All science is either physics or stamp collecting

4 results back to index


pages: 420 words: 124,202

The Most Powerful Idea in the World: A Story of Steam, Industry, and Invention by William Rosen

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, All science is either physics or stamp collecting, barriers to entry, collective bargaining, computer age, Copley Medal, David Ricardo: comparative advantage, decarbonisation, delayed gratification, Fellow of the Royal Society, Flynn Effect, fudge factor, full employment, invisible hand, Isaac Newton, Islamic Golden Age, iterative process, Jacquard loom, James Hargreaves, James Watt: steam engine, John Harrison: Longitude, Joseph Schumpeter, Joseph-Marie Jacquard, knowledge economy, moral hazard, Network effects, Peace of Westphalia, Peter Singer: altruism, QWERTY keyboard, Ralph Waldo Emerson, rent-seeking, Ronald Coase, Simon Kuznets, spinning jenny, the scientific method, The Wealth of Nations by Adam Smith, Thomas Malthus, transaction costs, transcontinental railway, éminence grise

CHAPTER FOUR A VERY GREAT QUANTITY OF HEAT concerning the discovery of fatty earth; the consequences of the deforestation of Europe; the limitations of waterpower; the experimental importance of a Scotsman’s ice cube; and the search for the most valuable jewel in Britain THE GREAT SCIENTIST AND engineer William Thomson, Lord Kelvin, made his reputation on discoveries in basic physics, electricity, and thermodynamics, but he may be remembered just as well for his talent for aphorism. Among the best known of Kelvin’s quotations is the assertion that “all science is either physics or stamp collecting” (while one probably best forgotten is the confident “heavier-than-air flying machines are impossible”). But the most relevant for a history of the Industrial Revolution is this: “the steam engine has done much more for science1 than science has done for the steam engine.” For an aphorism to achieve immortality (at least of the sort certified by Bartlett’s Familiar Quotations), it needs to be both true and simple, and while Kelvin’s is true, it is not simple, but simplistic.


pages: 492 words: 149,259

Big Bang by Simon Singh

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Albert Michelson, All science is either physics or stamp collecting, Andrew Wiles, anthropic principle, Arthur Eddington, Astronomia nova, Brownian motion, carbon-based life, Cepheid variable, Chance favours the prepared mind, Commentariolus, Copley Medal, cosmic abundance, cosmic microwave background, cosmological constant, cosmological principle, dark matter, Dava Sobel, Defenestration of Prague, discovery of penicillin, Dmitri Mendeleev, Edmond Halley, Edward Charles Pickering, Eratosthenes, Ernest Rutherford, Erwin Freundlich, Fellow of the Royal Society, fudge factor, Hans Lippershey, Harlow Shapley and Heber Curtis, Harvard Computers: women astronomers, Henri Poincaré, horn antenna, if you see hoof prints, think horses—not zebras, Index librorum prohibitorum, invention of the telescope, Isaac Newton, John von Neumann, Karl Jansky, Louis Daguerre, Louis Pasteur, luminiferous ether, Magellanic Cloud, Murray Gell-Mann, music of the spheres, Olbers’ paradox, On the Revolutions of the Heavenly Spheres, Paul Erdős, retrograde motion, Richard Feynman, Richard Feynman, scientific mainstream, Simon Singh, Solar eclipse in 1919, Stephen Hawking, the scientific method, Thomas Kuhn: the structure of scientific revolutions, unbiased observer, V2 rocket, Wilhelm Olbers, William of Occam

