Find link

language:

jump to random article

Find link is a tool written by Edward Betts.

searching for Existential quantification 23 found (77 total)

alternate case: existential quantification

Adequate pointclass (87 words) [view diff] exact match in snippet view article find links to article

is closed under recursive substitution, bounded universal and existential quantification and preimages by recursive functions. Moschovakis, Y. N. (1987)
Czesław Lejewski (1,096 words) [view diff] exact match in snippet view article find links to article
There is one predicate, Fx. There is no need for universal or existential quantification, in the style of Quine in his Methods of Logic. The only possible
Diophantine set (1,475 words) [view diff] exact match in snippet view article find links to article
parameter value. The use of natural numbers both in S and the existential quantification merely reflects the usual applications in computability theory
SNP (complexity) (868 words) [view diff] exact match in snippet view article
universal first-order quantification (over vertices) is allowed. If existential quantification over vertices were also allowed, the resulting complexity class
Empty domain (546 words) [view diff] exact match in snippet view article find links to article
A{\text{ is such that }}A\models \phi [a]} In other words, an existential quantification of the open formula φ is true in a model iff there is some element
Description logic (4,305 words) [view diff] exact match in snippet view article find links to article
of axioms) Concept intersection Universal restrictions Limited existential quantification F L {\displaystyle {\mathcal {FL}}} Frame based description language
Boole's expansion theorem (1,234 words) [view diff] exact match in snippet view article find links to article
{\displaystyle \forall xF=F_{x}\cdot F_{x'}} Existential quantification: The existential quantification of F is defined as: ∃ x F = F x + F x ′ {\displaystyle
Ontological commitment (2,866 words) [view diff] exact match in snippet view article find links to article
using a name or other singular term, or an initial phrase of 'existential quantification', like 'There are some so-and-sos', then one must either (1) admit
Susanna S. Epp (658 words) [view diff] case mismatch in snippet view article find links to article
Eds. Springer Publishing, 2012. Epp, S.S., Proof Issues with Existential Quantification. In Proof and Proving in Mathematics Education: ICMI Study 19
Ramsey sentence (1,604 words) [view diff] exact match in snippet view article find links to article
F_{T}+A_{T}\Leftrightarrow TC} . Requirement 1 is satisfied by RTC in that the existential quantification of the T-terms does not change the logical truth (L-truth) of
Data type (3,407 words) [view diff] exact match in snippet view article find links to article
x of the body f x, i.e. the value is of type f x for every x. Existential quantification written as ∃ x . f ( x ) {\displaystyle \exists x.f(x)} or exists
ATS (programming language) (2,266 words) [view diff] exact match in snippet view article
forall n > 0 To remember: {...} universal quantification [...] existential quantification (... | ...) (proof | value) @(...) flat tuple or variadic function
Louise McNally (386 words) [view diff] case mismatch in snippet view article find links to article
ISBN 978-90-04-37316-7. McNally, Louise (1998). "Existential Sentences without Existential Quantification". Linguistics and Philosophy. 21 (4): 353–392. doi:10.1023/A:1005389330615
Theory of descriptions (2,968 words) [view diff] exact match in snippet view article find links to article
On Russell's analysis, the sentence is to be understood as an existential quantification of the conjunction of three components: There is an x such that:
Predicate functor logic (3,078 words) [view diff] exact match in snippet view article find links to article
subformula contains only negation, conjunction, disjunction, and existential quantification. Distribute the existential quantifiers over the disjuncts in
Interior algebra (3,849 words) [view diff] exact match in snippet view article find links to article
interpreted in the Kripke semantics using monadic universal and existential quantification, respectively, without reference to an accessibility relation
Karp–Lipton theorem (2,273 words) [view diff] exact match in snippet view article find links to article
is equivalent to Furthermore, the circuit can be guessed with existential quantification: Obviously (1) implies (2). If (1) is false, then ¬ ∃ y . ϕ (
Suppes–Lemmon notation (2,010 words) [view diff] exact match in snippet view article find links to article
{\displaystyle Ra} on line a one can cite "a EI" to justify an existential quantification, ( ∃ x ) R x {\displaystyle (\exists x)Rx} . The assumptions are
Vadalog (3,029 words) [view diff] exact match in snippet view article find links to article
{\displaystyle Y} is an ancestor of Z {\displaystyle Z} too. Note the existential quantification in the first position of the ancestor predicate in the first rule
Philosophy of logic (11,722 words) [view diff] exact match in snippet view article find links to article
higher-order logics. Second-order logic, for example, includes existential quantification not just for singular terms but also for predicates. This is often
Quine–Putnam indispensability argument (9,432 words) [view diff] exact match in snippet view article find links to article
commitment. According to Azzouni, the ordinary language equivalent of existential quantification "there is" is often used in sentences without implying ontological
Independence-friendly logic (7,168 words) [view diff] exact match in snippet view article find links to article
on teams which are related to the semantics of universal and existential quantification. Given a team X {\displaystyle X} over a structure M {\displaystyle
History of the function concept (10,688 words) [view diff] exact match in snippet view article find links to article
conjunction, disjunction, negation, universal quantification, and existential quantification]. van Heijenoort summarizes: "A property is definite in Skolem's