Basa Jawa
[Javanese]
ka: ქართული
[Georgian]
kk: қазақша
[Kazakh]
kn: ಕನ್ನಡ
[Kannada]
ko: 한국어
[Korean]
ku: Kurdî
[Kurdish (Kurmanji)]
ky: Кыргызча
[Kirghiz]
la: Latina
[Latin]
lb: Lëtzebuergesch
[Luxembourgish]
li: Limburgs
[Limburgish]
lmo: lumbaart
[Lombard]
lt: lietuvių
[Lithuanian]
lv: latviešu
[Latvian]
map-bms: Basa Banyumasan
[Banyumasan]
mg: Malagasy
min: Baso Minangkabau
[Minangkabau]
mk: македонски
[Macedonian]
ml: മലയാളം
[Malayalam]
mn: монгол
[Mongolian]
mr: मराठी
[Marathi]
mrj: кырык мары
[Hill Mari]
ms: Bahasa Melayu
[Malay]
my: မြန်မာဘာသာ
[Burmese]
mzn: مازِرونی
[Mazandarani]
nah: Nāhuatl
[Nahuatl]
nap: Napulitano
[Neapolitan]
nds: Plattdüütsch
[Low Saxon]
ne: नेपाली
[Nepali]
new: नेपाल भाषा
[Newar]
nl: Nederlands
[Dutch]
nn: norsk nynorsk
[Norwegian (Nynorsk)]
no: norsk bokmål
[Norwegian (Bokmål)]
oc: occitan
[Occitan]
or: ଓଡ଼ିଆ
[Oriya]
os: Ирон
[Ossetian]
pa: ਪੰਜਾਬੀ
[Eastern Punjabi]
pl: polski
[Polish]
pms: Piemontèis
[Piedmontese]
pnb: پنجابی
[Western Punjabi]
pt: português
[Portuguese]
qu: Runa Simi
[Quechua]
ro: română
[Romanian]
ru: русский
[Russian]
sa: संस्कृतम्
[Sanskrit]
sah: саха тыла
[Sakha]
scn: sicilianu
[Sicilian]
sco: Scots
sh: srpskohrvatski / српскохрватски
[Serbo-Croatian]
si: සිංහල
[Sinhalese]
simple: Simple English
sk: slovenčina
[Slovak]
sl: slovenščina
[Slovenian]
sq: shqip
[Albanian]
sr: српски / srpski
[Serbian]
su: Basa Sunda
[Sundanese]
sv: svenska
[Swedish]
sw: Kiswahili
[Swahili]
ta: தமிழ்
[Tamil]
te: తెలుగు
[Telugu]
tg: тоҷикӣ
[Tajik]
th: ไทย
[Thai]
tl: Tagalog
tr: Türkçe
[Turkish]
tt: татарча/tatarça
[Tatar]
uk: українська
[Ukrainian]
ur: اردو
[Urdu]
uz: oʻzbekcha/ўзбекча
[Uzbek]
vec: vèneto
[Venetian]
vi: Tiếng Việt
[Vietnamese]
vo: Volapük
wa: walon
[Walloon]
war: Winaray
[Waray]
yi: ייִדיש
[Yiddish]
yo: Yorùbá
[Yoruba]
zh: 中文
[Chinese]
zh-min-nan: Bân-lâm-gú
[Min Nan]
zh-yue: 粵語
[Cantonese]
jump to random article
Find link is a tool written by Edward Betts .
searching for Fixed-point subgroup 11 found (16 total)
alternate case: fixed-point subgroup
Complexification (Lie group)
(7,216 words)
[view diff]
no match in snippet
view article
{A={\begin{pmatrix}0&J\\-J&0\end{pmatrix}}.}} Then Sp(n,C) is the fixed point subgroup of the involution θ(g) = A (gt)−1 A−1 of SL(2n,C). It leaves the
System of imprimitivity
(3,055 words)
[view diff]
no match in snippet
view article
find links to article
on the representation obtained by restricting the cocycle Φ to a fixed point subgroup of the action. We consider this case in the next section. A system
Hermitian symmetric space
(7,418 words)
[view diff]
no match in snippet
view article
find links to article
semisimple Lie group, σ an automorphism of H of order 2 and Hσ the fixed point subgroup of σ. Let K be a closed subgroup of H lying between Hσ and its identity
Zonal spherical function
(6,698 words)
[view diff]
no match in snippet
view article
find links to article
Indeed, if τ is the associated period two automorphism of G with fixed point subgroup K, then G = P ⋅ K , {\displaystyle G=P\cdot K,} where P = { g ∈ G
Borel–de Siebenthal theory
(3,339 words)
[view diff]
no match in snippet
view article
find links to article
semisimple Lie group, σ an automorphism of G of period 2 and Gσ the fixed point subgroup of σ. Let K be a closed subgroup of G lying between Gσ and its identity
Mutation (Jordan algebra)
(15,817 words)
[view diff]
no match in snippet
view article
(T_{b})=S_{b^{*}},\,\,\,\theta (W)=(W^{*})^{-1}.}} Let H be the fixed point subgroup of θ in G. Let h {\displaystyle {\mathfrak {h}}} be the fixed point
Kostant's convexity theorem
(1,901 words)
[view diff]
no match in snippet
view article
find links to article
subgroup fixed by σ and containing the identity component of the fixed point subgroup of σ. Thus G/K is a symmetric space of compact type. Let g {\displaystyle
Plancherel theorem for spherical functions
(11,769 words)
[view diff]
no match in snippet
view article
find links to article
with σ. The fixed point subgroup of τσ is a compact real form U of G, intersecting G0 in a maximal compact subgroup K0. The fixed point subgroup of τ is K
Invariant convex cone
(3,569 words)
[view diff]
no match in snippet
view article
find links to article
is a period 2 automorphism σ of the complex symplectic group with fixed point subgroup the real symplectic group. Then x+ = σ(x)^{-1} is an antiautomorphism
Symmetric cone
(16,613 words)
[view diff]
no match in snippet
view article
find links to article
taking adjoints. Let σg =(g*)−1, period 2 automorphism. Thus K is the fixed point subgroup of σ. Let g {\displaystyle {\mathfrak {g}}} be the Lie algebra of
Oscillator representation
(21,532 words)
[view diff]
no match in snippet
view article
find links to article
, {\displaystyle M={\begin{pmatrix}0&1\\1&0\end{pmatrix}},} has fixed point subgroup G since σ ( a b c d ) = ( d ¯ c ¯ b ¯ a ¯ ) . {\displaystyle \sigma