He was much loved by his colleagues and students, but he was also known as a gruff authoritarian who was prone to temper tantrums and displays of arrogance. For example, according to Rutherford, physics was the only important science. He believed that it provided a deep and meaningful understanding of the universe, whereas all the other sciences were preoccupied with mere measuring and cataloguing. He once stated: ‘All science is either physics or stamp collecting.’ This blinkered comment backfired when the Nobel Committee awarded him the 1908 chemistry prize. Figure 68 The portrait of Ernest Rutherford was taken when he was in his mid-thirties. He had a disdain for chemists, which was not uncommon among physicists. For example, Nobel physicist Wolfgang Pauli was angry when his wife left him for a chemist: ‘Had she taken a bullfighter then I would have understood, but an ordinary chemist…’ The second photograph shows a more mature Rutherford with his colleague John Ratcliffe at the Cavendish Laboratory.


pages: 654 words: 204,260

A Short History of Nearly Everything by Bill Bryson

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Albert Michelson, Alfred Russel Wallace, All science is either physics or stamp collecting, Arthur Eddington, Barry Marshall: ulcers, Brownian motion, California gold rush, Cepheid variable, clean water, Copley Medal, cosmological constant, dark matter, Dava Sobel, David Attenborough, double helix, Drosophila, Edmond Halley, Ernest Rutherford, Fellow of the Royal Society, Harvard Computers: women astronomers, Isaac Newton, James Watt: steam engine, John Harrison: Longitude, Kevin Kelly, Kuiper Belt, Louis Pasteur, luminiferous ether, Magellanic Cloud, Menlo Park, Murray Gell-Mann, out of africa, Richard Feynman, Richard Feynman, Stephen Hawking, supervolcano, Thomas Malthus, Wilhelm Olbers

Growing up in a remote part of a remote country, he was about as far from the mainstream of science as it was possible to be, but in 1895 he won a scholarship that took him to the Cavendish Laboratory at Cambridge University, which was about to become the hottest place in the world to do physics. Physicists are notoriously scornful of scientists from other fields. When the wife of the great Austrian physicist Wolfgang Pauli left him for a chemist, he was staggered with disbelief. “Had she taken a bullfighter I would have understood,” he remarked in wonder to a friend. “But a chemist . . .” It was a feeling Rutherford would have understood. “All science is either physics or stamp collecting,” he once said, in a line that has been used many times since. There is a certain engaging irony therefore that when he won the Nobel Prize in 1908, it was in chemistry, not physics. Rutherford was a lucky man—lucky to be a genius, but even luckier to live at a time when physics and chemistry were so exciting and so compatible (his own sentiments notwithstanding). Never again would they quite so comfortably overlap.


pages: 287 words: 87,204

Erwin Schrodinger and the Quantum Revolution by John Gribbin

Amazon: amazon.comamazon.co.ukamazon.deamazon.fr

Albert Einstein, Albert Michelson, All science is either physics or stamp collecting, Arthur Eddington, British Empire, Brownian motion, double helix, Drosophila, Edmond Halley, Ernest Rutherford, Fellow of the Royal Society, Henri Poincaré, Isaac Newton, John von Neumann, Richard Feynman, Richard Feynman, Schrödinger's Cat, Solar eclipse in 1919, The Present Situation in Quantum Mechanics, the scientific method, trade route, upwardly mobile

But even before he knew what an alpha particle was, or how such particles could be ejected at high speed from radioactive atoms such as those of uranium or radium, Rutherford was able to use them to study the structure of atoms. Back in England, in 1907 he became Professor of Physics at the University of Manchester, and in 1908 received the Nobel Prize for his work on the transmutation of the elements. The Nobel Committee regarded this as a branch of chemistry, so he was awarded the chemistry prize, even though Rutherford regarded himself as a physicist and once famously said: “All of science is either physics or stamp collecting.” The year after he received the Nobel Prize, Rutherford suggested an experiment, actually carried out by two of his junior colleagues in Manchester, Hans Geiger (1882–1945) and Ernest Marsden (1889–1970), that provided the first insight into the structure of the atom. Geiger and Marsden used alpha particles from a radioactive source to bombard thin sheets of metal foil, and a detector devised by Geiger and Rutherford (the precursor of the famous Geiger counter) to monitor where the alpha particles went after they hit the metal.